Eng Ru
Отправить письмо

Трансформаторы, виды трансформаторов и их описание. Типы трансформаторов


Трансформаторы. Описание, типы, классификация трансформаторов. Измерительные, силовые, импульсные трансформаторы.

Электрический трансформатор - это устройство, предназначенное для изменения величины напряжения в сети переменного тока. Принцип действия трансформаторов основан на явлении электромагнитной индукции. При подключении первичной обмотки к источнику переменного тока, в обмотках генерируется магнитное поле, которые взывает ЭДМ во вторичных обмотках. Данная ЭДС пропорциональна числу  витков в первичных и вторичных  обмотках. Отношение электродвижующей силы в первичной обомотке/вторичной называется коэффициентом трансформации.

Основными элементами конструкции трансформатора являются первичные и вторичные обмотки и ферромагнитный магнитопровод (обычно замкнутого типа). Обмотки расположены на магнитопроводе и индуктивно связаны друг с другом. Использование магнитопровода позволяет саккумулировать большую часть магнитного поля внутри трансформатора, что повышает КПД устройства. Магнитопровод обычно состоит из набора металлических пластин, покрытых изоляцией, для предотвращения возникновения «паразитных» токов внутри магнитопровода. Зачастую часть вторичной обмотки служит часть первичной и наоборот. Данный тип трансформаторов называют автотрансформаторами. В этом случае концы первичных обмоток подключаются к сети  переменного напряжения, а концы вторичной присоединяются к потребителям электроэнергии.

Основная классификация трансформаторов.

  • По назначению: измерительные трансформаторы тока, напряжения, защитные, лабораторные, промежуточные.
  • По способу установки: наружные, внутренние, шинные, опорные, стационарные, переносные.
  • По числу ступеней: одноступенчатные, многоступенчатые (каскадные).
  • По номинальному напряжения: низковольтные, высоковольтные.
  • По типу изоляции обмоток: c сухой изоляцией, компаундной, бумажно-маслянной.

Основные типы трансформаторов 

Силовые трансформаторы - наиболее распространенный тип  электро. трансформаторов.  Они предназначены  для изменения  энергии переменного тока в электросетях энергосистем, в сетях освещения или питания электрооборудования. Применяются для создания комплектных трансформаторных подстанций.Классифицируются по количеству фаз и номинальному напряжения.Наиболее известные низковольтные однофазные и трехфазные трансформаторы серии ТП и ОСМ.Среди высоковольтных трансформаторов, наиболее используемые в данной момент в энергетике,  трансформаторы ТМГ-с масляным охлаждением в герметичном баке.. Преимуществами данной серии вляется высокий КПД (до 99%), высокие показатели защиты от перегрева, высокие эксплуатационные характеристики, и минимальное обслуживание во время использования. Помимо силовых, существуют трансформаторы различных типов и назначения: для измерения больших напряжений и токов (измерительные трансформаторы), для преобразования напряжения синусоидальной формы в импульсное (пик-трансформаторы), для преобразования импульсов тока и напряжения (импульсные трансформаторы), для выделения переменной составляющей тока, для разделения электрических цепей на гальванически не связанные между собой части, для их согласования и т.д.

Измерительные трансформаторы- электротехнические устройства, предназначенные для изменения уровня напряжения с высокой точностью трансформации. Классифицируются по назначению, изменению уровня напряжения или тока.Также делятся на низковольтные трансформаторы тока  типа Т, 066 ТШ-0,66, ТТИ-066 и Высоковольтные трансформаторы напряжения, такие как НАМИТ и ЗНОЛ. Вторичные обмотки данных устройств соединены с измерительными устройствами (амперметрами, счетчиками электроэнергии, вольтметрами, фазометрами, реле тока и т.д.) Применение данного оборудования позволяет изолировать измеряющее оборудование от больших токов и напряжений измеряемой цепи, и создает возможность стандартизации измеряющего оборудования.

Автотрансформаторы – устройства, обмотки которого соеденены гальванически между собой.  Благодыря малым коэффициентам трансформации,  автотрансформаторы имеют меньшие габариты и стоимость оп сравнению с многообмоточными. Из недостатков необходимо отметить невозможность гальванической изоляции цепей.  Основные сферы использования автотрансформаторов – изменение напряжения в пусковых устройствах крупных электрических машин переменного тока, в системах релейной защиты при плавном регулировании напряжения.  В случае реализации в конструкции автотрансформатора изменения количества рабочих витков вторичной обмотки, появляется возможность сохранять уровень вторичного напряжения при изменении первичного напряжения. Наибольшее распространение данный  данный механизм используется в стабилизаторах напряжения.

Импульсный трансформатор - это устройство  с ферромагнитным сердечником, используемый для изменения импульсов тока  или напряжения. Импульсные трансформаторы наиболее часто используются в электронновычислительных устройствах, системах радиолокации, импульсной радиосвязи и т.д. в качестве измерительного устройства в счетчиках электроэнергии.Основное требование импульсным трансформаторам, - при изменении импульса форма импульса должна сохраняться. Это достигается максимальным уменьшением межвитковой емкости, индуктивности рассеивания за счет использования применением сердечников малой величины, взаимным расположение и уменьшением числа обмоток. 

Пик-трансформатор - устройство, изменяющее  напряжение синусоидальной формы в импульсное напряжение с изменяющейся через каждые полпериода полярностью.  Пик-трансформаторы применяются в качестве генераторов  импульсов главным, высоковольтных исследовательских установках и системах автоматики..

www.elektro-portal.com

Типы и классификация трансформаторов

Трансформаторы – особый вид оборудования, применяемый для изменения показателей напряжения в электросетях с переменным током. В основе его работы лежит такое явление как электромагнитная индукция – первичная обмотка присоединяется к источнику тока, после чего в ней начинает генерироваться магнитное поле, и во вторичных обмотках возникает электродвижущая сила.

Конструктивные особенности трансформаторов

В основе конструкции прибора находятся вторичные и первичные обмотки, сердечник из ферромагнитного сплава (обычно замкнутого типа). Обмотки располагают на магнитном проводе, они связаны между собой индуктивным способом. Благодаря наличию магнитопривода аккумулируется значительная часть магнитного поля, и КПД устройства возрастает. Сам магнитопровод представляет собой комплекс металлических пластин, покрытых изоляцией. Изоляция нужна для предотвращения появления паразитных токов в сердечнике.

Принципы классификации трансформаторов

Трансформаторы классифицируются по следующим принципам:

  1. Назначение (лабораторные, защитные, промежуточные, измерительные).
  2. Напряжение (низко- и высоковольтные).
  3. Способ установки (переносные, стационарные, наружные и внутренние, опорные, шинные).
  4. Количество ступеней (одно- и многоступенчатые).
  5. Характер изоляции обмотки (сухая, компаундная, бумажно-масляная).

Каждый тип прибора имеет свои особенности и преимущества, о которых мы поговорим далее. Ремонт трансформаторов всех видов должен производиться профессиональными мастерами с применением соответствующего оборудования.

Типы трансформаторов

Самой распространенной категорией электрических трансформаторов являются силовые трансформаторы – они различаются между собой по количеству фаз, показателям номинального напряжения. Назначение – изменение напряжения тока в сетях освещения, питания оборудования, энергосистем.

Второй по популярности тип оборудования – измерительный. Он используется для контроля рабочих показателей напряжения, фазы или тока в первичной цепи. На измеряемую сеть работа прибора влияния практически не оказывает.

Третий тип – автотрансформаторы, обмотки в которых соединяются между собой гальваническим способом. Коэффициент трансформации невысокий, поэтому установка имеет сравнительно небольшие размеры и недорого стоит. Устанавливаются в стабилизаторах напряжения, системах релейной защиты, запуска крупных электроустановок, работающих от сети с переменным током.

Импульсные трансформаторы оборудуются феррогмагнитным сердечником, который изменяет напряжения и импульсы тока. Данный тип оборудования применяется в вычислительных устройства электронного типа, системах радиолокации, импульсной связи, в качестве главного измерителя в электросчетчиках.

Пик-трансформаторы преобразуют напряжение синусоидального типа в импульсное. Разделительные устройства отличаются от остальных тем, что в них первичная обмотка со вторичными не связана. Назначение прибора – гальваническая развязка электроцепей.

Согласующий трансформатор согласует показатели сопротивления каскадов схем таким образом, что сигнал практически не искажается. Согласующий трансформатор между рабочими участками создает схемы гальванической развязки.

Сдвоенный дроссель оснащается двумя идентичными обмотками. За счет взаимной индукции катушек дроссель имеет отличную эффективность, хотя имеет стандартные размеры. Используется в звуковой технике, в качестве фильтров блока питания. Для хранения информации обычно используется трансфлюксор – трансформатор с большой остаточной намагниченностью магнитопровода.

agregat-impuls.ru

Трансформаторы, виды трансформаторов и их описание

Электрические трансформаторы, как таковые, разрабатывались, и в большинстве своем применяются, для изменения напряжения в цепях переменного тока. Классический трансформатор состоит из двух обмоток, электрически друг с другом никак не связанных. Обе обмотки должны быть намотаны на один магнитопровод.Передача энергии, между обмотками (катушками) происходит при помощи магнитного поля. Согласно закону Ленца для электромагнитной индукции, при пересечении проводника магнитными силовыми линиями, в нем возникает электродвижущая сила заставляющая заряды перемещаться внутри проводника. (Давайте вспомним простой опыт из курса физики, который наглядно  демонстрирует это закон).

Трансформаторы, виды трансформаторов и их описание

На этом законе основана работа всех трансформаторов. Если через одну из обмоток трансформатора пропустить постоянный ток, то во вторичной обмотке не возникнет электродвижущая сила и, следовательно, ток (не считая момента включения). А все потому, что магнитные силовые линии, вызванные в магнитопроводе  током первичной обмотки, не будут пресекать витки вторичной катушки. Нет пересечения – нет тока. По этой причине постоянный ток не трансформируется. Вообще, слово «трансформатор» очень точно характеризует процессы происходящие внутри этого электроприбора. Первоначально электрический ток трансформируется в магнитное поле, а затем это поле преобразуется (трансформируется) опять в электрический ток. Только ток этот должен быть переменным, то возрастающим, то убывающим, или, на крайний случай, пульсирующим.

Для предотвращения потерь энергии в силовых трансформаторах используется система охлаждения. На них сверху устанавливается расширительный бачок и заливается масло.

Бывают трансформаторы, у которых первичная и вторичная обмотки являются, как бы частью одной и той же катушки индуктивности. Такие устройства называются автотрансформаторами.

Итак, трансформаторы обычно классифицируются по следующим признакам:

По назначению они бывают:По способу установки:
—      силовые—      стационарные
—      измерительные—      переносные
—      защитные—      наружные
—      лабораторные—      внутренние
—      трансформаторы тока—      шинные
—      трансформаторы напряжения—      опорные.
—      промежуточные.
По числу ступеней различают:По используемому напряжению:
—      одноступенчатые—      высоковольтные
—      каскадные (многоступенчатые).—      низковольтные.
По типу изоляции:По количеству фаз
—      с сухой изоляцией—      однофазные
—      с бумажно-масляной изоляцией—      трехфазные.
—      с компаундной изоляцией.

Для нас, потребителей, наиболее важными из перечисленных, являются силовые высоковольтные стационарные трехфазные трансформаторы, с компаундной изоляцией. Они устанавливаются внутри тяговых подстанций. Именно от их работы зависит, будет ли в нашем доме электричество или нет. Подходящее к тяговой подстанции напряжение, обычно в 10000 вольт, преобразуется в 220 и подается потребителям, то есть нам с вами.

Знать какие бывают трансформаторы и зачем они нужны жизненно необходимо не только электрикам, но и простым гражданам, хотя бы для того, что бы предотвратить техногенные катастрофы. Так, в случае возникновения дыма из высоковольтного трансформатора, или просто громкой его работы (при обычной работе ни не гудят), необходимо срочно позвонить в службу энергосбыта, это, возможно, предотвратит аварию и отключения большого количества потребителей от электроснабжения. Недаром говорили древние: «Знающий человек предупрежден, а предупрежден, значит вооружен».

 

volt-index.ru

Типы трансформаторов и их параметры



Силовые трансформаторы, установленные на электростанциях и подстанциях, предназначены для преобразования электроэнергии с одного напряжения на другое. Наибольшее распространение получили трехфазные трансформаторы, так как потери в них на 12-15% ниже, а расход активных материалов и стоимость на 20-25% меньше, чем в группе трех однофазных трансформаторов такой же суммарной мощности.

Трехфазные трансформаторы на напряжение 220 кВ изготовляют мощностью до 1000 MBА, на 330 кВ - 1250 MBА, на 500 кВ - 1000 MBА. Предельная единичная мощность трансформаторов ограничивается массой, размерами, условиями транспортировки.

Однофазные трансформаторы применяются, если невозможно изготовление трехфазных трансформаторов необходимой мощности или затруднена их транспортировка. Наибольшая мощность группы однофазных трансформаторов напряжением 500 кВ - 3х533 MBА, напряжением 750 кВ - 3х417 MBА, напряжением 1150 кВ - 3х667 MBА.

Принципиальные схемы трансформаторов

Рис.1. Принципиальные схемы трансформаторов а - двухобмоточного, б - трехобмоточного, в - с расщепленными обмотками низкого напряжения

По количеству обмоток различного напряжения на каждую фазу трансформаторы разделяются на двухобмоточные и трехобмоточные (рис.1,а,б). Кроме того, обмотки одного и того же напряжения, обычно низшего, могут состоять из двух и более параллельных ветвей, изолированных друг от друга и от заземленных частей. Такие трансформаторы называются трансформаторами с расщепленными обмотками (рис.1,в). Обмотки высшего, среднего и низшего напряжения принято сокращенно обозначать соответственно ВН, СН, НН.

Трансформаторы с расщепленными обмотками НН обеспечивают возможность присоединения нескольких генераторов к одному повышающему трансформатору. Такие укрупненные энергоблоки позволяют упростить схему РУ 330-500 кВ. Широкое распространение трансформаторы с расщепленной обмоткой НН получили в схемах питания собственных нужд крупных ТЭС с блоками 200-1200 МВт, а также на понижающих подстанциях с целью ограничения токов КЗ.

К основным параметрам трансформатора относятся номинальные мощность, напряжение, ток; напряжение КЗ; ток XX; потери XX и КЗ.

Номинальной мощностью трансформатора называется указанное в заводском паспорте значение полной мощности, на которую непрерывно может быть нагружен трансформатор в номинальных условиях места установки и охлаждающей среды при номинальных частоте и напряжении.

Для трансформаторов общего назначения, установленных на открытом воздухе и имеющих естественное масляное охлаждение без обдува и с обдувом, за номинальные условия охлаждения принимают естественно меняющуюся температуру наружного воздуха (для климатического исполнения У: среднесуточная не более 30°С, среднегодовая не более 20°С), а для трансформаторов с масляно-водяным охлаждением температура воды у входа в охладитель принимается не более 25°С (ГОСТ 11677-85). Номинальная мощность для двухобмоточного трансформатора - это мощность каждой из его обмоток. Трехобмоточные трансформаторы могут быть выполнены с обмотками как одинаковой, так и разной мощности. В последнем случае за номинальную принимается наибольшая из номинальных мощностей отдельных обмоток трансформатора.

За номинальную мощность автотрансформатора принимается номинальная мощность каждой из сторон, имеющих между собой автотрансформаторную связь («проходная мощность»).

Трансформаторы устанавливают не только на открытом воздухе, но и в закрытых не отапливаемых помещениях с естественной вентиляцией. В этом случае трансформаторы также могут быть непрерывно нагружены на номинальную мощность, но при этом срок службы трансформатора несколько снижается из-за худших условий охлаждения.

Номинальные напряжения обмоток - это напряжения первичной и вторичной обмоток при холостом ходе трансформатора. Для трех фазного трансформатора - это его линейное (междуфазное) напряжение. Для однофазного трансформатора, предназначенного для включения в трехфазную группу, соединенную в звезду, - это V/√3. При работе трансформатора под нагрузкой и подведении к зажимам его первичной обмотки номинального напряжения напряжение на вторичной обмотке меньше номинального на величину потери напряжения в трансформаторе. Коэффициент трансформации трансформатора и определяется отношением номинальных напряжений обмоток высшего и низшего напряжений:

В трехобмоточных трансформаторах определяется коэффициент трансформации каждой пары обмоток: ВН и НН; ВН и СН; СН и НН.

Номинальными токами трансформатора называются указанные в заводском паспорте значения токов в обмотках, при которых допускается длительная нормальная работа трансформатора.

Номинальный ток любой обмотки трансформатора определяют по ее номинальной мощности и номинальному напряжению.

Напряжение короткого замыкания uK - это напряжение, при подведении которого к одной из обмоток трансформатора при замкнутой накоротко другой обмотке в ней проходит ток, равный номинальному.

Напряжение КЗ определяют по падению напряжения в трансформаторе, оно характеризует полное сопротивление обмоток трансформатора.

В трехобмоточных трансформаторах и автотрансформаторах напряжение КЗ определяется для любой пары его обмоток при разомкнутой третьей обмотке. Таким образом, в каталогах приводятся три значения напряжения КЗ: uкВ-Н, uкВ-С, uкС-Н.

Поскольку индуктивное сопротивление обмоток значительно вьше активного (у небольших трансформаторов в 2-3 раза, а у крупных в 15-20 раз), то uк в основном зависит от реактивного сопротивления, т.е. взаимного расположения обмоток, ширины канала между ними, высоты обмоток. Величина uк регламентируется ГОСТ в зависимости от напряжения и мощности трансформаторов. Чем больше высшее напряжение и мощность трансформатора, тем больше напряжение КЗ. Так, трансформатор 630 кВА с высшим напряжением 10 кВ имеет uк=5,5%, с высшим напряжением 35 кВ uк=6,5%; трансформатор мощностью 80000 кВА с высшим напряжением 35 кВ имеет uк=9 %, а с высшим напряжением 110 кВ uк=10,5%.

Увеличивая значение uк, можно уменьшить токи КЗ на вторичной стороне трансформатора, но при этом значительно увеличивается потребляемая реактивная мощность и увеличивается стоимость трансформаторов. Если трансформатор 110 кВ, 25 MBА выполнить с uк=20% вместо 10%, то расчетные затраты на него возрастут на 15,7%, а потребляемая реактивная мощность возрастет вдвое (с 2,5 до 5,0 Мвар).

Трехобмоточные трансформаторы могут иметь два исполнения по значению uк в зависимости от взаимного расположения обмоток. Если обмотка НН расположена у стержня магнитопровода, обмотка ВН - снаружи, а обмотка СН - между ними, то наибольшее значение имеет uкВ-Н, а меньшее значение uкВ-С. В этом случае потери напряжения по отношению к выводам СН уменьшатся, а ток КЗ в сети НН будет ограничен благодаря повышенному значению uкВ-Н.

Если обмотка СН расположена у стержня магнитопровода, обмотка ВН - снаружи, а обмотка НН - между ними, то наибольшее значение имеет uкВ-С, а меньшее uкВ-Н. Значение uкС-Н останется одинаковым в обоих исполнениях.

Ток холостого хода Ix характеризует активные и реактивные потери в стали и зависит от магнитных свойств стали, конструкции и качества сборки магнитопровода и от магнитной индукции. Ток холостого хода выражается в процентах номинального тока трансформатора. В современных трансформаторах с холоднокатаной сталью токи холостого хода имеют небольшие значения.

Потери холостого хода Рx и короткого замыкания Рк определяют экономичность работы трансформатора. Потери холостого хода состоят из потерь в стали на перемагничивание и вихревые токи. Для уменьшения их применяется электротехническая сталь с малым содержанием углерода и специальными присадками, холоднокатаная сталь толщиной 0,3 мм марок 3405, 3406 и др. с жаростойким изоляционным покрытием. В справочниках и каталогах приводятся значения Рx для уровней А и Б. Уровень А относится к трансформаторам, изготовленным из электротехнической стали с удельными потерями не более 0,9 Вт/кг, уровень Б - с удельными потерями не более 1,1 Вт/кг (при В =1,5 Тл, f= 50 Гц).

Потери короткого замыкания состоят из потерь в обмотках при протекании по ним токов нагрузки и добавочных потерь в обмотках и конструкциях трансформатора. Добавочные потери вызваны магнитными полями рассеяния, создающими вихревые токи в крайних витках обмотки и конструкциях трансформатора (стенки бака, ярмовые балки и др.). Для их снижения обмотки выполняются многожильным транспонированным проводом, а стенки бака экранируются магнитными шунтами.

В современных конструкциях трансформаторов потери значительно снижены. Например, в трансформаторе 250000 кВA, U=110 кВ (Рx=200 кВт, Рк=790 кВт), работающем круглый год (Тmax=6300 ч), потери электроэнергии составят 0,43 % электроэнергии, пропущенной через трансформатор. Чем меньше мощность трансформатора, тем больше относительные потери в нем.

В сетях энергосистем установлено большое количество трансформаторов малой и средней мощности, поэтому общие потери электроэнергии во всех трансформаторах страны значительны и очень важно для экономии электроэнергии совершенствовать конструкции трансформаторов с целью дальнейшего уменьшения значений Рх и Рк.



www.gigavat.com

6 типов трансформаторов, которые можно увидеть в коммерческих зданиях

Типы трансформаторов и их характеристики

Трансформаторы в коммерческих применениях обычно используются для изменения уровня напряжения с того, который подается в сети распределения, до напряжения, требуемого внутри здания, а также для снижения распределяемого внутри здания напряжения до уровня, который может быть использован конкретным оборудованием.Обычно, в коммерческих строениях используются следующие шесть типов трансформаторов:1. Трансформаторы подстанций2. Трансформаторы первичных подстанций3. Трансформаторы вторичных подстанций (силовых центров)4. Трансформаторы для сетей5. Трансформаторы, устанавливаемые на основании (КТП)6. Распределительные трансформаторы в помещениях

Для специальных применений выпускается множество других типов трансформаторов, таких как сварочные, источники постоянного напряжения, и трансформаторы, удовлетворяющие требованиям высокого импеданса. Обсуждение этих специальных трансформаторов и их применения выходит за пределы данного материала.

1. Трансформаторы подстанций

Эти трансформаторы используются в находящихся на улице подстанциях.  Они  имеют мощность в 750-5000 кВА для однофазного устройства или 750-25 000 кВА для трехфазных устройств.

трансформатор 40 МВА

Высоковольтный трансформатор 40 МВА

Основной диапазон напряжений для таких трансформаторов, начинается с 3000 В, и выше. Выводы трансформаторы обычно переключаются вручную, при отключенном напряжении. Однако могут быть установлены средства автоматического переключения выводов. Напряжение на вторичной обмотке находится в диапазоне от 380 до 10000 вольт. Первичная обмотка обычно подключается треугольником, вторичная обмотка, как правило, подключается звездочкой, для облегчения заземления вторичной нейтрали.В качестве изолирующей и охлаждающей среды трансформатора обычно используется жидкость. Высоковольтные подключения осуществляются посредством вводов, устанавливаемых на корпусе. Низковольтные подключения могут быть выполнены при помощи вводов, устанавливаемых на корпусе или при помощи воздушной камеры выводов.

2. Трансформаторы первичных подстанций

Вторичные обмотки этих трансформаторов подключаются к коммутационному оборудованию среднего напряжения. Это трехфазные устройства с мощностью в 1000 -10 000 кВА. Первичное напряжение находится в диапазоне от 6000 до 150 000 вольт. Напряжение на вторичных обмотках находится в диапазоне от 3000 до 30 000 вольт.

Трансформатор первичной подстанции

Трансформатор первичной подстанции

Переключение выводов, как правило, выполняется вручную, когда напряжение на трансформатор не подается (ПБВ). Однако могут быть установлены средства автоматического переключения выводов. Первичная обмотка обычно подключается треугольником. Трансформатор может быть масляным, использовать менее воспламеняющуюся жидкость, он может быть воздушным, сухим, залитым смолой под давлением, или заполненным газом. Высоковольтное подключение выполняется через вводы на корпусе, через воздушную камеру, или через горловину. Низковольтное соединение выполняется через горловину.

3. Трансформаторы вторичных подстанций

Вторичные обмотки этих трансформаторов подключаются к низковольтному коммутационному оборудованию или к распределительным щитам. Это трехфазные устройства мощностью 112.5-2500 кВА. Напряжение на первичной обмотке находится в диапазоне от 3000 до 35000 вольт. Выводы переключаются вручную при отключенном напряжении.  Напряжение на вторичной обмотке составляет 120-380 В.

трансформатор сухого типа

Trihal – трансформатор сухого типа, 1600 кВА, 10/0.4 кВ

Первичная обмотка, как правило, подключается треугольником, а вторичная обычно подключается звездочкой. Тип трансформатора может быть масляный, или с менее воспламеняющейся жидкостью, воздушный, сухой, залитый смолой под давлением или заполненный газом. Высоковольтные соединения осуществляются через вводы на корпусе, воздушную камеру, или через горловину. Низковольтное соединение осуществляется через горловину, но может быть использована и магистральная шина.

4. Трансформаторы для сетей

Такие трансформаторы используются в системах вторичных сетей, и имеют мощность 300-2500 кВА. Напряжение на первичной обмотке составляет 4160 – 34 500 В. Выводы переключаются вручную при отсутствии напряжения. Напряжение на вторичной обмотке составляет 208Y /120 В, и 480Y /277 В.

трансформатор - погружаемого типа

Сетевой трансформатор -  погружаемого типа

Трансформатор может быть масляным, либо залитым менее воспламеняющейся жидкостью. Он может быть воздушным, сухого типа, заполненным смолой под давлением, или газом. Первичная обмотка подключается треугольником, вторичная – звездочкой. Высоковольтное соединение обычно снабжается сетевым выключателем (включен-выключен-заземление), или прерывающим выключателем, как имеющим положение заземления, так и не имеющим его. Вторичная обмотка обычно снабжается подходящей сетевой защитой, или низковольтным воздушным выключателем, спроектированным в качестве функционального эквивалента сетевой защиты.Трансформатор погружаемого типа пригоден для частой или непрерывной работы, будучи погруженным в воду. Устройства сейфового типа пригодны для эпизодических операций в погруженном под воду состоянии.

5. Трансформаторы, устанавливаемые на основании

Эти трансформаторы устанавливаются снаружи зданий там, где не подходит применение обычных подстанций. Это либо однофазовые, либо трехфазовые устройства. Так как они имеют особо прочную защищенную конструкцию, то для них не требуется установки ограды,

трансформатор, установленный на основании

Наружный трансформатор, установленный на основании

Соединения с первичными и вторичными обмотками выполняются в секциях, расположенных рядом друг с другом, но отделенными барьером от трансформатора и друг от друга. Доступ к подключениям выполняется через дверь на петлях, запираемую на висячий замок. Эти двери сконструированы таким образом, чтобы затруднить доступ в каждый отсек для посторонних лиц.Когда устанавливаются вентиляционные отверстия, применяются решетки, устойчивые к взлому. Измерители, и аксессуары располагаются в отсеке низкого напряжения.– Эти устройства имеют мощность 75-2500 кВА– Напряжение на первичной обмотке равно 3000 – 35000 В– Выводы переключаются вручную при отсутствии напряжения– Напряжение на вторичной обмотке находится в диапазоне 120-380 В.Первичная обмотка почти всегда подключается треугольником, или специальной конструкцией соединения звездочкой. Вторичная обмотка обычно подключается звездочкой.  Тройное соединение треугольником не приемлемо в случае магнитопровода с тремя ветвями, если только устройство, находящее в цепи до трансформатора, не размыкает все три фазы в случае отказа в одной фазе.Трансформатор может быть масляным, либо залитым менее воспламеняющейся жидкостью. Он может быть воздушным, сухого типа, заполненным смолой под давлением, или газом. Высоковольтное подключение осуществляется через воздушную камеру, которая может иметь зажимные контакты, или снабжена устройством отключения, либо плавкими предохранителями. Соединение может быть либо одинарным, либо осуществляться по кольцевой схеме. Низковольтное соединение обычно осуществляется посредством кабеля внизу трансформатора. Но также может использоваться и магистральная шина.Устанавливаемый на основание трансформатор сухого типа не несет опасности, присущей масляным трансформаторам, устанавливаемым на основании. Такие трансформаторы устанавливаются на крыше зданий, чтобы находиться как можно ближе к месту нагрузки.

6. Распределительные трансформаторы в помещениях     

Используемые вместе с распределительными щитами, и устанавливаемые отдельно, такие трансформаторы имеют мощность 1-333 кВА в случае однофазного устройства, или 2-500 кВА для трехфазного устройства.

Трансформатор, установленный в помещении

Трансформатор, установленный в помещении

 Охлаждающей средой здесь является воздух (вентилируемый или невентилируемый). Меньшие по размеру устройства помещаются в непроницаемые кожухи. Высоковольтные и низковольтные соединения относятся к зажимным соединениям кабелей. Импеданс распределительных трансформаторов обычно ниже импеданса трансформаторов для подстанций или вторичных подстанций.Как устанавливаемые в помещении, так и наружные распределительные трансформаторы применяются для напряжения первичной обмотки до 35000 В, и имеют базовый импульсный уровень изоляции (BIL), равный 150 кВ.Большинство трансформаторов для распределения электроэнергии при напряжении в 380 В, размещаемые в коммерческих зданиях, обычно называются "трансформаторами общего назначения". Напряжение вторичной обмотки у них обычно равно 208Y/120 В. Эти трансформаторы, в основном, сухого типа, и некоторые из них, имеющие небольшие размеры, также заключены в непроницаемые кожухи. Трансформаторы общего назначения используются для обслуживания освещения, бытовых приборов и штепсельных розеток, с напряжением 120 В.

Другая типизация трансформаторов

Фактически, все силовые трансформаторы, применяемые в коммерческих зданиях, представляют собой трансформаторы с двумя обмотками. Их называют изолированными трансформаторами, в противоположность трансформаторами с одной обмоткой, называемым автотрансформаторами. Трансформатор с двумя обмотками обеспечивает положительную изоляцию между первичной и вторичной цепью. Это желательно с точки зрения безопасности, изоляции электрических цепей, снижения уровней отказа, координации и уменьшения электрических помех.Существует также ряд "специальных трансформаторов", используемых в таких приложениях, как рентгеновские аппараты, лабораторная техника, электронное оборудование, и специальная техника.Специальные трансформаторы применяют там, где минимальная величина тока утечки может вызвать дугу, и воспламенение атмосферы (например, в насыщенной кислородом  атмосфере), или привести к персональным травмам (например, при открытых операциях на сердце). В этом случае вторичная обмотка не должна быть заземлена.

Трансформатор электродуговой печи постоянного тока

Рисунок 2 – Трансформатор электродуговой печи постоянного тока (DC EAF)

В большинстве чувствительных приложений, ток утечки может отслеживаться и контролироваться.  Для этого между первичной и вторичной обмотками помещается заземленный экран. Такой экран также снижает электромагнитные помехи, возникающие в первичной обмотке.

Ещё по теме:

silovoytransformator.ru

Типы трансформаторов тока: особенности конструкции

Трансформатор – это устройство, которое предназначается для уменьшения или увеличения тока в электрической сети. Основой его работы служит электромагнитная индукция. Когда первичная обмотка будет подключена к переменному току, тогда благодаря магнитному полю во вторичной обмотке возникнет электродвижущая сила. В этой статье вы сможете узнать про типы трансформаторов тока.

Какие бывают типы трансформаторов тока

По типу своей работы трансформаторы могут делиться на:

  1. Измерительные трансформаторы.
  2. Защитные.
  3. Промежуточные.
  4. Лабораторные.
  5. Трансформаторы для галогенных ламп.

Они также могут быть одноступенчатыми или многоступенчатыми. В зависимости от конструкции их могут устанавливать как снаружи и внутри помещений. Наиболее распространенными типами трансформаторов считаются силовые устройства. Эти типы трансформаторов тока имеют сложную конструкцию, но устанавливаться могут практически везде. Эти устройства могут отличаться между собою номинальным током и количеством фаз.

Измерительные трансформаторы относятся к электротехническим устройствам. Они способны измерять напряжение в электрической сети. Эти типы трансформаторов тока могут отличаться по назначению или уровню напряжения. Вторичная обмотка этого устройства соединяется с помощью амперметра и вольтметра. Они будут изолировать оборудование от высокого напряжения.

Особенности автотрансформаторов

Эти типы трансформаторов тока имеют в своей конструкции гальванические соединения. Они имеют низкий коэффициент трансформации и именно поэтому их габариты являются небольшими. С их помощью достаточно быстро можно изменять напряжение пусковых устройств в больших электрических машинах. Также благодаря им можно легко регулировать напряжение в системе релейной защиты. Иногда эти устройства также монтируют в стабилизаторы напряжения.

Для изменения напряжения применяют импульсные трансформаторы. В их конструкции установлен ферромагнитный сердечник. Эти устройства обычно используют для вычислительных приборов. Они могут успешно сохранять форму импульса при изменении. Таким образом, все известные типы трансформаторов тока должны использоваться по конкретному назначению. Благодаря этому вы сможете значительно повысить эффективность их работы.

Особенности трансформатора тока нулевой последовательности

Он используется для того чтобы контролировать ток от утечки. Этот аппарат в первую очередь состоит из сердечника, на который наматывают первичную и вторичную обмотку. Между ними располагается специальный экран. Его выполняют из магнитного материала. Эти трансформаторы имеют сигнал небаланса. Этот сигнал может быть скомпенсирован полностью.

Он имеет достаточно простую конструкцию, которая дает возможность уменьшить сигнал небаланса. Проводники в этом трансформаторе достаточно часто могут иметь винтовые линии.

Читайте также: как сделать трансформатор своими руками?

vse-elektrichestvo.ru

Специальные типы трансформаторов

Количество просмотров публикации Специальные типы трансформаторов - 418

Однофазный сварочный трансформатор

В рабочем режиме трансформатор находится близко к короткому замыканию. Чтобы величина тока не возрастала сверх допустимого значения, последовательно к нему включается реактивная катушка РК с раздвижным сердечником, благодаря чему характеристика трансформатора становится круто падающей (рисунок, справа).

Трансформатор для дуговой сварки

Изменяя зазор δ, можно плавно менять сварочный ток. Максимальное значение тока будет при δмах. Для безопасного обслуживания вторичная обмотка сварочного трансформатора заземляется.

Автотрансформаторы применяются в высоковольтных линиях электропередач для пуска асинхронных и синхронных двигателœей в лабораторной практике и при испытаниях. Автотрансформаторы бывают повышенными и пониженными, однофазными и трехфазными.

В автотрансформаторе часть витков в обмотке ВН используется в качестве обмотки НН, то есть в автотрансформаторе имеется всœего лишь одна обмотка, часть которой (а Х) принадлежит одновременно сторонам ВН и НН.

Схема автотрансформатора

На участке аХ протекает ток i12 = i2 — i1, или переходя к действующим значениям, учитывая, что I1 и I2 находятся в противофазе, можно записать:

I12= I2— I1

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, величина тока в общей части обмоток равна разности токов I1 и I2. В случае если коэффициент трансформации близок к единице, то I1 и I2мало отличаются друг от друга, разность между ними будет также небольшой. Это позволит выполнять часть обмотки аХ проводом меньшего поперечного сечения.

Измерительные трансформаторы тока и напряжения применяются совместно с измерительными приборами для расширения их пределов измерения.

Измерительные трансформаторы напряжения

Измерительный трансформатор напряжения представляет собой понижающий трансформатор с таким отношением витков w1/w2, чтобы при U1 = Uсети; U2 = 100 В.

Во вторичную цепь включаются вольтметры, частотомеры, обмотки напряжения ваттметров, счетчиков и фазометров. Так как электрическое сопротивление этих приборов велико (порядка 1000 Ом), то трансформаторы напряжения работают в режиме, близком к холостому ходу. Такой режим связан с большими магнитными потерями, а это, в свою очередь, приводит к увеличению размеров магнитопровода и устройству специального масляного охлаждения.

Измерительные трансформаторы тока и напряжения

Измерительные трансформаторы тока

Измерительные трансформаторы тока применяются для включения в сеть амперметров, обмоток тока ваттметров, счетчиков и фазометров.

Первичная обмотка трансформатора тока выполняется из провода большого поперечного сечения и включается в цепь последовательно.

Вторичная обмотка выполняется всœегда на ток I2 = 5А. Рабочий режим трансформатора тока близок к короткому замыканию, в связи с этим размеры магнитопровода у него значительно меньше, чем у трансформатора напряжения.

Печной трансформатор служит для преобразовании электроэнергии высокого напряжения в энергию низкого напряжения. Трансформаторы, предназначенные для питания дуговых электрических печей, во многом сходны с обычными силовыми трансформаторами. Их конструктивные отличия обусловлены специфическими особенностями работы электрических печей.

ОСОБЕННОСТИ ПЕЧНОГО ТРАНСФОРМАТОРА

Большая величина номинального тока на стороне низкого напряжения, составляющая десятки тысяч ампер

Повышенное индуктивное сопротивление обмоток, крайне важно е для ограничения токов короткого замыкания до 2,5-3,5-кратной величины по отношению к номинальному току, так как сталеплавильные печи работают с частыми замыканиями электродов на шихту при зажигании дуги и обвале шихты в период расплавления

Повышенная механическая прочность крепления обмоток и отводов, рассчитанных на частые толчки токов и короткие замыкания

Возможность регулирования напряжения под нагрузкой в широких пределах.

Выпрямительные устройства чаще всœего получают питание от трансформаторов, параметры которых подобраны под выпрямительное устройство.

Такие трансформаторы работают в крайне сложных условиях. Их вторичные токи содержат обширный спектр высших гармоник. Качественный и количественный состав гармоник тока зависит от схемы выпрямления, в которой работает трансформатор. Размещено на реф.рфВ выпрямительных системах с нейтральным проводом ток во вторичной обмотке трансформатора приобретает вид однонаправленных прямоугольных импульсов. Это вызывает подмагничивание сердечника магнитным потоком, содержащим постоянную составляющую. С энергетической точки зрения данный эффект носит неблагоприятный характер.

Такие трансформаторы, как правило, имеют большие размеры и весят больше, чем обычные силовые трансформаторы. Причина такого различия состоит в преднамеренном снижении магнитной индукции в сердечнике трансформатора уже на этапе проектирования Ступенчатое регулирование осуществляется переключением звезда – треугольник, что приводит к изменению тока в 3 раза. (больший ток при схеме треугольник – треугольник, чем звезда – звезда.)

Учитывая зависимость отсхемы выпрямления трёхфазные трансформаторы производятся в различных модификациях. Одна из самых простых конструкций – трансформатор для систем трехпульсных выпрямителœей. Первичная обмотка такого трансформатора чаще всœего соединœена в треугольник, а вторичная - в звезду с выведенным нейтральным зажимом (группа Dyn):

Схема 3-пульсного выпрямителя с нейтральным проводом

Более широко применяются трансформаторы, изготовленные для шестипульсных выпрямителœей. Такая система получает питание от трансформатора или от сетевых дросселœей. Трансформатор используется тогда, когда крайне важно привести выходное напряжение выпрямителя в соответствие с напряжением нагрузки. Мостовая схема выпрямителя не требует вывода нейтрального провода во вторичной обмотке трансформатора, а его обмотки бывают выполнены с использованием следующих схем соединœений: Yy, Yd ,Dy, Dd. Еще одно возможное конструктивное решение – специальный трансформатор для питания шестифазного выпрямителя. Первичная обмотка такого трансформатора соединœена в треугольник, а вторичная создаёт шестифазную схему с выведенным нейтральным зажимом:

Схема 6-пульсного преобразователя с выведенным нейтральным проводом

Многочисленную группу составляют трансформаторы, которые работают в составе систем сложных многопульсных выпрямителœей.

Схема 12-пульсного выпрямителя

referatwork.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта