Eng Ru
Отправить письмо

температура теплоносителя ядерного реактора. Температура атомного реактора

$direct1

Температура элементе ядерного реактор - Справочник химика 21

    Тепловыделяющий элемент ядерного реактора имеет наружный диаметр 25 мм. Твэл находится в трубе внутренним диаметром 31 мм. В кольцевом зазоре движется охлаждающая вода со скоростью 2 м/с и средней температурой 270 °С. Найти средний коэффициент теплоотдачи и мощность внутренних источников теплоты ди, Вт/м , твэла, если температура его поверхности 305 °С. [c.54]     Галлий, индий и таллий относятся к главной подгруппе III группы периодической системы элементов (разд. 35.10). В соответствии с номером группы в своих соединениях они проявляют степень окисления -ЬЗ. Возрастание устойчивости низших степеней окисления с ростом атомного номера элемента иллюстрируется на примерах соединений индия(III) (легко восстанавливающихся до металла), а также большей прочности соединений таллия(I) по сравнению с производными таллия(III). Ввиду того что между алюминием и галлием находится скандий — элемент первого переходного периода — вполне можно ожидать, что изменение физических и даже химических свойств этих элементов будет происходить не вполне закономерно. Действительно, обращает на себя внимание очень низкая температура плавления галлия (29,78 °С). Это обусловливает, в частности, его применение в качестве запорной жидкости при измерениях объема газа, а также в качестве теплообменника в ядерных реакторах. Высокая температура кипения (2344°С) позволяет использовать галлий для наполнения высокотемпературных термометров. Свойства галлия и индия часто рассматривают совместно с алюминием. Так, их гидрооксиды растворяются с образованием гидроксокомплексов (опыт I) при более высоких значениях pH, чем остальные М(ОН)з. Гидратированные ионы Мз+ этой [c.590]

    Практическое осуществление этого способа получения водорода возможно путем замены реакции непосредственного разложения воды термохимическим циклом, состоящим из нескольких реакций, имеющих значения констант равновесия, допустимые для практики. Изучено и предложено много термохимических циклов с целью разложения воды при температурах, не превышающих температуру теплоносителя, отходящего из ядерного реактора (при использовании отбросной теплоты ядерных реакторов). В разработанных термохимических циклах промежуточные вещества — галогены, элементы VI группы (сера), металлы И группы (Mg, Ва, Са), переходные элементы с переменной степенью окисления (V, Ре)— имеют большое сродство либо по отношению к водороду, либо к кислороду. Ниже приведен пример термохимического цикла реакций, приводящих к разложению воды на водород и кислород  [c.82]

    Кризис теплоотдачи при кипении (пережог). При пленочном режиме кипения иногда температура поверхности нагрева может подняться до чрезмерно высокого значения. Если тепловой поток по существу не зависит от температуры (как это имеет место у поверхностей, которым тепло передается в результате теплового излучения в топке или в результате ядерного деления в топливных элементах ядерного реактора), температура поверхности при неблагоприятных условиях циркуляции жидкости может подняться выше точки плавления, когда тепловой поток слишком велик. Тепловой поток, характеризуемый максимумом на кривой рис. 5.1, называют критическим тепловым потоком. [c.86]

    Металлический цирконий и сплавы. Металлический цирконий, не содержащий гафния, и его сплавы применяются преимущественно в атомной энергетике для изготовления оболочек тепловыделяющих элементов (ТВЭЛов), теплообменников и других конструкций ядерных реакторов, которые не должны поглощать, нейтроны и обладать высокой стойкостью против действия ядерных излучений при повышенной температуре. [c.308]

    Найти мощность внутренних источников теплоты и температуру на поверхности тепловыделяющего элемента ядерного реактора, если диаметр твэла 10 мм, температура на его оси 1150°С, теплопроводность материала твэла 3,5 Вт/(м-К). Твэл охлаждается в среде, температура которой 430°С коэффициент теплоотдачи равен 25-10 Вт/(м2-К). [c.27]

    Задача 9. Найдите максимальную температуру в топливном (UO2) сердечнике твэла (тепловыделяющего элемента) ядерного реактора. Сердечник радиусом Гд = 6 мм помещен в оболочку из циркония ( = 20 Вт/(м К)) толщиной 5j = 1 мм. Между сердечником и оболочкой имеется зазор толщиной 82 = 0,3 мм, заполненный гелием. Для гелия при t = 670 °С к = 0,35 Вт/(м К). Оболочка снаружи омывается теплоносителем (водой), температура которого = 250 °С, а а = 30 кВт/(м К). Мощность источ- [c.87]

    Анализ условий работы элементов отражателя, выполненного из бериллия, в существующих и создающихся ядерных реакторах позволяет выделить примерно три температурные области его эксплуатации. Низкотемпературная область применения бериллия составляет 50- 150 °С, область повышенных температур — 400—600 и высокотемпературная область — выше 600 °С. [c.25]

    В активной зоне ядерного реактора, работающего в установившемся режиме, должно существовать полное равновесие между теплом, выделяющимся в единицу времени в процессе деления (т. е. ядерной мощностью), и теплом, отводимым в единицу времени теплоносителем (т. е. тепловой мощностью). В неустановившихся режимах между выделяющимся и отводимым теплом возникает неравновесие, способствующее повышению или понижению температуры активной зоны реактора. Большая часть тепла выделяется в тепловыделяющих элементах реактора, теплоемкость (аккумуляционная способность) которых мала по сравнению с теплоемкостью всей активной зоны, включая теплоноситель и замедлитель. В связи с этим возникает опасность резкого изменения температуры тепловыделяющих элементов при резком изменении ядерной мощности. Это может привести к аварии или серьезным изменениям в структуре и системе тепловыделяющих элементов. [c.549]

    Эволюция звезд и синтез элементов. Элементы неизменны — это положение сыграло важную роль в развитии современной химии. Когда речь идет о масштабах привычных явлений, происходящих в естественных условиях на Земле, и об энергетических изменениях, которые могут быть реализованы с применением традиционной техники, то можно утверждать, что атомы остаются неизменными если же говорить о температурах, значительно превышающих обычную (более 10 К), то изменения затрагивают также и ядра атомов, а следовательно, изменяются и элементы. Взаимное превращение ядер было обнаружено в конце XIX в. и получило название естественной радиоактивности. В наше время применение ядерных реакторов, циклотронов и других ускорителей электрически заряженных частиц также сопровождается превращением атомных ядер, хотя и в небольшом масштабе. Необычайно яркий свет, испускаемый регулярными звездами, обусловлен взаимодействием атомов активность звезд также неразрывно связана с ядерными реакциями. [c.18]

    Бериллий удовлетворяет основным требованиям к конструкционным материалам ядерных реакторов, поэтому его используют в качестве замедлителя и отражателя нейтронов, как материал оболочек тепловыделяющих элементов (твэлов) с рабочей температурой до 500—600° С. [c.14]

    Смазочные масла для ядерных реакторов, установленных на электростанциях, морских судах и используемых для других целей, находятся в условиях очень сильного радиоактивного излучения при температурах 100—250°. Наиболее мощным дозам облучения подвергаются масла в подшипниках и шестеренчатых передачах механизмов загрузки и выгрузки тепловыделяющих элементов и в приводах регулирующих стержней. Мощность дозы ядерного излучения здесь достигает 3,3 10 рад/сек. Предельно допустимой суммарной дозой облучения обычных нефтяных масел в этих механизмах считают 10 рад. Такую дозу масла получают примерно в течение 35 суток. Радиационная стабильность нефтяных масел недостаточна в условиях работы ядерных реакторов, когда масла применяются без смены в течение многих месяцев и даже ряда лет. [c.71]

    В электрически обогреваемых энергетических системах и ядерных реакторах используются поверхности теплообмена специальной формы, обладающие любопытными свойствами. В простейшем случае плотность теплового потока на поверхности теплообмена постоянна повсюду от входа до выхода следовательно, разность температур между обогреваемыми поверхностями и теплоносителем сохраняется приблизительно постоянной от входа до выхода, как на рис. 4.1, а. В большинстве ядерных реакторов наблюдается более сложное распределение температур, поскольку поток нейтронов обычно достигает максимального значения в центре реактора следовательно, тепловой поток стремится достичь максимального значения в средней части и уменьшается к входному и выходному сечениям. При этом распределение температур аналогично показанному сплошными кривыми на рис. 4.1, ж. Если максимально возможная температура теплоносителя на выходе определяется по заданной максимально допустимой температуре топливного элемента и коэффициенту теплоотдачи, то температура поверхности топливного элемента должна быть постоянной по всей высоте реактора. В идеальном случае температура теплоносителя экспоненциально увеличивается в направлении от входа к выходу, в то время как мощность на единицу площади экспоненциально уменьшается, начиная от входа в реактор. При этом распределение температур аналогично показанному на рис. 4.1, б. На практике для разрешения проблемы изготовления топливных элементов и работы реактора приходится искать компромиссный вариант распределения температуры по поверхности металла. Для приближения к условиям работы при постоянной температуре используется двухступенчатое устройство, распределение температур в котором показано на рис. 4.1, 3. В этом случае производится двухступенчатая загрузка топлива, так что на первых 60 % высоты реактора наблюдаются более высокие тепловые потоки по сравнению с остальными 40 %. В принципе можно осуществить конструкцию с любым количеством ступеней, но делать более двух или трех ступеней нецелесообразно. [c.74]

    Спекание — агрегация небольших кристаллитов при повышенных температурах, приводящее к снижению удельной поверхности. Металловеды изучают это явление ввиду его валмногих процессов. Методы, используемые в порошковой металлургии, основаны на понимании механизмов процессов спекания и поверхностной диффузии. Скорость миграции и соединение внутренних пустот в металлах, происходящие в ядерных реакторах, управляются процессами поверхностной диффузии [45]. Признано, что процесс роста кристаллов за счет паровой фазы зависит от поверхностной диффузии подвижных адсорбированных атомов [46]. Технология тонких полупроводниковых элементов связана с поверхностной диффузией, определяющей образование ядра и рост эпитаксиальных пленок [47]. [c.142]

    Физические и механические свойства металлического урана в значительной степени исследовались с точки зрения использования урана для топливных элементов в ядерных реакторах. Ценный отчет относительно физической металлургии урана был представлен Футом [45]. В табл. 5.7 перечислен ряд физических и термических свойств металлического урана. Последний является Металлом с относительно высокой температурой плавления, которая несколько выше, чем температура плавления таких металлов, как медь и золото. Тем не менее уран не настолько туго- [c.141]

    Металлический рубидий применяют в гидридных топливных элементах. Он входит в состав металлических теплоносителей для ядерных реакторов, используется для изготовления высокоэффективных фотоэлектронных умножителей, в вакуумных радиолампах — в качестве геттера и для создания положительных ионов на нитях накала. Рубидий входит в состав смазочных материалов, применяемых в реактивной и космической технике. Смесь хлоридов рубидия н меди используют при изготовлении термометров для измерения высоких температур (380—390 °С), Лампы низкого давления с парами рубидия служат источниками резонансного излучения пары рубидия также используют в лазерах в чувствительных магнитометрах, необходимых при космических и геофизических исследованиях. [c.54]

    Введение. После завершения работ по проблеме разделения изотопов урана началась фаза новых исследований — разделение стабильных изотопов. Центробежная технология, которая с успехом использовалась для разделения изотопов урана, оказалась вполне пригодной и для этих целей. Изотопному разделению подверглась целая серия элементов (около 20). Для каждого из них необходимо было синтезировать соединение, которое имело бы упругость пара не менее 5 мм Hg при обычной температуре. Среди этих соединений главенствуют фториды элементов в высших степенях окисления, а также синтезированы другие соединения таких элементов как N1, 2г, С , 5п, Сс1 и т.д., фториды которых не отвечают вышеуказанному требованию. После изотопного разделения этих соединений и получения изотопов необходимого обогащения, как правило, возникает задача получения изотопов в нелетучей устойчивой форме. Получаемые стабильные изотопы служат также исходным материалом для производства ряда радиоактивных изотопов, получаемых путём облучения первых из них на ядерных реакторах или в циклотронах. Ниже представлены результаты исследования по осуществлению этих операций, связанных с выполнением нетривиальных химических задач, которые осложняются тем, что изотопные вещества дороги, и их потери не допустимы. [c.223]

    Исключительно высокие температуры плавления борида гафния (3250° С) и карбида гафния позволяют использовать эти соединения в качестве специальных огнеупорных материалов. Борид гафния перспективен для изготовления отдельных деталей, применяемых в ракетостроении [31], и органов регулирования ядерных реакторов, а карбид гафния — в качестве оболочек тепловыделяющих элементов ядерных ракетных двигателей. [c.354]

    Получение металлического тория высокой степени чистоты, необходимой для его использования в ядерных реакторах, вызывает серьезные технологические трудности ввиду его высокой температуры плавления и большой реакционной способности по отношению к водороду, кислороду, азоту, углероду и другим элементам. [c.235]

    Для осуществления наилучшего замедления нейтронов потеря энергии при столкновении должна быть велика, а расстояние между двумя последовательными столкновениями мало. В этом отношении наилучшим материалом является ОгО, за которым следует бериллий. Графит менее эффективен, но имеет важное преимущество вследствие его доступности, дешевизны, высоким механическим свойствам, легкости механической обработки и хорошим тепловым свойствам. Недостатком его является пористость (см. ниже). Газ, используемый в реакторе в качестве теплоносителя, также должен обладать малым поперечным сечением захвата нейтронов. Применяемый для этих целей СО2 не обладает достаточно удовлетворительными тепловыми свойствами и может при определенных условиях реагировать с графитом с образованием СО [185]. При облучении в ядерном реакторе графит получает повреждения, поэтому время от времени элементы должны выниматься и подвергаться отжигу при температуре выше 1500°С. Интересно отметить, что при увеличении эффективной плотности реакторного графита на [c.32]

    Изучение расплавленных электролитов заслуживает внимания в основном по двум причинам. 1) Они представляют собой особый класс жидкого состояния, в котором, как будет показано нилсоставные части находятся в виде ионов. По этой причине изучение расплава весьма существенно для понимания природы жидкого состояния по крайней мере в той части, в которой определяющим является кулоновское силовое поле. 2) Расплавленные электролиты имеют громадное промышленное значение. Они находят все большее применение в таких процессах, как электролитическое выделение и очистка элементов, а в последнее время используются также в ядерных реакторах. Благодаря последнему обстоятельству особое значение приобретает вопрос об устойчивости материалов при высоких температурах. Указывалось [6], что одним из наиболее серьезных препятствий на пути успешного развития атомной энергетики является отсутствие на сегодняшний день достаточного количества данных о свойствах расплавленных систем. [c.173]

    Впервые разрушения печных труб от действия азота на сталь были обнаружены на установках, где создались условия для диссоциации аммиака на водород и азот. Этот процесс протекает при температурах выше 400 °С, а при температурах более 600 °С молекулярный азот диссоциирует с образованием активного атомного азота, который диффундирует вглубь стали и вызывает разупрочнение ее структуры. С этим явлением пришлось столкнуться при изучении работы ядерных реакторов, где отвод тепла осуществляется током чистого азота. Особенно активно реагируют с ним нержавеющие стали, содержащие хром, алюминий, титан и другие легирующие элементы. [c.166]

    Очень немногие люди могут утверждать, что своими собственными глазами видели такие металлы, как титан, неодим, литий, рубидий, европий или тантал, хотя эти элементы не так уж и редки. Например, природные запасы рубидия в 45 раз больше, чем свинца. А кто скажет, что свинец-редкий металл Выражение редкий означает только то, что до сих пор этот металл добывался лишь в относительно малых количествах, так как известны очень небольшие пригодные для разработки его месторождения. Сегодня эти так называемые редкие металлы - материалы для новой техники. Титан-коррозионно-устойчивый соперник алюминия и сталей, применение которого в химической промышленности особенно резко возросло в последние годы. Уран и торий - материалы энергетики будущего. Тантал-родоначальник особо прочных кислого- и жаростойких сплавов. Без платины, палладия и родия была бы немыслима химия катализаторов. Более 98% мировых запасов платиновых металлов, которые в 1971 г. исчислялись в 14 тыс. т, находятся в Южной Африке, Канаде и СССР. Мировое производство их составляет 119 т, причем 60% этого количества приходится на долю Советского Союза. Интересно то, что через 20 лет примерно половину производства благородных металлов будут составлять родий и палладий, выделенные из радиоактивных отходов ядерных реакторов. Желательно было бы из той же атомной мельницы получать теллур-99. Этот элемент-не только ценный сверхпроводник, но и отличный ингибитор коррозии. При незначительной его концентрации (до 0,1 мг/л) железо не ржавеет ни в воде, ни в солевых растворах даже при повышенных температурах. [c.28]

    Из каждого канала ядерного реактора непрерывно отбираются пробы газообразного теплоносителя для того, чтобы немедленно выявить тот тепловыделяющий элемент, в оболочке которого образовались отверстия или трещины через, эти трещины газовый поток может загрязниться радиоактивными продуктами деления. Газ из пробоотборных трубок проходит над проволоками, несущими электрический заряд продукты деления осаждаются на этих проволоках и регистрируются. Проволока скользит вокруг блоков, укрепленных на роликовых подшипниках, требующих смазки. Подшипники должны удовлетворительно работать долгое время без значительного увеличения трения, которое может вызывать чрезмерное натяжение проволоки. Подшипники подвергаются действию гамма-излучения и высоких температур и работают в атмосфере углекислого газа. [c.224]

    Очистка Zr от Hf очень важна, так как, несмотря на большую близость химических свойств, они сильно отличаются друг от друга физическими характеристиками. Уже упоминалось, в частности, что Zr имеет малое, а Н — большое сечение захвата медленных нейтронов. Поскольку металлический Zr удобен для исиользования в качестве оболочек тепловыводящих элементов ядерных реакторов, интерес к развитию методов отделения Zr от твердой примеси Hf очень велик. Обычно используют трубы из А1, но А1 не выдерживает в потоке воды температуры, более высокой, чем 400°С. Zr значительно более инертен и поэтому более термостоек. [c.108]

    Условия = onst, = onst, а = onst, которые использовались при выводе формул, далеко не всегда выполняются на практике. Например, при охлаждении цилиндрических тепловыделяющих элементов ядерных реакторов температура теплоносителя Т. возрастает с увеличением координаты z. Однако, если при этом по-прежнему выполняется условие плотности теплового потока вдоль оси стержня), то полученные выше формулы сохраняют свою силу. В них достаточно заменить постоянные значения и а на текущие (при данном z). [c.54]

    При выборе правильной методики сверхчувствительная магнитометрия применима и как технологическое средство. О первом применении сверхпроводящих (но без применения сквида) магнитометров для промышленного контроля сообщила компания Дже-нерал Электрик [311]. Ею разработан метод контроля качества тепловыделяющих элементов ядерных реакторов ( твэлов ) посредством измерения магнитных свойств этих элементов. Метод позволяет контролировать содержание гадолиния в таблетках ядерного топлива из окиси урана иОз с точностью до 0,1%, и это даже при наличии ферромагнитной примеси порядка 0,2%. Распределение парамагнитной восприимчивости вдоль стержня твэла (длиной до 4 м) измеряется при его медленном протягивании через область чувствительности магнитометра дпиной около сантиметра. Твэл все время находится при комнатной температуре. Влияние ферромагнитных примесей устраняется тем, что измерения проводятся в сильном магнитном поле (больше 2 Тл), создаваемом сверх-проводяищм магнитом, а в таком поле железо полностью магнитно насыщено и его намагниченность не зависит от поля. Парамагнитную часть восприимчивости можно вьщелить при измерении в двух разных больших полях. Вероятно, это не единственный возможный метод магнитного контроля, но на сегодняшний день он наиболее отработанный. Прибор эксплуатируется с 1977 г. и может контролировать до 20000 твэлов в год. Использование сквида в таком измерительном приборе позволит существенно расширить диапазон контролируемых параметров твэлов и других технических изделий. Очевидно, что подобные методы технологического 176 [c.176]

    Применение элементов подгруппы мышьяка и их соединений. До недавнего времени (50-е годы XX в.) применение элементов подгруппы мышьяка было сравнительно ограничено. Они использовались главным образом в качестве легирующих добавок к специальным сплавам. Так, добавление 0,5% As к свинцу сильно увеличивает поверхностное натяжение последнего в расплавленном состоянии, что улучшает литейные качества. Сурьма является важной составной частью типографских сплавов и баббитов. Ее действие выражается в повышении твердости свинцово-оловянной основы. Висмут, в свою очередь, является основой ряда легкоплавких сплавов, наиример сплава Вуда (четверная эвтектика, состоящая из 50% Bi, 25% РЬ, по 12,5% Sn и d с температурой плавления 60,5°С). Легкоплавкие сплавы на основе Bi используют в качестве теплоносителей в ядерных реакторах. Для этих же целей используют и чистый висмут, обладающий сравнительно низкой температурой плавления (271 °С) и очень высокой температурой кипения (1427 "С). [c.299]

    По неравновесным теориям синтез атомных ядер протекает при низких температурах и давлении. Одной из наиболее широко известных таких теорий является a-P-Y-тeopия, предложенная в 1948 г. Согласно этой теории, возникновение химических элементов происходило в момент быстрого расширения первичной материи, называемой илём . Под ним подразумевается система из нейтронов и гамма-квантов при большом данлении. Когда в результате релятивистского расширения давление в системе упало, то нейтроны стали превращаться в протоны и электроны, ибо газ, состоящий из одних нейтронов, может существовать только лишь при очень высоких плотностях, подобных плотностям нуклонов в атомных ядрах. Образующиеся протоны захЕ-атынали нейтроны с образованием дейтронов, которые в свою очередь также способны присоединять нейтроны. Предполагается, что за 15 мин путем Последовательного захвата нейтронов и Р-распада образующихся ядер, подобно тому как это происходит в ядерном реакторе за длительное время, были созданы все существующие в настоящее время изотопы природных стабильных элементов. Описанная теория хотя Удовлетворительно объясняет некоторые закономерности распространенности изотопов в области тяжелых ЗДементов, но совершенно неприменима к объяснению [c.99]

    Электролиз воды или пара при разных температурах может приводить к разложению воды. Это испытанная и коммерчески реализованная технология для получения водорода. Недостатком этого способа в первую очередь является большое энергопотребление, что влечет за собой высокую стоимость процесса. Поэтому более перспективным процессом производства водорода принято считать высокотемпературный электролиз водяного пара (ВТЭП). Термодинамика электролиза водяного пара такова, что этот процесс целесообразнее проводить при высоких температурах. Высокие температуры также увеличивают активность электродов, и помогают понизить катодное и анодное перенапряжение. Поэтому можно увеличить плотность тока при высоких температурах и одновременно снизить потери, связанные с поляризацией, что в целом приводит к увеличению эффективности процесса. Материалы для процесса высокотемпературного электролиза водяного пара могут быть изготовлены из керамики, тем самым решаются проблемы коррозии. Реакционная схема ВТЭП об-ратна процессу в твердооксидных топливных элементах. Молекулы водяного пара диссоциируют на пористом катоде, образуя обогащенную смесь Н.О с Н2, тогда как ионы кислорода мигрируют через непористый, ионпроводя-щий твердый электролит к пористому аноду, где рекомбинируют до молекулы кислорода. Таким образом, водород и кислород автоматически разделяются твердооксидной мембраной. Совмещение высокотемпературного электролиза водяного пара с разными типами ядерных реакторов, обеспечивающими высокие температуры процесса, позволяет добиваться высокой общей эффективности процесса с КПД > 45 %. [c.46]

    Нет нужды подробно описывать все стадии химического разделения плутония и урана. Обычно разделение их начинают с растворения урановых брусков в азотной кислоте, после чего содержащиеся в растворе уран, нептуний, плутоний и осколочные элементы разлучают , применяя для этого уже традиционные радиохимические методы — осаждение, экстракцию, ионный обмен и другие. Конечные плутонийсодержащие продукты этой многостадийной технологии — его двуокись РиОг или фториды — РиРз или РиР4. Их восстанавливают до металла парами бария, кальция или лития. Однако полученный в этих процессах плутоний не годится на роль конструкционного материала — тепловыделяющих элементов энергетических ядерных реакторов из него не сделать, заряда атомной бомбы не отлить. Почему Температура плавления плутония — всего 640° С — вполне достижима. [c.400]

    Применение. РЗЭ широко применяются в металлургии в качестве раскислителей, дегазаторов и десульфаторов. Введение долей процента мишметалла (52 % Се, 24 % La, 5 % Рг, 18 % Nd и др.) в стали различных марок способствует их очищению от примесей, повышает жаропрочность и сопротивление корро-зи. Сплавы S , легкие и обладающие высокой температурой плавления, служат конструкционными материалами в ракето-и самолетостроении. Сплавы Се с железом, магнием и алюминием отличаются малым коэффициентом расширения и используются в машиностроении при производстве деталей поршневых двигателей. Присадка РЗЭ к чугунам улучшает их механические свойства добавка РЗЭ к сплавам из хрома, никеля и железа практикуется в производстве нагревательных элементов промышленных электропечей. РЗЭ применяются также при изготовлении регулирующих стержней, поглощающих избыточные тепловые нейтроны в ядерных реакторах Gd, Sm, Eu имеют аномально высокие значения сечения захвата нейтронов. Соединения S используются при изготовлении люминофоров, в качестве катализаторов в химической промышленности, в химической технологии ядерного топлива, в нефтеперерабатывающей промышленности для получения катализаторов крекинга нефти, для производства синтетических волокон, пластмасс, для синтеза жидких углеводородов, в цветной металлургии. РЗЭ употребляются для полировки стекла (в виде полирита, состоящего из оксидов Се, La, Nd и Рг), в силикатной промышленности для окрашивания и обесцвечивания стекол, для производства химически- и жаростойких, оптических, устойчивых к рентгеновскому облучению, высокоэлектропроводных и высокопрочных стекол, для окраски фарфора и керамики. рЗЭ применяются также в светотехнике, электронике, радиотехнике, в текстильной и кожевенной промышленности, в производстве ЭВМ, в медицине, рентгенотехнике и т. д. [c.253]

    Вероятно, самой важной формой, в которой уран используется в реакторах, является металл. Для работы многих типов реакторов необходима высокая концентрация атомов урана, а металл обладает наибольшей плотностью. Физические и особенно химические свойства урана таковы, что требуют значительной изобретательности исследователей для того, чтобы разработать совершенные промышленные процессы получения металла. При повышенных температурах уран реагирует с большинством обычных тугоплавких материалов и металлов. Тонкоизмельчен-ный уран реагирует при комнатной температуре со всеми компонентами атмосферного воздуха, за исключением благородных газов. К счастью, в противоположность титану и цирконию, введение небольших количеств кислорода или азота не оказывает серьезного неблагоприятного действия на механические свойства металла. Поскольку металлический уран используется в ядерных реакторах, урановые топливные элементы должны быть свободны от самых незначительных загрязнений, поглощающих нейтроны, например бора, кадмия или редкоземельных элементов и в равной степени от ощутимых количеств многих других элементов. Требования чистоты в этом случае являются более строгими, чем для обычных стандартов, установленных для других металлов. Хилшки и металлурги разрешили эти весьма трудные проблемы за очень короткое время. [c.138]

    Силициды молибдена используются в виде покрытия на металлическом молибдене, применяемом для нагревательных элементов высокотемпературных электропечей, особенно для печей, работающих в окислительных условиях [164]. В Швеции выпускается силицид молибдена с добавками окиси кремния, окислов и металлов, известный под названием супер-кантдл , обладающий особенно высокой устойчивостью при температурах порядка 1550—1600° С. Но, как указывает Г. В. Самсонов [163], силицид молибдена не обладает достаточной прочностью для того, чтобы служить самостоятельным конструкционным материалом. Выше уже упоминалось о химической стойкости силицидов и их способности выдерживать тепловые удары, что позволит использовать их, возможно, в составе огнеупоров, теплообменников ядерных реакторов и т. д. [c.99]

    Температура в камере (реакторе) ядерно-ракетного двигателя зависит от типа реактора, в котором осуществляется реакция деления. Для твердофазного реактЪра с керамическими тепловыделяющими элементами температура лимитируется прочностью твэлов и не должна превышать 2500—3000° К. [c.256]

    Получение и использование. Цирконий широко распространен в земной оре, о концентрированные руды его сравнительно редки. Гафний обнаруживается во всех циркониевых минералах, где его содержание не превышает -нескольких процентов от содержания циркония. Разделить эти элементы труднее, чем лантаноиды. Это удается лишь при помощи ионного обмена и экстракции. Чаще всего -их используют в металлургии и строительстве атомных реакторов цирконий — материал для конструкции ядерных реакторов, а гафний— основа регулирующих стержней. Высокая коррозионная стойкость циркония позволяет применять его в нейрохирургии. Из сплавов этого металла делают кровеостанавливающие зажимы, хирургический инструмент и иногда даже нити для наложения швов при операциях мозга. Здесь он соперничает с металлами V группы— иобием и танталом. Сплав тантала с 8% вольфрама и 2% гафния сохраняет высокую прочность и при температурах, близких к абсолютному нулю, и при 2000° С. Поэтому он является перспективным материалом для изготовления камер сгорания ракетных двигателей, каркаса и обшивки ракет. [c.335]

    Сейчас технеций получают из осколков деления урана-235 в ядерных реакторах. Правда, выделить его из массы осколков непросто. На килограмм осколков приходится около 10 г элемента № 43. В основном это изотоп технС ций-99, период полураспада которого равен 212 тысячам лет. Благодаря накоплению технеция в реакторах удалось определить свойства этого элемента, получить его в чистом виде, исследовать довольно многие его соединения. В них технеций проявляет валентность 2+, 3+ и 7+- Так же, как и рений, технеций — металл тяжелый (плотность 11,5 г/см ), тугоплавкий (температура плавления2140°С), химически стойкий. [c.235]

    При облучении в ядерном реакторе топливных элементов из металлического урана металл претерпевает существенные изменения в размерах и структуре. Кроме того, радиация вызывает коробление и шелушение его поверхности. Под влиянием радиации цилиндр значительно увеличивается по длине, а сечение его становится эллиптическим [65]. На пространственную стабильность оказывает влияние размер зерен исходного материала, способ изготовления и присутствие в металле небольших добавок. Чем мельче зерна, тем больше изменение под действием радиации. Эти явления значительно снижаются в урановых стержнях, прокатанных при высоких температурах р- или 7-перекристалли-зация первоначального а-металла создает беспорядочную ориентацию и снижает скорость роста. В сплавах, содержапщх небольшое количество урана, радиационные повреждения обычно бывают незначительными. Среди сплавов, в которых уран присутствует как основной компонент, хорошей пространственной стабильностью обладает сплав урана с молибденом (10% молибдена). Влияние радиации на структуру металла подобно (но не [c.150]

    Вода. Коррозионная стойкость чистого ниобия в воде и водяном паре недостаточно высока, чтобы этот металл можно было использовать в качестве оболочек тепловыдс-ляющихся элементов водоохлаждаемых ядерных реакторах. В то же время сплавы ниобия с молибденом, титаном, ванадием и цирконием имеют повышенную стойкость и могли бы иримеияться в эти. с целях. Наилучшей коррозионной стойкостью обладает сплав N5—10Т1—ЮМо, но более практичен силав ЫЬ—7У с хорошей свариваемостью. Этот сплав характеризуется также хорошими прочностными свойствами ири высоких температурах. [c.183]

chem21.info

4 500 000 градусов для ядерного реактора нового типа

5 декабря заместитель директора Института ядерной физики им. Г. И. Будкера (ИЯФ) Сибирского отделения РАН Александр Иванов сообщил, что российским ученым удалось разогреть термоядерную плазму до рекордной температуры в 4,5 млн градусов Кельвина или 400 электронвольт. Чем так важно это достижение?

Как и многие новости из мира российской науки, это сообщение мало кто заметил. Проблема научных новостей состоит в их ограниченном употреблении: цифра в 4 500 000 градусов впечатляет непосвящённого человека количеством нулей, но и только. Хотя — как и многие новости из мира российской науки — подобное достижение новосибирских учёных не только является свидетельством высокого уровня отечественных фундаментальных исследований, но и связано с серьёзными практическими результатами подобных экспериментов.

Современная атомная энергетика основывается на расщеплении атомных ядер. Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер урана или плутония. При попадании свободного нейтрона в ядро атома, возникают осколки деления, новые нейтроны, приводящие к расщеплению других ядер — и свободная энергия, которая при неконтролируемой реакции распада приводит к атомному взрыву, а при воздействии замедлителей нагревает теплоноситель ядерного реактора.

Ядерная энергия — выгодное и, во многом, безальтернативное средство удовлетворения энергетических потребностей человечества. Однако, на данном этапе развития человечества это средство в какой-то степени компромиссно, и не лишено недостатков. Запасы урана на Земле ограничены, для его добычи необходимы значительные усилия, а функционирование современных АЭС, несмотря на многоуровневые системы защиты, иногда оборачивается техногенными авариями, последствия которых ощущаются десятилетиями, если не веками.

Вместе с тем, энергию может давать не только распад атомов, но и синтез. Примером «реактора», работающего на подобном принципе является Солнце, в ядре которого давление настолько велико, что происходит реакция слияния изотопов водорода 2H и 3H с превращением в атом гелия 4He и выделение при этом 17,6 мегаэлектронвольт чистой энергии. Реакция термоядерного синтеза куда более выгодна с точки зрения выхода энергии, чем атомный распад. Один грамм «смеси» 2H и 3H эквивалентен примерно четырём тоннам высокооктанового бензина.

Но для запуска термоядерной реакции, синтеза одного ядра из нескольких, необходимо сблизить эти ядра на расстояние порядка одного фемптометра (10-15), где ядерные силы начинают преодолевать силы взаимного отталкивания — ядра атомов имеют одинаковый положительный заряд. Другими словами, нужно передать этим атомам очень большую энергию, большую, чем та, которая слиянию ядер препятствует. Поскольку мерой энергии частиц является температура, то наиболее простым способом преодоления кулоновского барьера остаётся нагрев. Что и отражено в названии «термоядерная».

Неконтролируемую реакцию термоядерного синтеза человечество научилось производить полвека назад — это термоядерная бомба, которая, фактически, является «двойной». Детонация инициирующего атомного заряда создаёт достаточную температуру и давление, чтобы началась реакция во втором заряде — заряде атомного синтеза. Но для извлечения термоядерной энергии в мирных целях, необходимо решить задачу — как произвести «взрыв» подобного боеприпаса в лаборатории? А точнее, создать и поддерживать некоторое время температуру примерно в сто миллионов градусов. Сто миллионов градусов — это температура, необходимая для устойчивой термоядерной реакции. Многие атомы будут вступать в реакцию уже при десяти миллионах — но только при 116 миллионах градусов система будет отдавать энергии больше, чем получает. Правда, умение создать такую температуру не может быть применено для практического термоядерного синтеза без способности удерживать такие энергии на протяжении хотя бы секунды. Важна и концентрация плазмы — она должна составлять более 1014 частиц на кубический сантиметр.

Любой физический контакт с такими температурами исключён — все материалы испарятся за время, куда меньшее, чем «мгновенно». Собственно говоря, само достижение температуры в 100 000 000 градусов давно уже не является запредельным для физики — ещё в 1962 году в советском Институте атомной энергии плазму нагрели до 50 миллионов кельвинов. А в 2010 году американские исследователи в Брукхейвенской национальной лаборатории получили кварк-глюонную плазму с температурой около 4 триллионов градусов. Но вот удержать достаточное для термоядерной реакции состояние плазмы необходимое время — для этого нужно решить огромное количество задач.

Плазму, единственное состояние вещества, в котором возможны такие температуры, удерживают магнитными полями. По сравнению с традиционным атомным реактором наших дней, термоядерные реакторы должны быть ещё более технологичны — ведь их «активная» зона, плазма звёздных температур, удерживается лишь невидимыми линиями магнитного поля.

Как обеспечить этот процесс не в лаборатории, а в промышленных масштабах, пока не знает никто. Проект международного экспериментального термоядерного реактора ITER типа «токамак» действует с 1985 года. К настоящему времени окончательно закончено проектирование реактора и выбрано место для его строительства — исследовательский центр Кадараш, в 60 км от Марселя. В декабре 2012 года руководством ITER был подписан гражданско-правовой договор с французско-испанским консорциумом VFR на строительство комплекса зданий «токамака». К августу 2013 г. была подготовлена площадка для сооружения, построены два вспомогательных здания и энергетическая подстанция. Стройку, стоимость которой первоначально оценивалась в 5 миллиардов евро, планировалось закончить в 2016 году, однако постепенно предполагаемая сумма расходов выросла вдвое, и затем срок начала экспериментов сдвинулся к 2020 году.

Так, эксперименты с более-менее стабильной дейтериево-тритиевой плазмой назначены на 2027 год — к этому времени необходимо будет решить задачу получения достаточного количества трития. По актуальным на данный момент расчётам, тритиевый реактор потреблял бы 56 кг трития на производство 1 ГВт·года электроэнергии, тогда как всемирные запасы трития на 2003 год составляли всего 18 килограммов. О получении термоядерной энергии для практических нужд, таким образом, можно говорить в лучшем случае в привязке к середине этого столетия.

Наиболее близким к практической реализации проектом использования термоядерной энергии является гибридный термоядерный реактор — во многом, перенявший «двойную» концепцию термоядерной бомбы. Реактор такого типа состоит из двух зон. В 1-й зоне — делящиеся вещества, (уран или торий), во 2-й зоне — литийсодержащие вещества для воспроизводства сгоревшего в плазме трития. «Термоядерные» нейтроны, рождающиеся в плазме с энергией 14,1 МэВ, проникают через прозрачную для них стенку в отсек с делящимися веществами. При помещении в эту зону урана, нейтроны поглощаются в нём с образованием плутония. Одновременно выделяется энергия, примерно равная 140 МэВ на один термоядерный нейтрон. То есть, гибридный термоядерный реактор даст даже больше энергии — в 6-7 раз — чем чисто термоядерный. При этом необязательно создавать температуру в указанные 116 миллионов градусов, и реакция не должна быть самоподдерживающейся. В результате упрощается решение многих проблем, что делает создание ГТР вполне возможным уже в ближайшем будущем.

Специалистам ИЯФ им. Г. И. Будкера удалось достичь достаточную временную протяженность по отношению к главной компоненте, которая участвует в реакциях синтеза. Это около десятка миллисекунд, но этого хватает, чтобы система могла быть использована как источник для управления гибридными реакторами. Для того, чтобы нагреть электронную компоненту, ученые ИЯФ СО РАН использовали разработку Института прикладной физики РАН (Нижний Новгород) — мощный источник микроволнового излучения.

Дополнительно, отечественные учёные смогли решить практически нерешаемую задачу. Как пояснил замдиректора ИЯФ Александр Бурдаков, институт развивает направление открытых ловушек для плазмы. «Они имеют ряд преимуществ по сравнению с «токамаком»: простота конструкции, снятие некоторых ограничений, достижение высокого давления плазмы. Однако при этом она фактически упирается прямо в стенки, и долгое время никто не верил, что в таких системах можно действительно получить высокие температуры. Нам удается найти режимы, при которых означенный контакт очень слаб», — объяснил он.

Фактически, 5 декабря в Новосибирске была подтверждена возможность практической реализации ядерного реактора нового типа, значительно превосходящего по энергоотдаче всё, что существует на данный момент. Именно это скрывается за получением нашими учёными температуры в 4 500 000 кельвинов на десять миллисекунд.

Олег Головачёв

vrns.ru

температура теплоносителя ядерного реактора - это... Что такое температура теплоносителя ядерного реактора?

 температура теплоносителя ядерного реактора
  1. reactor coolant temperature
  2. coolant temperature

 

температура теплоносителя ядерного реактора — [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

Тематики

  • энергетика в целом

EN

  • coolant temperature
  • reactor coolant temperature

Русско-английский словарь нормативно-технической терминологии. academic.ru. 2015.

  • температура теплоносителя до отбора тепла
  • температура теплоносителя ядерного реактора с водой под давлением

Смотреть что такое "температура теплоносителя ядерного реактора" в других словарях:

  • температура теплоносителя ядерного реактора — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN coolant temperaturereactor coolant temperature …   Справочник технического переводчика

  • температура теплоносителя ядерного реактора с водой под давлением — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN reactor coolant temperatureRCT …   Справочник технического переводчика

  • температура насыщения теплоносителя ядерного реактора — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN coolant saturation temperatureCST …   Справочник технического переводчика

  • температура теплоносителя — (напр. ядерного реактора) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN coolant temperatureCT …   Справочник технического переводчика

  • Аварийная защита ядерного реактора — совокупность устройств, предназначенная для быстрого прекращения цепной ядерной реакции в активной зоне реактора. Содержание 1 Активная аварийная защита 2 Пасс …   Википедия

  • Теплоноситель ядерного реактора — Теплоноситель в ядерном реакторе  жидкое или газообразное вещество, пропускаемое через активную зону реактора и выносящее из неё тепло, выделяющееся в результате реакции деления ядер. Содержание 1 Общие сведения 2 Особенности применения …   Википедия

  • точка начала разогрева теплоносителя нейтронным потоком в активной зоне ядерного реактора — Температура начала разогрева теплоносителя нейтронным потоком в активной зоне ядерного реактора [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN nuclear heatingpoint …   Справочник технического переводчика

  • Расплавление активной зоны ядерного реактора — АЭС Три Майл Айленд (США), на втором блоке которого произошла авария с частичным расплавлением активной зоны Расплавление активной зоны ядерного реактора, также мелтдаун ( …   Википедия

  • температура жидкого азота — (напр. в системе теплоносителя ядерного реактора с натриевым теплоносителем) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN liquid nitrogen temperatureLNT …   Справочник технического переводчика

  • Аварийная защита реактора — Аварийная защита ядерного реактора совокупность устройств, предназначенная для быстрого прекращения цепной ядерной реакции в активной зоне реактора. Содержание 1 Активная аварийная защита 2 Пассивная аварийная защита …   Википедия

  • Холодное состояние реактора — состояние ядерного реактора, когда ядерная реакция заглушена и температура теплоносителя ниже 100°С. Термины атомной энергетики. Концерн Росэнергоатом, 2010 …   Термины атомной энергетики

normative_ru_en.academic.ru

Природный ядерный реактор в Окло

Геологический разрез естественного ядерного реактора Окло 1. Зоны деления 2. Песчаник 3. Слой урановой руды 4. Гранит

Природный ядерный реактор в Окло — несколько рудных тел в урановом месторождении Окло в Габоне, в которых около 1,8 млрд лет назад[1] происходила самопроизвольная цепная реакция деления ядер урана. В настоящее время реакция прекратилась из-за истощения запасов изотопа 235U подходящей концентрации.

Феномен был обнаружен французским физиком Франсисом Перреном (фр.)русск. в 1972 году в результате изучения изотопного состава элементов в рудах месторождения Окло. Природные условия, при которых возможно протекание самоподдерживающейся реакции ядерного деления, предсказаны Полом Кадзуо Куродой (англ. Paul Kazuo Kuroda) в 1956 году[2] и оказались близкими к реальности.

Рудные тела, в которых происходила цепная реакция, представляют собой залегающие в пористом песчанике линзовидные образования из уранинита (UO2) диаметром порядка 10 м и толщиной от 20 до 90 см; содержание урана в них составляло от 20 до 80 % (по массе). Идентифицированы 16 индивидуальных реакторов в трёх различных частях месторождения: в Окло, в Окелобондо (Okelobondo, 1,6 км от Окло) и в Бангомбе (Bangombe, 20 км к югу от Окло). Все 16 рудных тел объединяют под общим названием «Природный ядерный реактор Окло».

Окло — единственный известный на Земле естественный ядерный реактор. Цепная реакция началась здесь около 2 млрд. лет назад и продолжалась в течение нескольких сотен тысяч лет. Средняя тепловая мощность реактора составляла около 100 кВт[3][4].

История

В мае 1972 года на урановой обогатительной фабрике в Пьерлате (фр.)русск. (Франция) во время обычного масс-спектрометрического анализа гексафторида урана UF6 из Окло было обнаружено отклонение от нормы изотопного состава урана. Содержание изотопа 235U составило 0,717 % вместо обычных 0,720 %. Это расхождение требовало объяснения, так как все ядерные объекты подвергаются жёсткому контролю с целью недопущения нелегального использования расщепляющихся материалов в военных целях. Французский Комиссариат атомной энергетики (CEA) начал расследование. Серия измерений обнаружила значительные отклонения изотопного отношения 235U/238U в нескольких шахтах. В одной из шахт содержание 235U составило 0,440 %. Были обнаружены также аномалии в распределении изотопов неодима и рутения.

Уменьшение концентрации изотопа 235U является характерной чертой отработанного ядерного топлива, так как именно этот изотоп является основным расщепляющимся материалом уранового ядерного реактора. 25 сентября 1972 года CEA объявила об открытии естественной самоподдерживающейся реакции ядерного деления. Следы протекания таких реакций были обнаружены в общей сложности в 16 точках.

Продукты ядерного деления

Неодим

Неодим является одним из элементов, изотопный состав которого в Окло аномален по сравнению с другими территориями. Например, естественный неодим содержит 27 % изотопа 142Nd, тогда как в Окло он составляет всего 6 %. В то же время руды Окло содержали больше изотопа 143Nd. Такой изотопный состав характерен для продуктов распада 235U.

Рутений

Похожие аномалии изотопного состава в Окло наблюдаются для рутения. Изотоп 99Ru обнаруживается в больших количествах, чем в естественных условиях (27-30 % вместо 12,7 %). Аномалию можно объяснить распадом 99Tc → 99Ru. Изотоп 100Ru обнаруживается в меньших количествах, так как он получается в результате чрезвычайно медленного распада 100Mo → 100Ru, который со времени существования цепной реакции не успел накопить достаточного количества продуктов.

  • Изотопный состав неодима в естественной среде и в продуктах распада 235U

  • Изотопный состав рутения в естественной среде и в продуктах распада 235U

Механизм образования

Реактор возник в результате затопления пористых богатых ураном пород грунтовыми водами, которые выступили в качестве замедлителей нейтронов. Тепло, выделявшееся в результате реакции, вызывало кипение и испарение воды, что замедляло или останавливало цепную реакцию. После того, как порода охлаждалась и распадались короткоживущие продукты распада (нейтронные яды), вода конденсировалась, и реакция возобновлялась. Этот циклический процесс продолжался несколько сот тысяч лет.

При делении урана среди продуктов деления образуются пять изотопов ксенона. Все пять изотопов в варьирующихся концентрациях были обнаружены в породах природного реактора. Изотопный состав выделенного из пород ксенона позволяет рассчитать, что типичный цикл работы реактора составлял примерно 3 часа: около 30 минут критичности и 2 часа 30 минут охлаждения[5].

Ключевой фактор, сделавший возможной работу реактора, — это примерно 3,7%-ное изотопное содержание 235U в природном уране в те времена. Это изотопное содержание сравнимо с содержанием урана в низкообогащённом ядерном топливе, используемым в большинстве современных энергетических ядерных реакторов. (Оставшиеся 96 % составляет 238U, не подходящий для реакторов на тепловых нейтронах). Поскольку уран-235 имеет период полураспада лишь 0,7 млрд лет (значительно короче, чем уран-238), современная распространённость урана-235 составляет лишь 0,72 %, чего недостаточно для работы реактора с легководным замедлителем без предварительного изотопного обогащения. Таким образом, в настоящее время образование природного ядерного реактора на Земле невозможно.

Урановое месторождение Окло — единственное известное место, где существовал природный ядерный реактор. Другие богатые урановые рудные тела тоже имели достаточное количество урана для самоподдерживающейся цепной реакции деления в то время, но комбинация физических условий в Окло (в частности, наличие воды как замедлителя нейтронов, и пр.) была уникальной.

Ещё одним фактором, который, вероятно, способствовал началу реакции в Окло именно 2 млрд лет назад, а не ранее, был рост содержания кислорода в атмосфере Земли[4]. Уран хорошо растворяется в воде лишь в присутствии кислорода, поэтому в земной коре перенос и концентрация урана подземными водами, формирующими богатые рудные тела, стали возможными только после достижения достаточного содержания свободного кислорода.

По оценке, в реакциях деления, проходивших в урановых минеральных образованиях размером от сантиметров до метров, выгорело около 5 тонн урана-235. Температуры в реакторе поднимались до нескольких сотен градусов Цельсия. Большинство нелетучих продуктов деления и актиноидов за прошедшие 2 млрд лет диффундировали лишь на сантиметры[4]. Это позволяет исследовать перенос радиоактивных изотопов в земной коре[6].

Исследования природного реактора в Окло были использованы для проверки вариации фундаментальной физической константы — постоянной тонкой структуры α — в течение последних 2 млрд лет. Малое изменение α вызвало бы существенное изменение скорости некоторых ядерных реакций. В частности, резонансный захват теплового нейтрона ядром 149Sm с образованием 150Sm перестаёт быть возможным уже при небольшом изменении α. Измерение относительного содержания 149Sm/150Sm в минералах Окло позволило установить, что в пределах экспериментальной погрешности значение постоянной тонкой структуры было тем же, что и в наше время[7][8].

Примечания

  1. ↑ В различных источниках возраст реактора определён в диапазоне от 2 до 1,8 млрд лет назад.
  2. ↑ Kuroda, P. K. (1956). «On the Nuclear Physical Stability of the Uranium Minerals». Journal of Chemical Physics 25: 781–782; 1295–1296. DOI:10.1063/1.1743058. Bibcode: 1956JChPh..25..781K.
  3. ↑ Meshik, A. P. (November 2005). «The Workings of an Ancient Nuclear Reactor». Scientific American.
  4. ↑ 1 2 3 Gauthier-Lafaye, F.; Holliger, P.; Blanc, P.-L. (1996). «Natural fission reactors in the Franceville Basin, Gabon: a review of the conditions and results of a "critical event" in a geologic system». Geochimica et Cosmochimica Acta 60 (25): 4831–4852. DOI:10.1016/S0016-7037(96)00245-1. Bibcode: 1996GeCoA..60.4831G.
  5. ↑ Meshik, A. P.; et al. (2004). «Record of Cycling Operation of the Natural Nuclear Reactor in the Oklo/Okelobondo Area in Gabon». Physical Review Letters 93 (18): 182302. DOI:10.1103/PhysRevLett.93.182302. PMID 15525157. Bibcode: 2004PhRvL..93r2302M.
  6. ↑ De Laeter, J. R.; Rosman, K. J. R.; Smith, C. L. (1980). «The Oklo Natural Reactor: Cumulative Fission Yields and Retentivity of the Symmetric Mass Region Fission Products». Earth and Planetary Science Letters 50: 238–246. DOI:10.1016/0012-821X(80)90135-1. Bibcode: 1980E&PSL..50..238D.
  7. ↑ New Scientist: Oklo Reactor and fine-structure value. June 30, 2004.
  8. ↑ Petrov, Yu. V.; Nazarov, A. I., Onegin, M. S., Sakhnovsky, E. G. (2006). «Natural nuclear reactor at Oklo and variation of fundamental constants: Computation of neutronics of a fresh core». Physical Review C 74 (6): 064610. DOI:10.1103/PHYSREVC.74.064610. Bibcode: 2006PhRvC..74f4610P.

Ссылки

Координаты: 1°23′40″ ю. ш. 13°09′39″ в. д. / 1.394444° ю. ш. 13.160833° в. д. (G) (O)-1.394444, 13.160833

biograf.academic.ru

температура теплоносителя ядерного реактора - это... Что такое температура теплоносителя ядерного реактора?

 температура теплоносителя ядерного реактора

 

температура теплоносителя ядерного реактора — [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

Тематики

  • энергетика в целом

EN

  • coolant temperature
  • reactor coolant temperature

Справочник технического переводчика. – Интент. 2009-2013.

  • температура теплоносителя до отбора тепла
  • температура теплоносителя ядерного реактора с водой под давлением

Смотреть что такое "температура теплоносителя ядерного реактора" в других словарях:

  • температура теплоносителя ядерного реактора с водой под давлением — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN reactor coolant temperatureRCT …   Справочник технического переводчика

  • температура насыщения теплоносителя ядерного реактора — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN coolant saturation temperatureCST …   Справочник технического переводчика

  • температура теплоносителя — (напр. ядерного реактора) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN coolant temperatureCT …   Справочник технического переводчика

  • Аварийная защита ядерного реактора — совокупность устройств, предназначенная для быстрого прекращения цепной ядерной реакции в активной зоне реактора. Содержание 1 Активная аварийная защита 2 Пасс …   Википедия

  • Теплоноситель ядерного реактора — Теплоноситель в ядерном реакторе  жидкое или газообразное вещество, пропускаемое через активную зону реактора и выносящее из неё тепло, выделяющееся в результате реакции деления ядер. Содержание 1 Общие сведения 2 Особенности применения …   Википедия

  • точка начала разогрева теплоносителя нейтронным потоком в активной зоне ядерного реактора — Температура начала разогрева теплоносителя нейтронным потоком в активной зоне ядерного реактора [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN nuclear heatingpoint …   Справочник технического переводчика

  • Расплавление активной зоны ядерного реактора — АЭС Три Майл Айленд (США), на втором блоке которого произошла авария с частичным расплавлением активной зоны Расплавление активной зоны ядерного реактора, также мелтдаун ( …   Википедия

  • температура жидкого азота — (напр. в системе теплоносителя ядерного реактора с натриевым теплоносителем) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN liquid nitrogen temperatureLNT …   Справочник технического переводчика

  • Аварийная защита реактора — Аварийная защита ядерного реактора совокупность устройств, предназначенная для быстрого прекращения цепной ядерной реакции в активной зоне реактора. Содержание 1 Активная аварийная защита 2 Пассивная аварийная защита …   Википедия

  • Холодное состояние реактора — состояние ядерного реактора, когда ядерная реакция заглушена и температура теплоносителя ниже 100°С. Термины атомной энергетики. Концерн Росэнергоатом, 2010 …   Термины атомной энергетики

technical_translator_dictionary.academic.ru

Ядерный реактор - это... Что такое Ядерный реактор?

Ядерный реактор CROCUS

Я́дерный реа́ктор — это устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии. Первый ядерный реактор построен и запущен в декабре 1942 года в США под руководством Э. Ферми. Первым реактором, построенным за пределами США, стал ZEEP, запущенный в Канаде в сентябре 1945 года[1]. В Европе первым ядерным реактором стала установка Ф-1, заработавшая 25 декабря 1946 года в Москве под руководством И. В. Курчатова.[2]

К 1978 году в мире работало уже около сотни ядерных реакторов различных типов. Составными частями любого ядерного реактора являются: активная зона с ядерным топливом, обычно окруженная отражателем нейтронов, теплоноситель, система регулирования цепной реакции, радиационная защита, система дистанционного управления. Основной характеристикой ядерного реактора является его мощность. Мощность в 1 МВт соответствует цепной реакции, в которой происходит 3·1016 актов деления в 1 сек.

История

Теоретическую группу «Урановый проект» нацистской Германии, работающую в Обществе кайзера Вильгельма, возглавлял Вайцзеккер, но лишь формально. Фактическим лидером стал Гейзенберг, разрабатывающий теоретические основы цепной реакции, Вайцзеккер же с группой участников сосредоточился на создании «урановой машины» — первого реактора. Поздней весной 1940 года один из учёных группы — Хартек — провёл первый опыт с попыткой создания цепной реакции, используя оксид урана и твёрдый графитовый замедлитель. Однако имеющегося в наличии делящегося материала не хватило для достижения этой цели. В 1941 году в Лейпцигском университете участником группы Гейзенберга Дёпелем был построен стенд с тяжеловодным замедлителем, в экспериментах на котором к маю 1942 года удалось достичь производства нейтронов в количестве, превышающем их поглощение. Полноценной цепной реакции немецким учёным удалось достичь в феврале 1945 года в эксперименте, проводимом в горной выработке близ Хайгерлоха. Однако спустя несколько недель ядерная программа Германии прекратила существование[3][4].

Цепная реакция деления ядер (кратко — цепная реакция) была впервые осуществлена в декабре 1942 года. Группа физиков Чикагского университета, возглавляемая Э. Ферми, создала первый в мире ядерный реактор, названный «Чикагской поленницей» (Chicago Pile-1, CP-1). Он состоял из графитовых блоков, между которыми были расположены шары из природного урана и его двуокиси. Быстрые нейтроны, появляющиеся после деления ядер 235U, замедлялись графитом до тепловых энергий, а затем вызывали новые деления ядер. Реакторы, подобные СР-1, в которых основная доля делений происходит под действием тепловых нейтронов, называют реакторами на тепловых нейтронах. В их состав входит очень много замедлителя по сравнению с ядерным топливом.

В СССР теоретические и экспериментальные исследования особенностей пуска, работы и контроля реакторов были проведены группой физиков и инженеров под руководством академика И. В. Курчатова. Первый советский реактор Ф-1 был построен в Лаборатории № 2 АН СССР (Москва). Этот реактор выведен в критическое состояние 25 декабря 1946 года. Реактор Ф-1 был набран из графитовых блоков и имел форму шара диаметром примерно 7,5 м. В центральной части шара диаметром 6 м по отверстиям в графитовых блоках размещены урановые стержни. Реактор Ф-1, как и реактор CP-1, не имел системы охлаждения, поэтому работал на очень малых уровнях мощности (доли ватта, редко — единицы ватт). Результаты исследований на реакторе Ф-1 стали основой проектов более сложных по конструкции промышленных реакторов. В 1948 году введён в действие реактор И-1 (по другим данным он назывался А-1) по производству плутония, а 27 июня 1954 года вступила в строй первая в мире атомная электростанция электрической мощностью 5 МВт в г. Обнинске.

Устройство и принцип работы

Механизм энерговыделения

Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер, для преодоления которого микрочастица должна получить извне какое-то количество энергии — энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога, ограничивающего течение процесса. В случае молекулярных превращений, то есть химических реакций, такое повышение обычно составляет сотни кельвинов, в случае же ядерных реакций — это минимум 107K из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез).

Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счёт неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются, как продукты экзоэнергетической реакции.

Конструкция

Любой ядерный реактор состоит из следующих частей:

Физические принципы работы

См. также основные статьи:

Текущее состояние ядерного реактора можно охарактеризовать эффективным коэффициентом размножения нейтронов k или реактивностью ρ, которые связаны следующим соотношением:

Для этих величин характерны следующие значения:

  • k > 1 — цепная реакция нарастает во времени, реактор находится в надкритичном состоянии, его реактивность ρ > 0;
  • k < 1 — реакция затухает, реактор — подкритичен, ρ < 0;
  • k = 1, ρ = 0 — число делений ядер постоянно, реактор находится в стабильном критическом состоянии.

Условие критичности ядерного реактора:

, где
  • есть доля полного числа образующихся в реакторе нейтронов, поглощённых в активной зоне реактора, или вероятность избежать нейтрону утечки из конечного объёма.
  • k0 — коэффициент размножения нейтронов в активной зоне бесконечно больших размеров.

Обращение коэффициента размножения в единицу достигается сбалансированием размножения нейтронов с их потерями. Причин потерь фактически две: захват без деления и утечка нейтронов за пределы размножающей среды.

Очевидно, что k < k0, поскольку в конечном объёме вследствие утечки потери нейтронов обязательно больше, чем в бесконечном. Поэтому, если в веществе данного состава k0 < 1, то цепная самоподдерживающаяся реакция невозможна как в бесконечном, так и в любом конечном объёме. Таким образом, k0 определяет принципиальную способность среды размножать нейтроны.

k0 для тепловых реакторов можно определить по так называемой «формуле 4-х сомножителей»:

, где

Объёмы современных энергетических реакторов могут достигать сотен м³ и определяются главным образом не условиями критичности, а возможностями теплосъёма.

Критический объём ядерного реактора — объём активной зоны реактора в критическом состоянии. Критическая масса — масса делящегося вещества реактора, находящегося в критическом состоянии.

Наименьшей критической массой обладают реакторы, в которых топливом служат водные растворы солей чистых делящихся изотопов с водяным отражателем нейтронов. Для 235U эта масса равна 0,8 кг, для 239Pu - 0,5 кг[источник не указан 793 дня]. Широко известно, однако, что критическая масса для реактора LOPO (первый в мире реактор на обогащённом уране), имевшего отражатель из окиси бериллия, составляла 0,565 кг[источник не указан 793 дня], несмотря на то, что степень обогащения по изотопу 235 была лишь немногим более 14 %. Теоретически, наименьшей критической массой обладает 251Cf, для которого эта величина составляет всего 10 г.

С целью уменьшения утечки нейтронов, активной зоне придают сферическую или близкую к сферической форму, например короткого цилиндра или куба, так как эти фигуры обладают наименьшим отношением площади поверхности к объёму.

Несмотря на то, что величина (e - 1) обычно невелика, роль размножения на быстрых нейтронах достаточно велика, поскольку для больших ядерных реакторов (К∞ —  1) << 1. Без этого процесса было бы невозможным создание первых графитовых реакторов на естественном уране.

Для начала цепной реакции обычно достаточно нейтронов, рождаемых при спонтанном делении ядер урана. Возможно также использование внешнего источника нейтронов для запуска реактора, например, смеси Ra и Be, 252Cf или других веществ.

Иодная яма

Основная статья: Иодная яма

Иодная яма — состояние ядерного реактора после его выключения, характеризующееся накоплением короткоживущего изотопа ксенона 135Xe. Этот процесс приводит к временному появлению значительной отрицательной реактивности, что, в свою очередь, делает невозможным вывод реактора на проектную мощность в течение определённого периода (около 1-2 суток).

Классификация

По назначению

По характеру использования ядерные реакторы делятся на[5][6][7]:

  • Энергетические реакторы, предназначенные для получения электрической и тепловой энергии, используемой в энергетике, а также для опреснения морской воды (реакторы для опреснения также относят к промышленным). Основное применение такие реакторы получили на атомных электростанциях. Тепловая мощность современных энергетических реакторов достигает 5 ГВт. В отдельную группу выделяют:
    • Транспортные реакторы, предназначенные для снабжения энергией двигателей транспортных средств. Наиболее широкие группы применения — морские транспортные реакторы, применяющиеся на подводных лодках и различных надводных судах, а также реакторы, применяющиеся в космической технике.
  • Экспериментальные реакторы, предназначенные для изучения различных физических величин, значение которых необходимо для проектирования и эксплуатации ядерных реакторов; мощность таких реакторов не превышает нескольких кВт.
  • Исследовательские реакторы, в которых потоки нейтронов и гамма-квантов, создаваемые в активной зоне, используются для исследований в области ядерной физики, физики твёрдого тела, радиационной химии, биологии, для испытания материалов, предназначенных для работы в интенсивных нейтронных потоках (в т. ч. деталей ядерных реакторов), для производства изотопов. Мощность исследовательских реакторов не превосходит 100 МВт. Выделяющаяся энергия, как правило, не используется.
  • Промышленные (оружейные, изотопные) реакторы, используемые для наработки изотопов, применяющихся в различных областях. Наиболее широко используются для производства ядерных оружейных материалов, например 239Pu. Также к промышленным относят реакторы, использующиеся для опреснения морской воды.

Часто реакторы применяются для решения двух и более различных задач, в таком случае они называются многоцелевыми. Например, некоторые энергетические реакторы, особенно на заре атомной энергетики, предназначались, в основном, для экспериментов. Реакторы на быстрых нейтронах могут быть одновременно и энергетическими, и нарабатывать изотопы. Промышленные реакторы кроме своей основной задачи часто вырабатывают электрическую и тепловую энергию.

По спектру нейтронов

По размещению топлива

В гетерогенном реакторе топливо и замедлитель могут быть пространственно разнесены, в частности, в полостном реакторе замедлитель-отражатель окружает полость с топливом, не содержащим замедлителя. С ядерно-физической точки зрения критерием гомогенности/гетерогенности является не конструктивное исполнение, а размещение блоков топлива на расстоянии, превышающем длину замедления нейтронов в данном замедлителе. Так, реакторы с так называемой «тесной решёткой» рассчитываются как гомогенные, хотя в них топливо обычно отделено от замедлителя.

Блоки ядерного топлива в гетерогенном реакторе называются тепловыделяющими сборками (ТВС), которые размещаются в активной зоне в узлах правильной решётки, образуя ячейки.

По виду топлива

  • изотопы урана 235, 238, 233 (235U, 238U, 233U)
  • изотоп плутония 239 (239Pu), также изотопы 239-242Pu в виде смеси с 238U (MOX-топливо)
  • изотоп тория 232 (232Th) (посредством преобразования в 233U)

По степени обогащения:

  • природный уран
  • слабо обогащённый уран
  • высоко обогащённый уран

По химическому составу:

По виду теплоносителя

По роду замедлителя

По конструкции

По способу генерации пара

Классификация МАГАТЭ

Наиболее распространёнными в мире являются водо-водяные (около 62 %) и кипящие (20 %) реакторы.

Материалы реакторов

Материалы, из которых строят реакторы, работают при высокой температуре в поле нейтронов, γ-квантов и осколков деления. Поэтому для реакторостроения пригодны не все материалы, применяемые в других отраслях техники. При выборе реакторных материалов учитывают их радиационную стойкость, химическую инертность, сечение поглощения и другие свойства.

Материал Плотность, г/см³ Макроскопическое сечение поглощения Εм−1
тепловых нейтронов нейтронов спектра деления
Алюминий 2,7 1,3 2,5·10−3
Магний 1,74 0,14 3·10−3
Цирконий 6,4 0,76 4·10−2
Нержавеющая сталь 8,0 24,7 1·10−1

Оболочки ТВЭЛов, каналы, замедлители (отражатели) изготовляют из материалов с небольшими сечениями поглощения. Применение материалов, слабо поглощающих нейтроны, снижает непроизводительный расход нейтронов, уменьшает загрузку ядерного топлива и увеличивает коэффициент воспроизводства КВ. Для поглощающих стержней, наоборот, пригодны материалы с большим сечением поглощения. Это значительно сокращает количество стержней, необходимых для управления реактором.

Быстрые нейтроны, γ-кванты и осколки деления повреждают структуру вещества. Так, в твёрдом веществе быстрые нейтроны выбивают атомы из кристаллической решётки или сдвигают их с места. Вследствие этого ухудшаются пластические свойства и теплопроводность материалов. Сложные молекулы под действием излучения распадаются на более простые молекулы или составные атомы. Например, вода разлагается на кислород и водород. Это явление известно под названием радиолиза воды.

Радиационная нестойкость материалов меньше сказывается при высоких температурах. Подвижность атомов становится настолько большой, что вероятность возвращения выбитых из кристаллической решётки атомов на своё место или рекомбинация водорода и кислорода в молекулу воды заметно увеличивается. Так, радиолиз воды несущественен в энергетических некипящих реакторах (например, ВВЭР), в то время как в мощных исследовательских реакторах выделяется значительное количество гремучей смеси. В реакторах есть специальные системы для её сжигания.

Реакторные материалы контактируют между собой (оболочка ТВЭЛа с теплоносителем и ядерным топливом, тепловыделяющие кассеты — с теплоносителем и замедлителем и т. д.). Естественно, что контактирующие материалы должны быть химически инертными (совместимыми). Примером несовместимости служат уран и горячая вода, вступающие в химическую реакцию.

У большинства материалов прочностные свойства резко ухудшаются с увеличением температуры. В энергетических реакторах конструкционные материалы работают при высоких температурах. Это ограничивает выбор конструкционных материалов, особенно для тех деталей энергетического реактора, которые должны выдерживать высокое давление.

Выгорание и воспроизводство ядерного топлива

В процессе работы ядерного реактора из-за накопления в топливе осколков деления изменяется его изотопный и химический состав, происходит образование трансурановых элементов, главным образом изотопов Pu. Влияние осколков деления на реактивность ядерного реактора называется отравлением (для радиоактивных осколков) и зашлаковыванием (для стабильных изотопов).

Основная причина отравления реактора — 135Xe, обладающий наибольшим сечением поглощения нейтронов (2,6·106 барн). Период полураспада 135Xe T1/2 = 9,2 ч; выход при делении составляет 6—7 %. Основная часть 135Xe образуется в результате распада 135I (T1/2 =  6,8 ч). При отравлении Кэф изменяется на 1—3 %. Большое сечение поглощения 135Xe и наличие промежуточного изотопа 135I приводят к двум важным явлениям:

  1. К увеличению концентрации 135Xe и, следовательно, к уменьшению реактивности реактора после его остановки или снижения мощности («иодная яма»), что делает невозможным кратковременные остановки и колебания выходной мощности. Данный эффект преодолевается введением запаса реактивности в органах регулирования. Глубина и продолжительность иодной ямы зависят от потока нейтронов Ф: при Ф = 5·1018 нейтрон/(см²·сек) продолжительность йодной ямы ˜ 30 ч, а глубина в 2 раза превосходит стационарное изменение Кэф, вызванное отравлением 135Xe.
  2. Из-за отравления могут происходить пространственно-временные колебания нейтронного потока Ф, а, следовательно, и мощности реактора. Эти колебания возникают при Ф > 1018 нейтронов/(см²·сек) и больших размерах реактора. Периоды колебаний ˜ 10 ч.

При делении ядер возникает большое число стабильных осколков, которые различаются сечениями поглощения по сравнению с сечением поглощения делящегося изотопа. Концентрация осколков с большим значением сечения поглощения достигает насыщения в течение нескольких первых суток работы реактора. Главным образом это ТВЭЛы разных «возрастов».

В случае полной замены топлива, реактор имеет избыточную реактивность, которую нужно компенсировать, тогда как во втором случае компенсация требуется только при первом пуске реактора. Непрерывная перегрузка позволяет повысить глубину выгорания, так как реактивность реактора определяется средними концентрациями делящихся изотопов.

Масса загруженного топлива превосходит массу выгруженного за счёт «веса» выделившейся энергии. После остановки реактора, сначала главным образом за счёт деления запаздывающими нейтронами, а затем, через 1-2 мин, за счёт β- и γ-излучения осколков деления и трансурановых элементов, в топливе продолжается выделение энергии. Если реактор работал достаточно долго до момента остановки, то через 2 мин после остановки выделение энергии составляет около 3 %, через 1 ч — 1 %, через сутки — 0,4 %, через год — 0,05 % от первоначальной мощности.

Отношение количества делящихся изотопов Pu, образовавшихся в ядерном реакторе, к количеству выгоревшего 235U называется коэффициентом конверсии KK. Величина KK увеличивается при уменьшении обогащения и выгорания. Для тяжеловодного реактора на естественном уране, при выгорании 10 ГВт·сут/т KK = 0,55, а при небольших выгораниях (в этом случае KK называется начальным плутониевым коэффициентом) KK = 0,8. Если ядерный реактор сжигает и производит одни и те же изотопы (реактор-размножитель), то отношение скорости воспроизводства к скорости выгорания называется коэффициентом воспроизводства КВ. В ядерных реакторах на тепловых нейтронах КВ < 1, а для реакторов на быстрых нейтронах КВ может достигать 1,4-1,5. Рост КВ для реакторов на быстрых нейтронах объясняется главным образом тем, что, особенно в случае 239Pu, для быстрых нейтронов g растёт, а а падает.

Управление ядерным реактором

Управление ядерным реактором возможно только благодаря тому, что часть нейтронов при делении вылетает из осколков с запаздыванием, которое может составить от нескольких миллисекунд до нескольких минут.

Для управления реактором используют поглощающие стержни, вводимые в активную зону, изготовленные из материалов, сильно поглощающих нейтроны (в основном В, Cd и некоторые др.) и/или раствор борной кислоты, в определённой концентрации добавляемый в теплоноситель (борное регулирование). Движение стержней управляется специальными механизмами, приводами, работающими по сигналам от оператора или аппаратуры автоматического регулирования нейтронного потока.

На случай различных аварийных ситуаций в каждом реакторе предусмотрено экстренное прекращение цепной реакции, осуществляемое сбрасыванием в активную зону всех поглощающих стержней — система аварийной защиты.

Остаточное тепловыделение

Важной проблемой, непосредственно связанной с ядерной безопасностью, является остаточное тепловыделение. Это специфическая особенность ядерного топлива, заключающаяся в том, что, после прекращения цепной реакции деления и обычной для любого энергоисточника тепловой инерции, выделение тепла в реакторе продолжается ещё долгое время, что создаёт ряд технически сложных проблем.

Остаточное тепловыделение является следствием β- и γ- распада продуктов деления, которые накопились в топливе за время работы реактора. Ядра продуктов деления вследствие распада переходят в более стабильное или полностью стабильное состояние с выделением значительной энергии.

Хотя мощность остаточного тепловыделения быстро спадает до величин, малых по сравнению со стационарными значениями, в мощных энергетических реакторах она значительна в абсолютных величинах. По этой причине остаточное тепловыделение влечёт необходимость длительное время обеспечивать теплоотвод от активной зоны реактора после его остановки. Эта задача требует наличия в конструкции реакторной установки систем расхолаживания с надёжным электроснабжением, а также обуславливает необходимость длительного (в течение 3-4 лет) хранения отработавшего ядерного топлива в хранилищах со специальным температурным режимом — бассейнах выдержки, которые обычно располагаются в непосредственной близости от реактора[8][9][10][11].

См. также

Литература

Примечания

  1. ↑ «ZEEP — Canada’s First Nuclear Reactor», Canada Science and Technology Museum.
  2. ↑ Грешилов А. А., Егупов Н. Д., Матущенко А. М. Ядерный щит. — М.: Логос, 2008. — 438 с. — ISBN 978-5-98704-272-0
  3. ↑ Horst Kant Werner Heisenberg and the German Uranium Project  (англ.). Preprint 203. Max Planck Institute for the History of Science (2002). Архивировано из первоисточника 30 мая 2012. Проверено 10 февраля 2012.
  4. ↑ Круглов А. К. Как создавалась атомная промышленность в СССР. — М.: ЦНИИатоминформ, 1995. — 380 с. — ISBN 5-85165-011-7
  5. ↑ Дементьев Б. А. Ядерные энергетические реакторы. — М.: Энергоатомиздат, 1990. — С. 21—22. — 351 с. — ISBN 5-283-03836-X
  6. ↑ Бартоломей Г. Г., Бать Г. А., Байбаков В. Д., Алхутов М. С. Основы теории и методы расчёта ядерных энергетических реакторов / Под ред. Г. А. Батя. — М.: Энергоиздат, 1982. — С. 31. — 511 с.
  7. ↑ Angelo, Joseph A. Nuclear technology. — USA: Greenwood Press, 2004. — P. 275—276. — 647 p. — (Sourcebooks in modern technology). — ISBN 1-57356-336-6
  8. ↑ Андрушечко С. А., Афоров А. М., Васильев Б. Ю., Генералов В. Н., Косоуров К. Б., Семченков Ю. М., Украинцев В. Ф. АЭС с реактором типа ВВЭР-1000. От физических основ эксплуатации до эволюции проекта. — М.: Логос, 2010. — 604 с. — 1000 экз. — ISBN 978-5-98704-496-4
  9. ↑ Кириллов П. Л., Богословская Г. П. Тепло-массообмен в ядерных энергетических установках. — М.: Энергоатомиздат, 2000. — 456 с. — 1000 экз. — ISBN 5-283-03636-7
  10. ↑ Овчинников Ф. Я., Семёнов В. В. Эксплуатационные режимы водо-водяных энергетических реакторов. — 3 изд., пер. и доп. — М.: Энергоатомиздат, 1988. — 359 с. — 3400 экз. — ISBN 5-283-03818-1
  11. ↑ Сидоренко В. А. Вопросы безопасной работы реакторов ВВЭР. — М.: Атомиздат, 1977. — 216 с. — (Проблемы ядерной энергетики). — 3000 экз.

Ссылки

dik.academic.ru

Термоядерный реактор

ТЕРМОЯДЕРНЫЙ РЕАКТОРThermonuclear reactor

    Термоядерный реактор – установка, где энергия получается за счёт самоподдерживающегося управляемого термоядерного синтеза. В земных условиях наиболее подходящими для такой установки являются следующие реакции синтеза, осуществляемые изотопами водорода, дейтерием – 2Н и тритием – 3Н, (в скобках приведена освобождающаяся энергия):

2Н + 2Н → 3Н + 1Н (4.03 МэВ),2Н + 2Н → 3Не + n (3.27 МэВ),2Н + 3Н → 4Не + n (17.59 МэВ).

    Видно, что выход энергии на единицу массы ядерного вещества в реакциях синтеза может быть в несколько раз больше, чем в реакциях деления. Более того, дейтерий, с которого начинается цепочка реакций синтеза, является практически неисчерпаемым источником дешёвого термоядерного горючего (1 г дейтерия содержится в 60 литрах воды).     Однако реализовать управляемый термоядерный синтез в земных условиях очень сложно и до сих пор это не удалось. Для этого надо создать установку, в которой нагретое до огромных температур (≈108 К), и поэтому представляющее собой высокотемпературную плазму, ядерное топливо необходимо достаточно долго удерживать в состоянии с высокой плотностью (как это имеет место внутри Солнца и других звёзд, которые представляют собой естественные термоядерные реакторы). Любой материал испарится при столь высоких температурах и, поэтому, не может быть использован, чтобы удержать высокотемпературную плазму в замкнутом объёме (в звёздах высокотемпературная плазма удерживается мощными гравитационным силами).     Есть два способа удержания горячей плазмы, которые считаются наиболее перспективными. Это магнитное удержание и, так называемое, инерционное удержание. Магнитное удержание использует магнитное поле для того, чтобы не дать горячей плазме выйти из замкнутого контролируемого объёма. В существующих системах магнитного удержания (токамаках) область, внутри которой удерживается горячая плазма, имеет форму тороида (правильного бублика).     В инерционном удержании маленький (≈1 мм) дейтерий-тритиевый шарик подвергают одновременному “удару” с нескольких направлений очень интенсивными лазерными или электронными (ионными) пучками. Огромное количество энергии, которое при таком ударе передаётся шарику, мгновенно сжимает, нагревает и ионизует его, превращая в кусочек плотной нагретой до 108 К плазмы. Нагрев должен быть сверхбыстрым (10-9 сек), чтобы испаряющееся вещество шарика не успело выйти из контролируемого объёма до “зажигания” термоядерной реакции. Таким образом, в этом методе используется инерционность вещества.     Создание эффективного термоядерного реактора оказалось намного более сложной проблемой, чем создание реактора, использующего деление ядер. Однако, возможно, она будет решена в первой половине 21-го века.

См. также

 

 

nuclphys.sinp.msu.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта