Особенности работы пбв трансформатора и расшифровка. Пбв трансформатораПБВ - это... Что такое ПБВ?Регули́рование напряже́ния трансформа́тора — изменение числа обмоток трансформатора. Применяется для поддержания нормального уровня напряжения у потребителей электроэнергии. Большинство трансформаторов оборудовано некоторыми приспособлениями для настройки коэффициента трансформации путём добавления или отключения числа витков. Настройка может производиться с помощью переключателя числа витков трансформатора под нагрузкой либо путем выбора положения болтового соединения при обесточенном и заземлённом трансформаторе. Степень сложности системы с переключателем числа витков определяется той частотой, с которой надо переключать витки, а также размерами и ответственностью трансформатора. ПрименениеВ зависимости от нагрузки электрической сети меняется её напряжение. Для нормальной работы электроприёмников потребителей необходимо, чтобы напряжение не отклонялось от заданного уровня больше допустимых пределов, в связи с чем применяются различные способы регулирования напряжения в сети. Одним из способов является изменение соотношения числа обмоток первичной и вторичной цепи трансформатора (коэффициента трансформации), так какПереключение без возбужденияСхема работы переключателя ответвлений Данный тип переключения используется во время сезонных переключений, так как предполагает отключение трансформатора от сети, что невозможно делать регулярно, не лишая потребителей электроэнергии. ПБВ позволяет изменить коэффициент трансформатора в пределах от −5 % до +5 %. На маломощных трансформаторах выполняется с помощью двух ответвлений, на трансформаторов средней и большой мощности с помощью четырех ответвлений по 2,5 % на каждое.[1] Ответвления чаще всего выполняются на той стороне, напряжение на которой в процессе эксплуатации подвергается изменениям. Обычно это сторона высшего напряжения. Выполнение ответвлений на стороне высшего напряжения имеет также то преимущество, что при этом ввиду большего количества витков отбор ±2,5 % и ±5 % количества витков может быть произведён с большей точностью. Кроме того, ток на стороне высшего напряжения меньше и переключатель получается более компактным.[2] При переключении ответвлений обмотки при отключения трансформатора переключающее устройство получается проще и дешевле, однако переключение связано с перерывом энергоснабжения потребителей и не может проводиться часто. Поэтому этот способ применяется главным образом для коррекции вторичного напряжения сетевых понижающих трансформаторов в зависимости от уровня первичного напряжения на данном участке сети в связи с сезонным изменением нагрузки.[2] Переключатели числа витков без возбужденияПереключатель числа витков без возбуждения имеет достаточно простое устройство, предоставляющее соединение с выбранным переключателем числа витков в обмотке. Как следует из самого названия, он предназначен для работы только при выключенном трансформаторе. Может оказаться, что давление контактов поддерживается с помощью некоего пружинного приспособления, которое может вызывать некоторую вибрацию. Если переключатели числа витков без возбуждения находятся в одном и том же положении в течение нескольких лет, то сопротивление контакта может медленно расти в связи с разрушением и окислением материала в точке контакта. При этом происходит разогревание, которое приводит к осаждению пиролитического углерода, который ещё более увеличивает контактное сопротивление и снижает степень охлаждения. В конечном счёте наступает неконтролируемая ситуация, и трансформатор может отключить механизм газовой защиты или может наступить еще более тяжелое последствие; происходит короткое замыкание. Во избежание этого жизненно важно, чтобы работа с переключателем числа витков проводилась в отключенном от сети состоянии, по полной программе, несколько раз в течение регулярного технического обслуживания, с протиркой контактных поверхностей начисто перед возвратом его обратно в заданное положение.[3] Естественно, то же правило имеет силу, если переключатель числа витков без возбуждения отключается от работы на долгий период. Регулирование под нагрузкойДанный тип переключений применяется для оперативных переключений, связанных с постоянным изменением нагрузки (например, днём и ночью нагрузка на сеть будет разная). В зависимости от того, на какое напряжение и какой мощности трансформатор, РПН может менять значение коэффициента трансформации в пределах от ±10 до ±16 % (примерно по 1,5 % на ответвление). Регулирование осуществляется на стороне высокого напряжения, так как величина силы тока там меньше, и соответственно, устройство РПН выполнить проще и дешевле. Регулирование может производиться как автоматически, так и вручную из ОПУ или диспетчерского пульта управления. Переключатели числа витков под нагрузкойУже в 1905 - 1920 годах были придуманы приспособления для перехода между переключателями числа витков трансформатора без прерывания тока. Работу переключателя числа витков под нагрузкой можно понять по двум показательным функциям. Это переключающее устройство, которое переносит проходную мощность трансформатора от одного переключателя числа витков трансформатора к соседнему переключателю числа витков. Во время этой операции оба переключателя числа витков соединены посредством переходного сопротивления. В этой фазе оба переключателя числа витков имеют общую токовую нагрузку. После этого соединение с предыдущим переключателем числа витков прерывается, и нагрузка переносится на новый переключатель числа витков. Приспособление, которое выполняет такое переключение, называется контактором. Соединения с парой переключателей числа витков, которые производит контактор, может потребовать смены целого ряда переключателей числа витков регулирующей обмотки для каждой операции. Это функция переключателя числа витков. Выбор производится переключателем числа витков без прерывания тока. Довольно важное улучшение в работе переключателей числа витков под нагрузкой произошло в результате изобретения быстродействующего триггерного контактора, названного принципом Янцена (Jantzen) по имени изобретателя. Принцип Янцена подразумевает, что контакты переключателя нагружены пружиной, и они перебрасываются из одного положения в другое после очень короткого периода соединения между двумя переключателями числа витков, через токоограничивающий резистор. Применение реактора является альтернативой принципу Янцена с последовательностью быстрых переключений и резисторами. В переключателе числа витков реакторного типа, напротив, намного труднее прервать циркулирующий реактивный ток, и это довольно сильно ограничивает скачок напряжения, однако этот принцип хорошо работает при относительно высоких токах. В этом отличие от быстродействующего резисторного переключателя числа витков, который применим для более высоких напряжений, но не для высоких токов. Это приводит к тому, что реакторный переключатель числа витков обычно находится в низковольтной части трансформатора, тогда как резисторный переключатель витков подсоединен к высоковольтной части. В переключателе витков реакторного типа потери в средней точке реактора благодаря току нагрузки и наложенного конвекционного тока между двумя вовлеченными переключателями числа витков невелики, и реактор может постоянно находиться в электрической цепи между ними. Это случит промежуточной ступенью между двумя переключателями числа витков, и это даёт в два раза больше рабочих положений, чем число переключателей числа витков в обмотке. С 1970-х годов стали применяться переключатели числа витков с вакуумными выключателями. Вакуумные выключатели характеризуются низкой эрозией контактов, что позволяет переключателям числа витков выполнять большее количество операций между обязательными профилактическими работами. Однако конструкция в целом становится более сложной. Также на рынке появлялись экспериментальные переключатели числа витков, в которых функция переключения исполняется силовыми полупроводниковыми элементами. Эти модели также направлены на то, чтобы сократить простои на проведение технического обслуживания. В переключателях витков резисторного типа контактор находится внутри контейнера с маслом, которое отделено от масла трансформатора. Со временем масло в этом контейнере становится очень грязным и должно быть изолировано от масляной системы самого трансформатора; оно должно иметь отдельный расширительный бак со своим отдельным вентиляционным клапаном. Устройство переключения числа витков представляет собой клетку или изолирующий цилиндр с рядом контактов, с которыми соединяются переключатели числа витков от регулирующей обмотки. Внутри клетки два контактных рычага передвигаются пошагово поперёк регулирующей обмотки. Оба рычага электрически соединены с вводными клеммами контактора. Один рычаг находится в положении активного переключателя числа витков и проводит ток нагрузки, а другой рычаг находится без нагрузки и свободно передвигается к следующему переключателю числа витков. Контакты устройства переключения никогда не разрывают электрический ток и могут находиться в масле самого трансформатора. Автоматическое регулирование напряженияПереключатель числа витков устанавливается для того, чтобы обеспечивать изменение напряжения в системах, соединенных с трансформатором. Совсем необязательно, что целью всегда будет поддержка постоянного вторичного напряжения. Внешняя сеть может также испытывать падение напряжения, и это падение также должно быть компенсировано. Оборудование управления переключателем числа витков не является частью самого переключателя числа витков; оно относится к релейной системе станции. В принципе переключатель числа витков всего лишь получает команды: повысить или понизить. Однако обычные функции координации между различными трансформаторами внутри одной и той же станции являются частью технологии переключателей числа витков. Когда разные трансформаторы соединены прямо параллельно, их переключатель числа витков должен двигаться синхронно с обоими трансформаторами. Это достигается тем, что один трансформатор имеет обмотку как ведущий трансформатор, а другой – как подчиненный трансформатор. Одновременная работа не будет возможна, если имеется небольшой интервал между циркулирующими токами обоих трансформаторов. Однако это не имеет никакого практического значения. Последовательные регулировочные трансформаторыДля регулирования коэффициента трансформации мощных трансформаторов и автотрансформаторов иногда применяют регулировочные трансформаторы, которые подключаются последовательно с трансформатором и позволяют менять как напряжение, так и фазу напряжения. В силу сложности и более высокой стоимости регулировочных трансформаторов, такой способ регулирования применяется гораздо реже, чем РПН. Источники
Литература
Wikimedia Foundation. 2010. dic.academic.ru устройство анцапфы, принцип работы, эксплуатация и ремонтПотребители электрической энергии более эффективно работают при номинальном напряжении. Однако это условие для всех довольно сложно. Допустимым у потребителей является его отклонение до +5%. Чтобы достигнуть значения напряжения, близкого по значению к номинальныму, численность витков обмоток трансформатора изменяют. Осуществить это можно двумя способами:
Связь регулировки напряжения с изменением количества витковИмеется несколько методов поддержки значения напряжения у потребителей в надобных пределах. Среди них особое место занимает способ его регулирования. Достоинства этого способа являют собой:
При проектировании электрических сетей выбирают средства, границы и степени регулировки, место установки регуляторов, а также систему их автоматизации. Значение первичного и вторичного напряжения прямо пропорционально зависит от числа витков обмоток, в которых оно протекает: U 1 / U 2 ≈W 1 / W 2, где U 1, U 2 — соответственно первичное и вторичное напряжение; W 1 / W 2 — соответственно количество витков первичной и вторичной обмотки Из этого вытекает, что для изменения напряжения на выходе трансформатора необходимо менять количество витков одной из обмоток. Благодаря этому обмотка, которая будет задействована в переключении, производится с ответвлениями. Несмотря на простоту процесса, существуют и некоторые трудности. При переключении с одного ответвления на другое ни в коем случае нельзя разрывать цепь тока. Одновременно с этим требованием запрещается, чтобы контакты переключателя замкнули два соседних ответвления, иначе короткого замыкания этой части обмотки не избежать. А это, в свою очередь, приведёт к её повреждению из-за возникнувших больших токов. Существует два способа для удовлетворения этих условий: переключение ответвлений обмоток после отключения от сети всех его обмоток и во время работы, при нагрузке. Основные понятия о пбв трансформатора ПБВ трансформатора имеет очень простую расшифровку, которая заключается в первых буквах слов — «переключение без возбуждения». Это означает, что все переключения необходимо проводить у трансформатора, который отсоединён от источника питания. Но также широко известно другое название устройства пбв трансформатора — анцапфа. Анцапфа (переключатель) — это устройство, с помощью которого число витков обмотки допустимо изменить для регулирования выходного напряжения. Переключатель предназначен для того, чтобы изменить коэффициент трансформации в пределах 5%, меняя задействованную в работе численность витков обмотки высокого напряжения. Место установки анцапфыУ трансформаторов, которые имеют многослойную цилиндрическую обмотку при мощности до 560 кВА, месторасположение анцапфы находится возле нулевой точки. Если трансформатор изготовлен мощностью до 1000 кВА, напряжением до 10 кВ и имеет непрерывные обмотки, применяют обратную схему с ответвлением около нулевой точки. В трансформаторах свыше 1000 кВА и 35 кВ, применяется схема с регулировочным ответвлением в средине обмотки. При этом анцапфа состоит из трёх элементов. Они размещены на общей оси один поверх другого. Переключатель замыкает одновременно пару контактов в любой фазе. Этот вид конструкции переключателя наиболее дешёвый и менее габаритный. Чтобы токи при переключении были невысокими, анцапфу всегда необходимо устанавливать в обмотку высокого напряжения. Этим достигается изготовление отводов и переключателя устройства более компактных габаритов. При этом витков у обмотки высокого напряжения намотано гораздо больше, благодаря чему достигается более высокая точность регулировки. При переключении анцапфы с одной ступени на другую поворачивают рукоятку переключателя. Она расположена на крыше бака. При регулировке способом без возбуждения отключение трансформатора вначале со стороны низкого, а затем высокого напряжения является обязательным условием. Привод рукоятки переключателя закрыт колпаком. Около показателя рукоятки нанесены обозначения +5%, «Ном», —5%. При повороте показателя рукоятки на указание +5% включаются в действие все витки обмотки. При показании «Ном» — на 5% меньше. При установке на обозначение -5% в работе витков обмотки на 10% меньше. В некоторых типах трансформатора вместо обозначений +5%, «Ном», -5% указываются цифры I, II, III. В таком случае показание I соответствует +5%, II — «Ном», III — 5%. Если мощность трансформаторов находится в пределах от 25 до 6300 кВА, то их исполняют с ответвлениями при ручном переключении для регулировки напряжения в границах ±5% со ступенями по 2,5%. Способы ПБВ трансформатораПереключение трансформатора без возбуждения можно выполнить двумя способами:
Если изменение напряжения производят с помощью первичной обмотки, то анцапфу устанавливают в ней. Этот метод находит применение только в понижающих трансформаторах. Этот метод носит также наименование регулирование напряжения изменением магнитного потока. Невзирая на потерю напряжения в обмотке, можно принять U 1 ≈ Е 1. Электродвижущая сила в первичной обмотке меняться не будет из-за неизменных параметров: частоты и напряжения сети: Е 1 = 4,44 f W 1 Ф м Учитывая, что изменений частоты при работе не предвидится, произведение W 1 Ф м изменяться не будет. Поэтому магнитный поток можно уменьшить при подсоединении большего количества витков первичной обмотки. Например, чтобы достичь падения напряжения на зажимах вторичной обмотки на 2,5%, необходимо количество витков первичной обмотки увеличить на 2,5%. Ответвляющие зажимы понижающих трансформаторов могут обеспечить надбавку +10%. Для этого к ним нужно подсоединить -5% витков. К примеру, в зависимости от того зажима, к которому подсоединяется переключающее устройство, процент надбавки для понижающего трансформатора напряжением 10 кВ будет меняться.
Второй метод применяется в повышающих трансформаторах. Обмотка низкого напряжения (первичная) подключена к сети. Если частота и напряжение неизменны, магнитный поток будет стабильным, а электродвижущая сила Е 2 будет изменяться в соответствии с изменением витков вторичной обмотки в зависимости от формулы: Е 2 = 4,44 f W 2 Ф м Формула свидетельствует о том, что если уменьшается количество витков на зажимах вторичной обмотки, то и напряжение уменьшится. Анализ формулы подтверждает, что численность витков и значение напряжения прямо пропорциональны. Очень часто в повышающих трансформаторах для получения наивысшего напряжения уже подключено и учтено необходимое количество витков. Поэтому при работе вхолостую повышающий трансформатор будет без надбавки. Эксплуатация и ремонт устройствВ трансформаторах 10% их поломок составляют неисправности, связанные с повреждением контактной системы анцапфы:
Все эти факторы приводят к нагреванию места повреждения, что впоследствии может вызвать аварийную поломку всего трансформатора. Поэтому техническое обслуживание и ремонт оборудования анцапфы занимают достойное место среди остального оборудования. Первой операцией при ремонте устройства переключателя является осмотр. Оценивание состояния неподвижных и подвижных контактов необходимо, так как они в течение продолжительного времени при работе находятся в трансформаторном масле. Из-за этого покрываются оксидной плёнкой. Для её удаления необходимо основательно очистить контакты ветошью, которая предварительно была смочена очищенным бензином. Если контакты обгорели и оплавились, их заменяют новыми, которые можно приобрести, а можно изготовить самостоятельно. При самостоятельном изготовлении важным условием является подбор материалов для контактов, аналогичных по качеству заводским. После замены повреждённых деталей затягивают крепления, проводят проверку на отсутствие заклинивания, правильности соприкосновения подвижных и неподвижных контактов, обновляют надписи возле крышки переключателя. После выполнения всех операций наладки анцапфы необходимо испытание качества её работоспособности. Для этого производятся переключения на все ступени в течение десяти циклов. Помех в работе устройства прослеживаться не должно. Несовершенством всех настоящих способов регулирования без возбуждения является то, что для переключения ветвей надо отключать трансформатор от источника питания. Это создаёт перебои в поставке электроэнергии потребителям. Общераспространённым является метод регулирования напряжения под нагрузкой. 220v.guru Устройство реечного переключателя обмоток ПБВ трансформатораЗдравствуйте, уважаемые читатели и гости сайта «Заметки электрика». В статье про приемо-сдаточные испытания трансформатора ТМГ11-1600 я рассказывал, что переключение ответвлений обмоток у силового трансформатора осуществляется с помощью переключателя ПТРЛ. Регулирование ступеней напряжения производится в ручную на стороне высокого напряжения (ВН) в пределах от -5% до +5% (ступенями по 2,5%) от номинального напряжения 6-10 (кВ) без возбуждения (ПБВ), т.е. при обязательном отключении силового трансформатора от сети, причем, как по высокой стороне (ВН), так и по низкой (НН). Регулирование напряжения по высокой стороне (ВН) позволяет упростить конструкцию переключателя из-за меньших токов по сравнению с обмоткой низкого напряжения (НН). Кроме того, обмотка высокого напряжения (ВН) имеет гораздо больше витков, а значит регулирование напряжения можно осуществлять гораздо точнее. В основном, переключатели ответвлений выполняют на 3 или 5 ступеней регулирования, среднее положение у которых всегда соответствует номинальному напряжению. При проведении очередных приемо-сдаточных испытаний у подобного трансформатора, правда чуть меньшей мощности (ТМЗ-630/10У1), у нас не проходили полученные значения омических сопротивлений обмоток ВН постоянному току, т.е. разница в измеренных сопротивлениях между фазами была существенная и значительно превышала норматив в 2%, причем на всех положениях переключателя ПБВ. ПУЭ, Глава 1.8, п.1.8.16.4 и ПТЭЭП, Приложение 3, п.2.5: РД 34.45-51.300-97 «Объем и Нормы испытаний электрооборудования», 6-ое издание, п.6.8: В связи с этим было решено слить масло, вскрыть крышку трансформатора и проверить контакты в переключателе ПБВ. Вот я и решил заодно показать Вам устройство и принцип работы переключателя, как говорится не на словах, а на деле. В рассматриваемом трансформаторе ТМЗ-630/10У1 установлен переключатель ПБВ реечного типа. Помимо переключателей реечного типа, существуют переключатели и барабанного типа, но о них я расскажу Вам как-нибудь в другой раз, по мере подходящего случая. Реечный переключатель расположен внутри трансформатора (в масле) прямо под крышкой бака, а его рукоятка выведена наружу. Как я и говорил в начале статьи, переключение ответвлений обмоток происходит по высокой стороне (ВН). Вот высоковольтные вводы (ВН) трансформатора. А вот их вид, но уже при слитом масле внутри бака трансформатора. Заодно покажу Вам и низкую сторону (НН). Мне не удалось найти чертеж конструкции переключателя именно нашего трансформатора ТМЗ-630/10У1. Зато на глаза мне попался чертеж аналогичного (похожего) реечного переключателя ПТРЛ с 6 выводами на каждую фазу. ПТРЛ расшифровывается, как:
Как видите, конструкция реечного переключателя обмоток ПБВ достаточно простая. На нижней неподвижной рейке установлены 18 выводов (6 на каждую фазу). К каждому выводу подключено соответствующее ответвление от обмотки, согласно ниже представленной схемы («звезда» без нуля — Y). Над неподвижной рейкой расположена подвижная рейка, на которой установлены 3 контактных перемычки (на каждую фазу своя перемычка). Подвижная рейка соединена с валом ручного привода, при повороте которого она перемещается с определенным шагом через зубчатый сегмент и замыкает своими контактами (перемычками) соответствующие выводы ответвлений обмоток. Фиксация положения рукоятки переключателя на определенной ступени осуществляется специальным фиксирующим устройством, расположенным на баке трансформатора. Вернемся к нашей проблеме, по причине которой омическое сопротивление первичных обмоток постоянному току имели неодинаковые значения и выходили за рамки нормы. Согласно руководства по эксплуатации реечных переключателей, пружины, прижимающие подвижный контакт (перемычку) должны быть сжаты на 1/3 длины от их разжатого состояния, а винты, сжимающие пружины должны быть законтрагаены. Видимо, со временем длительной эксплуатации гайки немного ослабли и, соответственно, ослаб сам контакт, что и давало разброс параметров по омическому сопротивлению. В итоге сжимающие пружины и гайки затянули соответствующим образом, после чего все замеры пришли в норму. Вот такая вот история. Помимо представленной в статье схемы первичной обмотки «звезда» без нуля (Y), существует и схема «треугольника» (Д), причем переключение обмоток которой осуществляется аналогичным реечным переключателем с 6 выводами на фазу. Ниже представлено еще две схемы, где переключение обмоток также происходит с помощью реечного переключателя ПТРЛ, но только с 5 выводами на фазу. Схема соединения ответвлений обмоток по схема «звезда» без нуля (Y): Схема соединения ответвлений обмоток по схема «звезда» с нулем (Y0): Теперь Вы представляете себе устройство реечного переключателя и как происходит переключение обмоток трансформатора. Если у Вас напряжение в сети снизилось (увеличилось) меньше (больше) предельно-допустимого значения, то переключив ступени переключателя ПБВ можно привести выходное напряжение силового трансформатора в нормируемое значение. Принцип работы реечного переключателя ответвлений обмоток у трансформатора более наглядно продемонстрирован в видеоролике. P.S. На этом, пожалуй, и все. Всем спасибо за внимание. Если статья была Вам полезна, то поделитесь ей со своими друзьями: zametkielectrika.ru ТРАНСФОРМАТОРЫ БЕЗ РЕГУЛИРОВАНИЯ ПОД НАГРУЗКОЙ (ПБВ)В настоящее время выпускаются с четырьмя дополнительными ответвлениями обмотки ВН. Схема такого трансформатора представлена на рис. 6.1. Рис. 6.1. Схема обмоток трансформатора с ПБВ
Основное ответвление обмотки ВН такого трансформатора (ответвление “0”) соответствует номинальному напряжению первичной обмотки трансформатора UВ,ном. Для понижающих трансформаторов UВ,ном равно номинальному напряжению сети Uном,с, к которой присоединяется данный трансформатор (6, 10, 20 кВ). При основном ответвлении трансформатора коэффициент трансформации трансформатора называют номинальным. При использовании четырёх дополнительных ответвлений коэффициент трансформации отличается от номинального на +5; +2,5; -2,5 и –5%. Следует отметить, что ответвление, например, “+5” на рис. 6.1 соответствует меньшему, а ответвление “-5” – большему коэффициенту трансформации в сравнении с номинальным коэффициентом трансформации, поскольку коэффициент трансформации определяется соотношением
, где отношение WВ/WН допустимо использовать при одинаковых схемах соединений обмоток высшего и низшего напряжений. Вторичная обмотка трансформатора является центром питания сети, подключенной к этой обмотке. Поэтому номинальное напряжение этой обмотки выше номинального напряжения сети: на 5% - для трансформаторов небольшой мощности; на 10% - для остальных трансформаторов. Пусть к первичной обмотке при использовании основного ответвления подведено напряжение, равное Uном,с, и на стороне НН при холостом ходе напряжение равно 1,05 Uном,с. При этом добавка напряжения равна 5%. Изменяя ответвления, к которым подключается первичное напряжение, можно получить с помощью ПБВ добавки напряжения следующих округлённых значений:
Чтобы переключить регулировочное ответвление в ПБВ, требуется отключение трансформатора от сети. Такие переключения производятся редко, при сезонном изменении нагрузок. При изменяющихся в течение суток нагрузках трансформатор с ПБВ работает при одном и том же регулировочном ответвлении. При этом требование встречного регулирования оказывается неосуществимым, поскольку нельзя выполнить условия и . Действительно, в соответствии с принципом встречного регулирования: ; . Обычно , поэтому , что противоречит требованиям встречного регулирования. Встречное регулирование можно обеспечить, только изменяя Uотв и, следовательно, коэффициент трансформации в течение суток, т.е. переходя от режима наибольших нагрузок к режиму наименьших.
Похожие статьи:poznayka.org регулирование напряжения трансформатора | Советы электрикаПриветствую вас, читатель моего сайта ceshka.ru! В этой статье я хочу рассказать вам как регулируется напряжение у силового трансформатора 110/10 кВ- под нагрузкой. Для тех кто вообще не в теме объясняю о чем вообще идет речь. Электроэнегрия от электростанции (АЭС, ТЭЦ, ГРЭС и т.п.) передается по опорам воздушных линий на многие сотни километров к подстанции (я буду вести речь о подстанции 110 000 Вольт), где установлены понижающие трансформаторы – очень большие и очень мощные. Эти трансформаторы понижают напряжение (в моем примере до 10 000 Вольт) и передают электроэнергию дальше, но уже на более короткое расстояние- в пределах 10-40км до следующего понижающего трансформатора, который преобразует уже высокое напряжение 10 кВ в низкое трехфазное напряжение 400 Вольт, которое и идет по проводам к нам в дома. Так вот, к трансформатору 110/10 кВ, установленному на подстанции, присоединяется очень много нагрузки- это может быть целый сельский район или часть большого города. Нагрузка в течении дня и в течении времен года постоянно меняется и очень сильно. Например в зимний период многие сельские жители обогреваются электрокотлами, поэтому потребляемый ток гораздо больше чем летом. Или есть утренние и вечерние часы максимума нагрузок когда люди просыпаются или наоборот приходят с работы, включают электроприборы- потребление электроэнергии сильно возрастает. В течении дня нагрузка снижается и иногда даже в разы меньше чем утром или вечером. Что происходит с понижающим трансформатором при увеличении нагрузкиА ничего с ним не происходит))) Как понижал он напряжение- так и продолжает понижать- так уж он устроен. На первичную обмотку (обмотка высокого напряжения) подается 110 000 Вольт, а со вторичной (обмотка низкого напряжения) снимается 10 000 Вольт. Это идеальный вариант, когда напряжение на первичной обмотке стабильное и не меняется, а нагрузка вторичной обмотки или очень мала или ее совсем нет (трансформатор работает в режиме холостого хода). На самом деле это совсем не так. В действительности высокое напряжение на первичной нагрузке постоянно меняется в небольших пределах- 110-117кВ А так как коэффициент трансформации у трансформатора величина неизменная, то получается что и на вторичной обмотке 10 кВ напряжение тоже колеблется так сказать “в ногу” с первичным напряжением. А вслед за этим колебания напряжения передаются следующим понижающим трансформаторам 10/0,4 кВ… И так эти колебания дойдут и до наших квартир и напряжение колебалось бы пропорционально с высоким напряжением 110 кВ. И было бы у нас в розетках то 180 Вольт, то 250 и бесперестанно бы оно изменялось в течении суток. Думаю что никому не понравится когда свет в доме постоянно меняет яркость, как в том анекдоте- то потухнет, то погаснет, то совсем не загорит))) Почему изменяется напряжениеА изменяется напряжение от нагрузки, от того, какая мощность подключена к трансформатору. Кто дружит с физикой тот знает- чем больше мощность, тем больше ток. В свою очередь увеличение значения электрического тока приводит к тому, что увеличивается падение напряжения в проводниках электрического тока. Это обмотки трансформатора, провода воздушной линии электропередачи, силовые кабеля и т.п.- на них происходит основное падение напряжения. Что это такое падение напряженияГоворя упрощенно и что бы было понятнее- это энегрия(причем активная!) выделяемая в виде тепла. Приведу пример. Для каждого сечения провода есть максимальный допустимый ток. Если к медному проводу сечением 2,5 кв. мм подключить однофазный электротел мощностью 9 кВт с потребляемым током 9000:220=41 ампер, то провод очень сильно будет греться. Материал, из которого изготовлен провод- медь оказывает активное сопротивление электрическому току. По закону Ома- электрический ток прямо пропорционален изменениям напряжения, поэтому при подключении электрокотла на этом участке провода увеличивается и напряжение и происходит нагрев провода. Не понятно? Давайте еще подробнее. Допустим сопротивление провода0 1 Ом. Ток как уже определили- 41 ампер. Тогда на проводе напряжение составит U=R*I= 41 Вольт Это и есть падение напряжения на проводе. При этом будет выделяться мощность в виде тепла P=U*I=41*41=1681 Ватт А это целый электрообогреватель мощностью 1,7 кВт!!! Конечно такая рассеиваемая мощность в проводе приводит к перегреву и плавлению изоляции. Именно поэтому для каждого сечения ток ограничен. В данном случае для 2,5 кв.мм допустимый ток 25-27 ампер. Из всего вышесказанного следует: При увеличении нагрузки- увеличивается ток и увеличивается падение напряжения и потери энергии в проводах Другими словами- часть напряжения и энергии до наших розеток просто не доходит, а выделяется в воздух в виде тепла… А сейчас самое важное! Что бы компенсировать такие неизбежные потери энергии, на вторичной обмотке силового трансформатора повышают напряжение. То есть повышают напряжение выше 10 000 Вольт- до 11, а то и больше киловольт. Тогда даже и если часть энергии “теряется” в проводах, у нас в квартирах и домах напряжение находится в пределах нормы- около 220 Вольт. Как регулируется напряжениеКак можно изменять вторичное напряжение на понижающем трансформаторе? Можно изменять напряжение, подводимое к первичной обмотке- тогда на вторичной оно будет изменяться прямо пропорционально. Но этот вариант не подходит, так как у трансформаторов, подключенных к сети 110 кВ разная загруженность- у одних может быть 100% нагруженность, у других- 20-50% и т.д. И при этом способе напряжение на выходе будет меняться одновременно на всех- и там где надо и там где не надо… А трансформаторов подключено не просто много- а очень много! Поэтому применяют другой способ. Напряжение регулируется изменением коэффициента трансформации самого трансформатора Изменяется количество витков первичной обмотки трансформатора. А почему именно в первичной? В принципе можно было бы изменять и на вторичной обмотке- коэффициенту без разницы, он все равно будет изменяться, так как будет меняться соотношение витков первичной к вторичной обмотками. Однако изменяют именно на высокой стороне- где выше напряжение. Почему? Все очень просто. Где выше напряжение- там меньше величина электрического тока. А так как регулировка напряжения происходит под нагрузкой- то есть трансформатор не отключают, то при изменении витков обмотки- при коммутации- появляется электрическая дуга в месте переключения контактов. А чем больше ток- тем больше дуга, а эту дугу надо обязательно гасить… Кстати значения тока между первичной и вторичной обмотками различается очень значительно. Например на вторичной нагрузке ток в 300 ампер вполне допустим, а для первичной максимальный ток является 25-30 ампер. Думаю не надо объяснять что переключать контакты при токе в 300 ампер гораздо сложнее чем при 30, согласитесь))) А где находятся эти контакты? В баке трансформатора сделаны отводы от первичной обмотки для изменения коэффициента трансформации и выведены в отдельный отсек, где и происходит переключение с помощью специального механизма. Снаружи на баке трансформатора прикреплен привод этого механизма, называется он Привод РПНРПН расшифровывается как Регулирование Под Нагрузкой. В приводе расположен электродвигатель и элементы автоматики РПН- пускатели, конечные выключатели, автоматический выключатель, клемник с контрольными кабелями и т.д. Электродвигатель с помощью вала вращает механизм переключения. Вся работа привода РПН контролируется автоматикой РПН. Именно благодаря применению автоматики не требуется ручное управление- она сама следит за изменениями напряжения и при необходимости меняет коэффициент трансформации, поэтому при любой нагрузке трансформатора на выходе вторичной обмотки- необходимое напряжение. А у нас в доме- в розетке- 220))) Автоматикой РПН управляют специальные электронные блоки: В них выставляются необходимые параметры работы- напряжение, выдержка времени, порог нечувствительности и т.д. В релейной защите это называется уставки. И электронный блок уже сам определяет когда изменить напряжение, через какое время и в каких пределах, все это делается автоматически. Так же возможно и ручное переключение РПН- непосредственно из привода около трансформатора или дистанционно- с панели управления из диспетчерского пункта. Для этого есть специальные переключатели и ключи управления. Оперативный персонал подстанции может отключить автоматику и вручную регулировать напряжение на выходе трансформатора. Это требуется например когда автоматика РПН выведена в ремонт или при проведении оперативных переключений, но это уже как говорится- совсем другая история))) Специально по этой теме я снял видео непосредственно с подстанции 110/10 кВ и предлагаю вам “вживую” посмотреть как регулируется напряжение на трансформаторе под нагрузкой! Итак, смотрим видео:
Узнайте первым о новых материалах сайта! Просто заполни форму: ceshka.ru Ответы на вопросы о трансформаторах.За время работы нашей компании, а это, на минуточку, более 15 лет, нами был накоплен ценный опыт, который помогает в решении повседневных сложных задач наших заказчиков, и которым мы бы хотели поделиться с пользователями нашего сайта. Благодаря рубрике «Вопрос-ответ» мы производим обратную связь с нашими клиентами, и некоторые вопросы нам показались интересными. Одни вопросы задают очень часто, другие – не очень, однако, в любом случае, мы приняли решение осветить в данной статье те моменты, которые, безусловно, являются очень важными в процессе повседневной эксплуатации трансформаторов. Итак, начнем с вопросов, которые являются ключевыми. На эти вопросы мы отвечали не раз, однако, они по-прежнему волнуют многих наших посетителей: - На каком принципе основывается работа трансформатора?Ответ: В основе принципа действия любого трансформатора лежит явление электромагнитной индукции. Т.е. явлении, связанном с возникновением электрического тока в замкнутом контуре трансформатора.
- Что такое анцапфа?Ответ: Анцапфа – это, так называемый, переключатель ПБВ (сокр., переключение без возбуждения). В силовом трансформаторе такой переключатель устанавливается со стороны высшего напряжения (ВН) и предназначается, в первую очередь, для изменения коэффициента трансформации. При изменениях высшего напряжения в пределах +- 10% от номинального значения, анцапфа позволяет поддерживать напряжение на вторичной обмотке постоянным. Переключение положения ПБВ (анцапфы) необходимо производить только при отключенном трансформаторе (снимая напряжение на стороне ВН).
- Почему сердечник трансформатора изготавливают из нескольких изолированных пластин, а не из цельного куска стали?Ответ: Сердечник трансформатора изготавливается с использованием изолированных пластин для уменьшения или практически полного исключения потерь, вызываемых протеканием вихревых токов. Таким образом, благодаря сердечнику из изолированных пластин, общая сумма потерь, будет в разы ниже, чем потери при использовании цельного сердечника. Стоит отметить, что сердечник может быть изготовлен цельным, однако, обязательным условием является высокое удельное сопротивление материала (это могут быть, например, ферритовые сплавы).
- Зачем пластины сердечника трансформатора стягиваются шпильками?Ответ: Сделано это для того, чтобы обеспечить максимально плотное прилегание изолированных пластин друг к другу, а также, чтобы сделать пакет пластин сердечника прочным и достаточно устойчивым к механическим повреждениям.
- Что такое холостой ход трансформатора? Как трансформатор работает в этом режиме?Ответ: Режим холостого хода трансформатора - это такой режим работы трансформатора, при котором одна из его обмоток запитана от источника переменного тока (напряжения) (линия электропередач), а цепи остальных обмоток разомкнуты. В реальности, такой режим работы встречается у трансформатора, в случае, когда он подключен к сети, а нагрузка, запитываемая от его вторичной обмотки, ещё не подключена. За время ведения рубрики «Вопрос-ответ» нам не раз приходилось вникать в тонкости частных проблем, возникающих у пользователей. Часто, вопросы задают студенты, или просто люди сомневающиеся, как, например, в следующих вопросах: - Что происходит на вторичных обмотках трансформатора в случае понижения напряжения на первичной обмотке трансформатора?Ответ: Напряжение на вторичных обмотках трансформатора снижается строго пропорционально коэффициенту трансформации.
- Мы имеем в собственности шесть смежных земельных участков без электричества, однако, рядом проходит ЛЭП на 380В. Для целей электропитания будущих строений, мы собираемся приобрести понижающий трансформатор. Пожалуйста, подскажите какой выбрать?Ответ: Для начала, необходимо определить планируемую суммарную мощность потребления. Здесь, следует учесть возможность увеличения количества потребителей (и соответственно увеличения потребления). Затем присылайте заявку нам, а мы, по Вашим данным, подберем подходящий вариант понижающего трансформатора. Нам также задают вопросы, которые косвенно касаются выбора трансформатора. Можно назвать их «вопросы от любознательных». И хотя информацию по таким вопросам, часто, можно найти в открытом доступе, мы охотно идем навстречу: - От чего зависит межповерочный интервал трансформаторов тока?Ответ: Сроки межповерочных интервалов трансформаторов устанавливаются, непосредственно, заводом-изготовителем, исходя из характеристик данной конкретной модели трансформатора. Как правило, межповерочный интервал трансформатора составляет 4 года.
- Что означают обозначения обмоток защиты 5Р и 10Р на трансформаторе?Ответ: Обозначения 5Р и 10Р применяются для отображения погрешности релейной защиты в 5% и 10% соответственно.
- Трансформатор тока и трансформатор оперативного тока – в чем разница?Ответ: Главное отличие состоит в назначении этих трансформаторов. Трансформаторы тока предназначаются для преобразования тока до таких значений, которые были бы удобны для измерения, а, следовательно, используются для подключения различного измерительного оборудования. Трансформатор оперативного тока предназначается для питания различных цепей управления оборудованием (реле, приводы, и т.п.), автоматики, а также сигнализации и защиты.
- Чем отличаются трансформаторы с изолированной нейтралью и глухо заземленной нейтралью?Ответ: В цепях трансформаторов с глухозаземленной нейтралью, вторичную обмотку соединяют по схеме «звезда с нулевым выводом», и поэтому такой трансформатор имеет 4 вывода. Один из выводов – нулевой. При этом, он соединен с контуром заземления. В цепях трансформаторов с изолированной нейтралью, используют схему соединения вторичной обмотки - «звезда», выводов при этом получается 3. Трансформаторы с глухозаземленной нейтралью, при обрыве одной из фаз – безопаснее, а с изолированной – не прекращают подачу электроэнергии. www.tdtransformator.ru Регулирование напряжения трансформатора - это... Что такое Регулирование напряжения трансформатора?Регули́рование напряже́ния трансформа́тора — изменение числа витков обмотки трансформатора. Применяется для поддержания нормального уровня напряжения у потребителей электроэнергии. Большинство трансформаторов оборудовано некоторыми приспособлениями для настройки коэффициента трансформации путём добавления или отключения числа витков. Настройка может производиться с помощью переключателя числа витков трансформатора под нагрузкой либо путём выбора положения болтового соединения при обесточенном и заземлённом трансформаторе. Степень сложности системы с переключателем числа витков определяется той частотой, с которой надо переключать витки, а также размерами и ответственностью трансформатора. ПрименениеВ зависимости от нагрузки электрической сети меняется её напряжение. Для нормальной работы электроприёмников потребителей необходимо, чтобы напряжение не отклонялось от заданного уровня больше допустимых пределов, в связи с чем применяются различные способы регулирования напряжения в сети. Одним из способов является изменение соотношения числа обмоток первичной и вторичной цепи трансформатора (коэффициента трансформации), так какВ зависимости от того, происходит это во время работы трансформатора или после его отключения от сети, различают «переключение без возбуждения» (ПБВ) и «регулирование под нагрузкой» (РПН). И в том и в другом случае обмотки трансформатора выполняются с ответвлениями, переключаясь между которыми, можно изменить коэффициент трансформации трансформатора. Переключение без возбужденияСхема работы переключателя ответвленийДанный тип переключения используется во время сезонных переключений, так как предполагает отключение трансформатора от сети, что невозможно делать регулярно, не лишая потребителей электроэнергии. ПБВ позволяет изменить коэффициент трансформации в пределах от −5 % до +5 %. На маломощных трансформаторах выполняется с помощью двух ответвлений, на трансформаторах средней и большой мощности с помощью четырёх ответвлений по 2,5 % на каждое.[1] Ответвления чаще всего выполняются на той стороне, напряжение на которой в процессе эксплуатации подвергается изменениям. Обычно это сторона высшего напряжения. Выполнение ответвлений на стороне высшего напряжения имеет также то преимущество, что при этом, ввиду большего количества витков, отбор ±2,5 % и ±5 % количества витков может быть произведён с большей точностью. Кроме того, на стороне высшего напряжения величина силы тока меньше, и переключатель получается более компактным.[2] При переключении ответвлений обмотки с отключением трансформатора, переключающее устройство получается проще и дешевле, однако переключение связано с перерывом энергоснабжения потребителей и не может проводиться часто. Поэтому этот способ применяется главным образом для коррекции вторичного напряжения сетевых понижающих трансформаторов в зависимости от уровня первичного напряжения на данном участке сети в связи с сезонным изменением нагрузки.[2] Переключатели числа витков без возбужденияПереключатель числа витков без возбуждения имеет достаточно простое устройство, предоставляющее соединение с выбранным переключателем числа витков в обмотке. Как следует из самого названия, он предназначен для работы только при выключенном трансформаторе. Может оказаться, что давление контактов поддерживается с помощью некоего пружинного приспособления, которое может вызывать некоторую вибрацию. Если переключатели числа витков без возбуждения находятся в одном и том же положении в течение нескольких лет, то сопротивление контакта может медленно расти в связи с разрушением и окислением материала в точке контакта. При этом происходит разогревание, которое приводит к осаждению пиролитического углерода, который ещё более увеличивает контактное сопротивление и снижает степень охлаждения. В конечном счёте наступает неконтролируемая ситуация, и трансформатор может отключить механизм газовой защиты или может наступить ещё более тяжелое последствие; происходит короткое замыкание. Во избежание этого жизненно важно, чтобы работа с переключателем числа витков проводилась в отключенном от сети состоянии, по полной программе, несколько раз в течение регулярного технического обслуживания, с протиркой контактных поверхностей начисто перед возвратом его обратно в заданное положение.[3] Естественно, то же правило имеет силу, если переключатель числа витков без возбуждения отключается от работы на долгий период. Регулирование под нагрузкойДанный тип переключений применяется для оперативных переключений, связанных с постоянным изменением нагрузки (например, днём и ночью нагрузка на сеть будет разная). В зависимости от того, на какое напряжение и какой мощности трансформатор, РПН может менять значение коэффициента трансформации в пределах от ±10 до ±16 % (примерно по 1,5 % на ответвление). Регулирование осуществляется на стороне высокого напряжения, так как величина силы тока там меньше, и соответственно, устройство РПН выполнить проще и дешевле. Регулирование может производиться как автоматически, так и вручную из ОПУ или диспетчерского пульта управления. Переключатели числа витков под нагрузкойУже в 1905 - 1920 годах были придуманы приспособления для перехода между переключателями числа витков трансформатора без прерывания тока. Работу переключателя числа витков под нагрузкой можно понять по двум показательным функциям. Это переключающее устройство, которое переносит проходную мощность трансформатора от одного переключателя числа витков трансформатора к соседнему переключателю числа витков. Во время этой операции оба переключателя числа витков соединены посредством переходного сопротивления. В этой фазе оба переключателя числа витков имеют общую токовую нагрузку. После этого соединение с предыдущим переключателем числа витков прерывается, и нагрузка переносится на новый переключатель числа витков. Приспособление, которое выполняет такое переключение, называется контактором. Соединения с парой переключателей числа витков, которые производит контактор, может потребовать смены целого ряда переключателей числа витков регулирующей обмотки для каждой операции. Это функция переключателя числа витков. Выбор производится переключателем числа витков без прерывания тока. Довольно важное улучшение в работе переключателей числа витков под нагрузкой произошло в результате изобретения быстродействующего триггерного контактора, названного принципом Янсена (Janssen) по имени изобретателя. Принцип Янcена подразумевает, что контакты переключателя нагружены пружиной, и они перебрасываются из одного положения в другое после очень короткого периода соединения между двумя переключателями числа витков, через токоограничивающий резистор. Применение реактора является альтернативой принципу Янcена с последовательностью быстрых переключений и резисторами. В переключателе числа витков реакторного типа, напротив, намного труднее прервать циркулирующий реактивный ток, и это довольно сильно ограничивает скачок напряжения, однако этот принцип хорошо работает при относительно высоких токах. В этом отличие от быстродействующего резисторного переключателя числа витков, который применим для более высоких напряжений, но не для высоких токов. Это приводит к тому, что реакторный переключатель числа витков обычно находится в низковольтной части трансформатора, тогда как резисторный переключатель витков подсоединен к высоковольтной части. В переключателе витков реакторного типа потери в средней точке реактора благодаря току нагрузки и наложенного конвекционного тока между двумя вовлеченными переключателями числа витков невелики, и реактор может постоянно находиться в электрической цепи между ними. Это служит промежуточной ступенью между двумя переключателями числа витков, и это даёт в два раза больше рабочих положений, чем число переключателей числа витков в обмотке. С 1970-х годов стали применяться переключатели числа витков с вакуумными выключателями. Вакуумные выключатели характеризуются низкой эрозией контактов, что позволяет переключателям числа витков выполнять большее количество операций между обязательными профилактическими работами. Однако конструкция в целом становится более сложной. Также на рынке появлялись экспериментальные переключатели числа витков, в которых функция переключения исполняется силовыми полупроводниковыми элементами. Эти модели также направлены на то, чтобы сократить простои на проведение технического обслуживания. В переключателях витков резисторного типа контактор находится внутри контейнера с маслом, которое отделено от масла трансформатора. Со временем масло в этом контейнере становится очень грязным и должно быть изолировано от масляной системы самого трансформатора; оно должно иметь отдельный расширительный бак со своим отдельным вентиляционным клапаном. Устройство переключения числа витков представляет собой клетку или изолирующий цилиндр с рядом контактов, с которыми соединяются переключатели числа витков от регулирующей обмотки. Внутри клетки два контактных рычага передвигаются пошагово поперёк регулирующей обмотки. Оба рычага электрически соединены с вводными клеммами контактора. Один рычаг находится в положении активного переключателя числа витков и проводит ток нагрузки, а другой рычаг находится без нагрузки и свободно передвигается к следующему переключателю числа витков. Контакты устройства переключения никогда не разрывают электрический ток и могут находиться в масле самого трансформатора. Автоматическое регулирование напряженияПереключатель числа витков устанавливается для того, чтобы обеспечивать изменение напряжения в системах, соединённых с трансформатором. Совсем необязательно, что целью всегда будет поддержка постоянного вторичного напряжения. Внешняя сеть может также испытывать падение напряжения, и это падение также должно быть компенсировано. Оборудование управления переключателем числа витков не является частью самого переключателя числа витков; оно относится к релейной системе станции. В принципе переключатель числа витков всего лишь получает команды: повысить или понизить. Однако обычные функции координации между различными трансформаторами внутри одной и той же станции являются частью технологии переключателей числа витков. Когда разные трансформаторы соединены прямо параллельно, их переключатель числа витков должен двигаться синхронно с обоими трансформаторами. Это достигается тем, что один трансформатор имеет обмотку как ведущий трансформатор, а другой – как подчиненный трансформатор. Одновременная работа не будет возможна, если имеется небольшой интервал между циркулирующими токами обоих трансформаторов. Однако это не имеет никакого практического значения. Последовательные регулировочные трансформаторыДля регулирования коэффициента трансформации мощных трансформаторов и автотрансформаторов иногда применяют регулировочные трансформаторы, которые подключаются последовательно с трансформатором и позволяют менять как напряжение, так и фазу напряжения. В силу сложности и более высокой стоимости регулировочных трансформаторов, такой способ регулирования применяется гораздо реже. Источники
Литература
dic.academic.ru |