Eng Ru
Отправить письмо

Статьи – "Для чего нужна нейтралка на автомате ". Для чего нужна нейтраль


Вопрос6.Для чего используется нейтральный провод?

Ответ6. Нейтральный провод используется для выравнивания фазных напряжений на клеммах нагрузки.A=а ;В=b;C=c. В этом случае, падения напряжения на нагрузке остаются равными фазным напряжениям генератора. В случае, если внутреннее сопротивление генератора пренебрежимо мало (равно нулю), то напряжения на нагрузке остаются равными фазным напряжениям генератора, постоянными и не зависят от величины нагрузки. (Ток будет изменяться, а напряжение на нагрузке не изменится).

Вопрос7.Какими уравнениями описывается электрическое состояние цепи при несимметричной нагрузке?

Ответ7. При несимметричной нагрузке фаз и отсутствии нейтрального провода фазные комплексы напряжения на нагрузке,,связаны с соответствующими комплексными напряжениями источника ŮA, ŮВ, ŮСуравнениями Кирхгофа :

; ;;

где - комплексное напряжение между нейтральными точками нагрузки и источника (сети).

называют напряжением смещения нейтрали.

Напряжение смещения нейтрали рассчитывается методом 2-х узлов:

где: Ė –комплексные ЭДС, – комплексы проводимости фаз нагрузки.

Токи фаз нагрузки находят по закону Ома:

İa=a/Za = (A -)/Za;

İb=b/Zb = (B -)/Zb;

İa =c/Zc = (C -)/Zc.

Вопрос8.Как построить совмещенные векторные диаграммы напряжений и токов для исследованных режимов трехфазной цепи?

Ответ8.

Построение векторных диаграмм начинаем с векторов линейных напряжений, задаваемых сетью и от условий опыта не зависящих. Это равносторонний треугольник образованный векторами линейных напряжений. Длина вектора соответствует линейному напряжению, а углы между векторами соответствуют сдвигу фаз между векторами напряжений.

Построение векторной диаграммы для случая равномерной нагрузки.( симметричный режим).

1.Выбираем комплексную плоскость (+1,j). Реальную ось +1 направляем вертикально вверх, мнимую- вдоль оси -Х. ( поворот на угол +90°).

2. Выбираем масштаб напряжений, например 1см→20В. Вектор Ua(в масштабе) откладываем вдоль реальной оси +1.Конец вектора обозначаем малой буквойа.

3.Вектора UbиUc(в масштабе) рисуем под углами +120° и –120° соответственно. Концы векторов обозначаем малыми буквамиbиc соответственно.

4. Точку, соответствующую началу координат, обозначим малой буквой n. Это точка нейтрали приемника.

5.Строим вектора линейных напряжений. Для этого соединяем концы фазных векторов. Получим вектора Uab= UAB, Ubc= UBC, Ucа= UCА. Отметим, что линейные напряжения приемника равны линейным напряжениям генератора.

Т очкаN на векторной диаграмме, соответствующая нейтральной точке генератора, находится в центре треугольника линейных напряжений. В данном случае нейтраль генератора N совпадает с нетралью приемника n. В общем случае точку n, соответствующую нейтральной точке нагрузки, находят методом засечек. Векторы токов откладывают по отношению к соответствующим векторам фазных напряжений с учетом сдвига фаз между ними.

Ниже приведены векторные диаграммы для различных режимов работы.

Режим 1. Равномерная нагрузка без нейтрального провода(рис. 8).

Режим 2. Обрыв фазы А ( рис. 9):

При обрыве фазы А и одинаковой нагрузке двух других фаз, нейтральная точка приемника nпереместится на середину линейного напряжения ŮBC.СопротивленияZbиZcокажутся соединенными последовательно и включенными на линейное напряжениеBC. Падение напряжения между точками А иnувеличится, а фазные напряженияbиcстанут равными половине линейногоBC.

Рис. 9

Режим 3. Короткое замыкание фазы А (рис. 9).

При замыкании фазы А и одинаковой нагрузке двух других фаз (то есть при соединении начала нагрузки фазы А с нулевой точкой нагрузки) точка nперемещается в точку А. Фазное напряжение Ůа становится равным нулю, ток İaувеличивается, а фазные напряженияbиcстановятся равными линейным.

Рис. 9

Режим 4. Неравномерная нагрузка без нейтрального провода (рис. 10).

Сопротивления, Zа≠Zb≠Zc, фазные напряжения приемникаа≠b≠c, между точкамиNиnпоявляется напряжение смещения нейтрали.

4.1 Вначале строим треугольник линейных напряжений.

4.2. Методом засечек (циркулем или линейкой) из каждой вершины откладываем соответствующие вектора фазных напряжений приемника. Точка пересечения дуг даст точку нейтрали приемника n. Точку нейтрали генератораNоставляем на прежнем месте.

4.3 Соединяем точку n иN . Это вектор напряжения смещения нейтралиUnN(в масштабе).

4.4 Строим вектора фазных токов нагрузки. В случае, если нагрузкой являются лампочки, которые можно представить как активные сопротивления, то сдвига фаз между фазным напряжением и фазным током нагрузки не будет. Поэтому вектора токов откладываем ( в масштабе) вдольсоответствующих векторов фазных напряжений.

***) В общем случае надо определить сдвиги фаз между током и соответствующим фазным напряжением по закону Ома в комплексной форме и строить вектор тока с помощью транспортира.

Рис. 10

Режим 5. Неравномерная нагрузка с нейтральным проводом (рис.11).

При наличии нейтрального провода фазные напряжения приемника становятся равными фазным напряжениям источника A= а ;В=b;C=c:

Рис. 11

studfiles.net

Система заземления «IT»

Система заземления «IT», больше известная в России как «электроустановка с изолированной нейтралью», предназначена для защиты человека, электрооборудования и линий электропередач от воздействия межфазного замыкания во время работы с большими токами.

itВ системе заземления «IT» нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части заземлены. Ток утечки на металлические корпуса или на землю в этой системе будет низким и не повлияет на условия работы присоединенного электрооборудования. Поэтому, такой вид заземления получил наибольшее распространение в предприятиях энергоснабжения, а также в газовой, нефтяной и химической промышленности, где есть угроза воспламенения горючих веществ от используемого электрооборудования. Иначе говоря, система заземления «IT» исключает немедленное отключение при пробое на «землю» и возникновение дуги при непредвиденном соприкосновении токоведущих проводников между собой, а также предохраняет от появления шагового напряжения очень большой силы, даже на короткий промежуток времени. Чтобы как-то разобраться в этом, рассмотрим каждый нулевой проводник по-отдельности.

Роль защитного нулевого проводника «РЕ» исполняет обычный заземленный контур, замкнутый на токопроводящие корпуса, кожухи и другие внешние металлические части электрических установок. При этом надо помнить, что совокупное заземление нескольких видов электрооборудования допускается, если они принадлежат одному классу эксплуатации. Например, категорически воспрещается занулять в один заземляющий контур электрооборудование, которое работает с напряжением до 1 киловольта и оборудование, которое работает с напряжением свыше 3 киловольт и так далее, в этом случае применяется раздельное заземление. Это особенно актуально для повышающих и понижающих подстанций.

Что касается нулевого рабочего проводника «N», то он абсолютно отсутствует в системе энергопитания, поэтому данный вид заземления, используется только при трехфазных вводах. А в источниках питания или преобразования электричества он полностью отсутствует или изолируется от земли тремя основными способами: полным изолированием нейтрали, изолированием нейтрали через дугогосящую схему или изолированием нейтрали через низкоомное или высокоомное сопротивление.

sistema_zazemleniya_it_5

В первом случае, обмотки генератора или трансформатора в распределительных, преобразующих или питающих подстанциях, соединяются по схеме «треугольник», поэтому нейтральная точка для соединения нулевого проводника «N» отсутствует. Но такая схема электромонтажа, является малоэффективной и работает только при малых токах в местах замыканий.

Дугогасящая схема, тоже не идеальна и сопряжена с угрозами поражения персонала электрическим током, со сложностью настройки компенсации сил напряжения, а также с невозможностью обнаружения повреждений в кабеле при первом замыкании, но намного лучше, чем первая. Поэтому, на сегодняшний день она широко используется в странах Европы, только в системах воздушного электроснабжения предприятий и населенных пунктов и только с высокоточным саморегулирующим оборудованием, В кабельных разветвлениях, ее эффективность стремится к нулю. Здесь схема соединения такая же, как в первом случае, но обязательно создается нейтральная точка для подключения нулевого проводника «N», с помощью токосъемного трансформатора с последующим заземлением через рассматриваемую схему

Заземление с помощью низкоомного или высокоомного сопротивления, несмотря на то, что она мало применяется в России и ее можно встретить только на предприятиях с высокой взрывоопасностью, на ГЭС и на высоковольтных передающих станциях, самая надежная и эффективная по сравнению с двумя предыдущими. Достаточно привести главные преимущества перед остальными:

 

  • практически нулевая опасность для обслуживающего персонала;
  • максимальная защита используемого оборудования и систем контроля:
  • простая схема монтажа систем контроля над емкостью сети и обнаружения повреждений;
  • стойкость к многократным межфазным замыканиям;
  • возможность применения автоматических и полуавтоматических систем настроек защиты.

Притом, что схема подключения возможна двумя способами, и «треугольником», и «звездочкой».

 

Условные обозначения систем заземления :

Первая буква - состояние нейтрали источника относительно земли .

Т - заземлённая нейтраль .I - изолированная нейтраль .

Вторая буква - состояние открытых проводящих частей относительно земли .

Т - открытые проводящие части заземлены независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети .N - открытые проводящие части присоединены к глухозаземлённой нейтрали источника питания .

Буквы после N - совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников .

S - нулевой рабочий (N) и нулевой защитный (PE) проводники разделены .С - функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (РЕN-проводник) .

Система заземления «TN-S»

Система заземления «ТТ»

Система заземления «TN-С»

malahit-irk.ru

Для чего нужно заземление

Слово «заземление» знакомо, пожалуй, каждому, даже далеко не профессиональному электрику.  Оно применимо практически ко всем объектам, связанным с электрическим током.

Итак, заземления – это меры по защите человека от поражения его электрическим током. Более детально вопросы заземления и требования к нему описаны в ПУЭ (правила устройства электроустановок).

С электростанции электрическая энергия передается с помощью линий электропередач ЛЭП на подстанции. С электростанции идет три провода – три фазы. Но земля, по которой мы ходим, тоже участвует в этом процессе, в качестве четвертого, или «нулевого провода». В трехфазной сети, соединенной по схеме «звезда» (а именно так соединяются обмотки трансформаторов для бытовых потребителей) сумма напряжений в общей точке равно нулю. Эта точка называется нейтраль, которая на подстанции заземляется, то есть непосредственно соединяется с землей, образуя, таким образом, контур заземления. Поскольку нейтраль трансформатора получается глухо заземленной, то отсюда и появилось это упрощенное название «земля».

Упрощенная схема передачи электроэнергии от электростанции до потребителя показан ниже:

Упрощенная схема передачи электроэнергии от электростанции до потребителя

Где а) принцип подачи электроэнергии, а б) ее путь от электростанции до потребителя

Конечный же потребитель, который находится в селах, городах, поселках городского типа и других населенных пунктах, запитывается от подстанций трансформаторных через устройства вводно-распределительные (сокращенно ВРУ). Трансформатор, который находится на подстанции, понижает напряжения с 6 или 10 кВ до 380 В, после чего энергия подается потребителю. Но ведь в розетке 220 В спросите вы? Да действительно в розетке 220 В, а не 380. И это связано с тем, что 380 В – это напряжение линейное, то есть напряжение между фазами. В бытовой розетке же находится два провода один фазный, а второй нейтральный, или как его еще называют «земля». То есть 220 В это напряжение фазы относительно земли или нейтрального провода. Сам же провод глухозаземленной нейтрали (нулевой или «земля») имеет относительно земли потенциал равный нулю, то есть от него нет угрозы поражения электрическим током.

Такое «заземление» могут использовать и в качестве защитного заземления (зануление), так и качестве рабочего проводника, по которому течет ток силовой цепи (пример, розетка – один провод фазный, второй нейтральный). Более того, для заземления могут создавать отдельные контуры, не связанные с подстанцией и силовым трансформатором – это контуры не предназначены для работы с силовыми цепями, а только с защитными. Также глухозаземленная нейтраль, приходящая с подстанции в дом, может расщеплятся на входе на два отдельных провода, один из которых будет предназначаться для силовых цепей – другой для защитных.

Более подробно мы рассмотрим различные системы заземления в следующих статьях.

elenergi.ru

Для чего нужна нейтралка на автомате

Все водители знают, что на каждом автомобиле есть нейтральная передача. Однако далеко не все, а особенно новички, знают,  какие хитрости она в себе таит и вообще для чего она нужна. Многие задаются вопросом, можно ли в движении транспортного средства с автоматической коробкой передач использовать нейтральную скорость и стоит ли её использовать во время остановки на светофоре. 

Изначально определимся с тем, что вообще представляет собой нейтралка. Нейтральная передача – это определенное положение коробки передач. Именно при  таком положении крутящий момент способен передаться колесам от двигателя таким образом, что автомобиль не будет двигаться при работающем моторе. Данное определение относится  к машинам и с автоматической, и с механической коробкой.

Функции нейтральной передачи

Роль нейтралки на автомобилях с механической коробкой абсолютно понятна и водители переключаются на данную передачу  при каждой остановке и на каждом светофоре. А вот на  автомате за все время эксплуатации транспортного средства можно так ни разу и не воспользоваться этой передачей. Так зачем же она тогда нужна? А необходима она в основном для возможности буксировки машины в случае её поломки. Именно на нейтральной передаче следует буксировать автомобиль и то, довольно аккуратно.

Ещё в одном случае на автомате применяют нейтралку – это стоянка. Естественно, многие скажут, что для этого существует «Р» (паркинг), что более удобно в случае стоянки. Но ведь не запрещено оставлять автомобиль на нейтралке и на «ручнике» и поэтому воспользоваться таким методом можно.

Ситуация на светофоре

В каждом населенном пункте, особенно в мегаполисах, существует множество светофоров, на которых необходимо довольно часто останавливаться, если горит красный свет. Как же быть в такой ситуации водителям транспортных средств с автоматической коробкой? Стоит ли ставить нейтралку или достаточно нажать педаль тормоза и оставаться в режиме «D» (драйв)?

Различные источники на данный вопрос дают разные пути решения. В этом случае не существует одного единого мнения. Давайте будем разбираться в корне проблемы, опираясь на инструкцию пользователя.

Когда включена нейтралка, то связь между валами отсутствует.  Машина может свободно двигаться, так как вал не заблокирован. Получается, что режим «N» крайне необходим для сервисной транспортировки машины. При этом важно производить это по установленным правилам.

Что же касается остановок на светофоре, то транспортные средства с АКПП устроены несколько иначе, чем их собратья с механической коробкой передач. У данного механизма нет различных шестеренок и сцепления. Вся работа построена на гидротрансформаторе, который при режиме «D» нагнетает давление, способное передать крутящий момент на колеса. При этом происходит эффективная смазка деталей.

Что же получается при остановке на красный свет? Водитель убирает ногу с педали газа и тогда давление жидкости снижается. В подобном режиме гидротрансформатор лишь смазывается. И это идет во благо машине и АКПП. 

А вот при переключении на нейтралку данное нагнетение отсутствует, смазывание автомата не происходит. Иными словами, ничего хорошего из переключений на нейтральную передачу при остановке автомобиля с АКПП на светофоре не получится. Даже наоборот, частые изменения давления только приведут к увеличенному износу.

Исключением являются не кратковременные остановки машины, а более длительные прекращения движения, связанные с пробками на дороге или очередью на АЗС. В этом случае довольно не комфортно будет водителю все время держать ногу на педали тормоза. Что же тогда делать? Включать нейтралку?

И снова нет. Лучше всего поставить автомобиль на режим паркинг, а в случае, когда пробка основательная и поток машин практически не движется можно даже заглушить двигатель. На многих марках транспортных средств, «P - паркинг» рассчитан на прогрев машины, и её стоянку с работающим мотором. Так что в любом случае паркинг лучше, чем нейтральная скорость в данном случае.

Движение накатом

На автомобилях с механической коробкой можно с крутой и затяжной горки катиться накатом на нейтралке пока позволяет уклон. Таким образом, можно ещё и топливо сэкономить. Позволительно ли это машинам с АКПП?

Ответ однозначный – ни в коем случае нельзя. Смазывание, которое так необходимо для движения транспортного средства, в этом случае будет отсутствовать, а степень износа увеличиться в разы. Добавьте к этому ещё и резкий перепад давления в АКПП, который получиться при включении режима драйв внизу горы после  нахождении коробки передач в нейтральном положении. Ведь вы же не выполните полную остановку машины, а сразу после наката в движении включите скорость «D». Это может привести к повреждению АКПП.

Ремонт после наката на нейтралке выльется в гораздо большую стоимость, чем экономия топлива. Накат при желании можно осуществить просто отпусканием педали газа, но в режиме драйв.

Выполняя описанные выше правила, вы сможете продлить срок эксплуатации АКПП в своем транспортном средстве, а нарушая их – купите новый механизм в довольно скором времени.

Кирилл Раченков Автор Кирилл Раченков Издание MotorPage.Ru

www.motorpage.ru

Нейтральный провод — WiKi

При соединении обмоток генератора и приёмника электроэнергии по схеме «звезда» фазное напряжение зависит от подключаемой к каждой фазе нагрузки. В случае подключения, например, трёхфазного двигателя, нагрузка будет симметричной, и напряжение между нейтральными точками генератора и двигателя будет равно нулю. Однако, в случае, если к каждой фазе подключается разная нагрузка, в системе возникнет так называемое напряжение смещения нейтрали, которое вызовет несимметрию напряжений нагрузки. На практике это может привести к тому, что часть потребителей будет иметь пониженное напряжение, а часть повышенное. Пониженное напряжение приводит к некорректной работе подключённых электроустановок, а повышенное может, кроме этого, привести к повреждению электрооборудования или возникновению пожара.Соединение нейтральных точек генератора и приёмника электроэнергии нейтральным проводом позволяет снизить напряжение смещения нейтрали практически до нуля и выровнять фазные напряжения на приёмнике электроэнергии. Небольшое напряжение будет обусловлено только сопротивлением нулевого провода.

  Шина для раздачи нулевых проводов.

Нулевой рабочий провод обозначается буквой N. Если нулевой рабочий провод одновременно выполняет функцию нулевого защитного провода (в системе заземления TN-C), то он обозначается как PEN. Согласно ПУЭ цвет нулевого рабочего провода должен быть голубым или бело-голубым[1]. Такая же расцветка принята в Европе. В США цвет нулевого рабочего провода может быть серым или белым.

В линиях электропередач разных классов применяются различные виды нейтралей. Это связано с целевым назначением и различной аппаратурой защиты линии от короткого замыкания и утечек. Нейтраль бывает глухозаземлённая, изолированная и эффективно-заземленная.

Глухозаземлённая нейтраль

Применяется в линиях напряжением от 0,4 кВ и до 35 кВ, при небольшой длине ЛЭП и большом количестве точек подключения потребителей. Потребителю приходят 3 фазы и нуль, подключение однофазной нагрузки осуществляется между фазой и нулевым проводом (нейтралью). Нулевой провод генератора также заземлён.

Изолированная нейтраль

Применяется в линиях с напряжением свыше 2 кВ до 35 кВ, такие линии имеют среднюю протяжённость и сравнительно небольшое число точек подключения потребителей, которыми обычно являются ТП в жилых районах и мощные машины фабрик и заводов.В линиях на 50 кВ может применяться как изолированная, так и эффективно-заземлённая нейтраль.

Эффективно заземленная нейтраль

Применяется на протяжённых линиях с напряжением от 110 кВ до 220 кВ (п. 1.2.16 ПУЭ) {{Работа электрических сетей напряжением 110 кВ может предусматриваться как с глухозаземленной, так с эффективно заземленной нейтралью.

Электрические сети напряжением 220 кВ и выше должны работать только с глухозаземленной нейтралью. }}

ru-wiki.org


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта