Eng Ru
Отправить письмо

Закон Техники. Ремонт и техническое обслуживание. Подключение тензодатчика


Тензодатчики веса: схема подключения и применение

В различных отраслях промышленности, а также в повседневной жизни достаточно широко используются тензодатчики, представляющие собой несложные приборы электромеханического действия. В каждом из них размещается механическое регистрирующее устройство, деформация которого преобразуется в электрический сигнал. На этом принципе работают тензодатчики веса, схема подключения которых может осуществляться в нескольких вариантах.

Тензодатчики: принцип работы и применение

Все тензодатчики работают на принципе изменяющегося сопротивления в процессе механического воздействия на проводник. Простейшее конструктивное исполнение тензодатчика для весов сделано в виде проводниковой мелкоячеистой сетки, закрепленной на токопроводящей основе. В качестве такой основы может использоваться металлическая фольга. Полученный прибор при ударе или надавливании способен точно определить основные параметры такого воздействия: где, когда и с какой силой был нанесен удар.

Основная роль тензора в подобных ситуациях – своевременная сигнализация о воздействии. Чтобы полученные данные обрели необходимый формат, к тензодатчику веса подключаются дополнительные устройства.

В тензорных регистрирующих приборах для исполнительной схемы используется проволочный вариант, в котором присутствуют петли, перемычки и витки. Приборы с более высокой сложностью изготавливаются с применением фольгированных комбинированных схем. Это позволяет получать точные сведения при однокомпонентных, двух- и трехмерных и кольцевых деформациях.

Фиксация изменений сопротивления во время расширения или сжатия полупроводниковых и проводниковых пластин получила название тензорезистивного эффекта. В этом случае деформации подвергается сама атомарная структура какого-либо материала. Благодаря этим свойствам было создано много тензорезистивных приборов, нашедших широкое применение в различных областях.

В первую очередь эти физические свойства используются в тензодатчиках веса, устанавливаемых в бытовых напольных весах, в электронных весах магазинов, а также во многих промышленных установках, предназначенных для взвешивания крупногабаритных грузов. Тензодатчики веса выпускаются в широком ассортименте, что позволяет легко подобрать требующуюся комплектацию для конкретного случая. Кроме различных типов весов, эти приборы используются в балочных весовых регистраторах, измеряющих весовые нагрузки в мостовых и платформенных конструкциях. С их помощью регистрируется величина деформационного сдвига или изгиба.

Схемы подключения тензодатчиков

Тензодатчики веса подключаются к индикатору или весовому терминалу двумя основными способами. Как правило, используется четырехпроводной или шестипроводной вариант. В основном, когда применяются тензодатчики веса, схема подключения бывает с помощью четырех проводов.

На различные типы весов грузоприемных устройств устанавливаются тензодатчики разных типов. Например, в автомобильных весах грузоприемные устройства выполняются в виде сборной конструкции. В этом случае применяются две полуплатформы, размещаемые на восьми тензодатчиках – по четыре на каждую из них. Обе группы приборов подключаются с помощью специальных суммирующих плат, объединяющих сигналы, поступающие с тензодатчиков. Они же выравнивают и угловые нагрузки за счет подключения в цепь дополнительных резисторов.

Четырехпроводная схема очень удобна, когда длина кабелей остается неизменной, а также отсутствует необходимость в компенсации температуры, влияющей на сопротивление кабелей. Данная схема очень простая для монтажа и подключения. В случае необходимости улучшить метрологические характеристики весов, применяется схема с шестью проводами, полностью компенсирующая внешние воздействия, в результате которых происходит изменение сопротивления в питающих кабелях.

electric-220.ru

Схема подключения тензодатчиков к индикатору веса

Подключение тензодатчика к индикатору веса, на первый взгляд кажется простой задачей, но неправильное соединение может вызвать уменьшение точности измерения или некорректную работу весовой системы. Тензодатчики различных производителей имеют либо 4-х проводный, либо 6-ти проводный кабель для подключения к весовому индикатору.

 

Ниже приведены схемы подключения для этих двух типов тензодачиков:

 

 

Большинство промышленных весовых систем используют несколько тензодатчиков, в этом случае они должны быть подключены параллельно. Обычно эту связь делают не простой скруткой, а с применением специализированных соединительных коробок. Дополнительно, некоторые модели таких коробок позволяют «подогнать» сопротивление датчиков друг под друга, т.е. сбалансировать систему из множества датчиков.

Тензодатчики поставляются с кабелем определенной длины. При удлинении соединительного кабеля следует учитывать, что это может привести к падению точности измерения. Также при изменении длины кабеля следует производить перекалибровку весового индикатора, к которому подключен тензодатчик.

Заземление и экранирование при подключении тензодатчика.

Организация заземления и экранирования важный вопрос успешного создания весовой системы с использованием тензодатчиков. Надёжное решение данной задачи - ключ к правильной работе тензометрического датчика, генерирующего слаботочные сигналы. Кабели тензодатчиков должны иметь экранирующую оплетку, которая, при правильном подключении, обеспечивает защиту от электростатических и других помех.

Основное правило, которое нельзя нарушать: необходимо избегать «земляных» петель, т. е. заземлять устройства нужно в ОДНОЙ общей точке. Петли могут возникать если экран кабеля подключать к заземляющему контуру с двух концов. Поэтому, если корпус датчика надёжно заземлён и одновременно соединён с экраном - этого достаточно, в противном случае - соединить экран с заземлением только с любого ОДНОГО конца, например, в электрощите, где установлен прибор отдельным жёлто-зелёным проводом. Под «заземлением» мы понимаем защитное заземление, желто-зелёный провод. Использовать «нейтраль» в качестве «земли» очень нежелательно.

Если датчики соединяются параллельно, то необходимо не забывать соединять друг с другом и экранные оплётки кабелей через соответствующий контакт клеммы в соединительной коробке, и тут же их заземлять вместе с корпусом коробки. Общий кабель, идущий от соединительной коробки к прибору, соединять с заземлением также с ОДНОЙ стороны, как описано выше, не допуская образования «земляной» петли, желательно возле входа в измерительный прибор, то есть заземлять со стороны приёмника.

На кабель датчика, прямо поверх изоляции, на расстоянии 4-5 см от клеммы измерительного прибора, желательно защёлкнуть ферритовый фильтр для блокировки возникающих в цеху разнообразных помех по «земле». Такие фильтры производятся под кабели разных диаметров. Фильтры желательно защёлкнуть и на других длинных линиях, например RS-485, на приёмном и передающем устройстве. Если индуктивности одного фильтра недостаточно для надёжного уменьшения уровня помехи, такие фильтры можно защёлкивать последовательно на небольшом расстоянии друг от друга, наращивая тем самым индуктивность до необходимого уровня.

На рисунках приводятся схемы подключения для двух типов тензодачиков, четырёхпроводных и шестипроводных, на примере датчика фирмы Zemic и прибора КВ-01 – схематически через соединительные коробки и электрическая принципиальная схема к клемме прибора.

interel.ru

Тензодатчик: принципиальная схема, подключение и проверка

Тензодатчик [1-3] преобразует величину деформации в электрический сигнал. Данный прибор был приобретен на Алиэкспресс по цене 1,1$.

Датчик имеет размер 34 х 34 мм, толщина около 7 мм, масса 19 г.

Датчик представляет собой пару тензорезисторов номинальным сопротивлением 1 кОм, включенных как делитель напряжения. Красный провод общий вывод резисторов, белый и черный, соответственно, отдельные выводы каждого резистора.

Максимальная сила, которую допустимо прилагать к датчику составляет примерно 500 Н, т.е. на основе данного датчика можно сконструировать весы для измерения предметов массой до 50 кг.

Для проверки работоспособности датчик был зажат в струбцине, хорошо видно, что с ростом нагрузки сопротивление изменяется не очень значительно.

Как понимает автор, данный прибор должен включаться как одно из плеч моста Уитстона [4-5]

В целом полезный прибор в экспериментах, с которым можно постараться выяснить закономерности работы данного класса приборов, при этом датчик выдерживает сравнительно большие нагрузки, так что сломать его достаточно трудно.

  1. http://electronica52.in.ua/proekty-arduino/delaem-vesy-na-arduino-
  2. https://www.youtube.com/watch?time_continue=13&v=Ii3McPR8vSA
  3. http://3dtoday.ru/blogs/sanja/i-want-to-consult-about-the-installation-of-the-load-cell-weight-cell-/
  4. https://electric-220.ru/news/tenzodatchiki_vesa_skhema_podkljuchenija/2015-06-04-886
  5. http://arduino.ru/forum/apparatnye-voprosy/podklyuchenie-tenzodatchika

Автор обзора: Denev

2shemi.ru

Тензодатчик – краткое описание. | Ремонт торговой электронной техники

весовой измерительный датчик для весов

Весовой измерительный датчик для весов

Занимаясь ремонтом весоизмерительной техники приходится сталкиваться с некоторым непониманием со стороны механиков такого важного понятия, как принцип работы весового измерительного датчика. Постепенно собралась небольшая коллекция частозадавемых вопросов и ответов на них. В принципе в интернете и на книжной полке есть достаточно материалов, но, как правило, это в основном информация для инженеров проектировщиков, вызывающая зевоту у инженеров ремонтников. Ответы на вопросы делались на основе практических умозаключений и на основании полученных знаний на лекциях по метрологии, но вполне допускаются ошибки в оконечных выводах, фактически все ответы подкреплены практическими данными. Вопросы будем рассматривать от простого к сложному.

 

 

  1. Как правильно называть весовой измерительный датчик для весов.
  2. Устройство весового измерительного датчика для весов.
  3. Основное отличие 6-проводного весового измерительного датчика от 4-проводного.
  4. Зачем в балке весового измерительного датчика для весов сделаны отверстия?
  5. Устройство тензорезистора
  6. Определяем маркировку проводов для измерительного датчика  весов.
  7. Определение полярности контактов для измерительного датчика весов (в разработке).

 

 

 

Как правильно называть весовой измерительный датчик для весов.

Работая с весами уже более 20 лет, ответ на этот вопрос так и не был найден, поэтому просто перечислим встречавшиеся термины.

Датчик ХХХХ (где ХХХХ маркировка датчика), чувствительный элемент - Масса-К

Тензометрический датчик (тензодатчик) – CAS

Балка – жаргон

Мы же будем дипломатично называть - весовой измерительный датчик для весов.

 

 

 

Устройство весового измерительного датчика для весов.

Вопрос довольно глобальный, постараемся упростить материал как можно больше, и не вдаться в теоретические выкладки. В самом конце подборки мы все-таки рассмотрим весовой измерительный датчик для весов в более расширенном варианте. А пока, максимально упрощенный вариант.

Классический весовой измерительный датчик для весов на выходе имеет четыре разноцветных провода два - питание (+Ex, -Ex), два - измерительные концы (+Sig, -Sig).

Для справки. Встречаются несколько вариантов обозначения выводов весового измерительного датчика для весов

Питание

+Ex, Ex+, Exc+, Excitation+, +Питания, +Питания датчика

-Ex, Ex-, Exc-, Excitation-, - Питания, -Питания датчика

Выход

Sig+, LC-Sig+, +Signal, +Сигнал, +Сигнал датчика

Sig-, LC-Sig-, -Signal, -Сигнал, -Сигнал датчика

Цепи компенсации (только для 6-проводного варианта)

+Sense, +Sen, Sen+, Обратная связь+

-Sense, -Sen, Sen-, Обратная связь-

Иногда встречается вариант с пятью проводами, где пятый провод служит экраном для остальных четырех. Суть работы весовой измерительный датчик для весов проста, на вход подается питание, с выхода снимается напряжение. Выходное напряжение меняется в зависимости от приложенной нагрузки на весовой измерительный датчик для весов (балку).

Упрощенная электрическая схема весового измерительного датчика для весов

Упрощенная электрическая схема весового измерительного датчика для весов

 

 

 

 

Основное отличие 6-проводного весового измерительного датчика от 4-проводного.

При большой длине проводов от весового измерительного датчика до блока АЦП, сопротивление самих проводов начинает влиять на показания весов.

Существует два решения этой проблемы:

1. Делать длину проводов одной и той же длины,  тогда погрешность от сопротивления проводов вносимая в цепь измерения будет заранее известна, и будет скомпенсирована на уровне АЦП.

Для справки. На весах Масса-К серии ВТ было использовано оригинальное решение, АЦП был установлен прямо на весовом измерительном датчике, что позволяло решить проблему сопротивления проводов. Но был допущен серьезный инженерный просчет – переключатель калибровки не был вынесен за переделы весового измерительного датчика, и как результат усложненная процедура калибровки.

2. Добавить измерительную цепь, с помощью которой можно измерить сопротивление провода (а точнее падение напряжения) и в динамике подкорректировать погрешность от сопротивления проводов вносимую в цепь измерения.

Измерительная цепь +Sen, -Sen позволяет измерить падение напряжения на соединительных проводах

Измерительная цепь +Sen, -Sen позволяет измерить падение напряжения на соединительных проводах

 Для этих целей добавляют два провода +Sen, -Sen которые и позволяют измерить падение напряжения на проводах, теперь достаточно вычесть это значение  из общих измерений и мы получим показания только с тензорезисторов.

Упрощенный алгоритм работы оратной связи для компенсации падения напряжения на проводах

Упрощенный алгоритм работы обратной связи для компенсации падения напряжения на проводах

Вывод: Из вышесказанного следует, для 4-проводной схемы подключения весового измерительного датчика категорически не рекомендуется изменять (удлинять или укорачивать) длину кабеля от датчика до АЦП. В принципе при изменении длины соединительного кабеля можно сделать повторную калибровку, но вот калибровку термокомпенсации, вряд ли удастся, если это не предусмотрено конструкцией весов

 

 

 

 

Зачем в балке весового измерительного датчика для весов сделаны отверстия?

Если бы в балке не было отверстий, то вся нагрузка была бы распределена по всей поверхности в равной степени, и выявить деформацию было бы очень трудно. Так как тензорезисторы должны размещаться в местах наибольшего напряжения, то место установки последних делают специально тонким, нагрузка приложенная на конец балки, была максимально выражена в этих самых местах. Для максимального эффекта тензорезисторы строго ориентируют на поверхности балки, строго под самым тонким местом.

весовой измерительный датчик для весов Тензорезистор установлен строго по меткам на поверхности балки и в соответствии с метками на подложке

Тензорезистор установлен строго по меткам на поверхности балки и в соответствии с метками на подложке.

Двумя отверстиями расположенными рядом достигается эффект – на одной плоскости один датчик работает на сжатие другой на растяжение.

Работа тензорезисторов под нагрузкой

Работа тензорезисторов под нагрузкой

 

 

 

Устройство тензорезистора.

Как правило, тензорезистор весового измерительного датчика для весов представляет собой длинный проводник выполненный в виде змейки. При сжатии длина проводника уменьшается и сопротивление уменьшается, при растяжении длина увеличивается и сопротивление увеличивается.

Основной тензорезистор, его положение строго позиционировано, в примере 265 Ом

Основной тензорезистор, его положение строго позиционировано, в примере 265 Ом

Измерительный тензорезистор устанавливается строго по меткам, позиционные метки расположены по трем сторонам.

 

 

Основной тензорезистор, его положение строго позиционировано, в примере 265 Ом

Компенсационный тензорезистор, требования к позиционированию менее жесткие, в примере 20 Ом  

 

 

 

 

Китайский тензодатчик.

Несмотря на привычный образ для китайской продукции – товар плохого качества. Китайские тензодатчики обладают довольно хорошими измерительными параметрами, и это не просто цифра на бумажке, а реальная цифра снимаемая с тензодатчика при измерениях. Но без ложки дегтя не обойтись, именно на китайских  датчиках первый раз довелось увидеть деформацию балки, видимую даже невооруженным взглядом.

Тензодатчик для весов Мехэлектрон-М ВЭТ-6-1С.

Тензодатчик 6кг (Китай) деформация видна без линейки

 

Датчик №2 – обведенный красным, белый прямоугольник, явно не подходит под определение геометрической фигуры.

Тензодатчик 150кг (Китай) и снова деформация видна без измерительных приспособлений

Не то что бы тензодатчики других производителей (не Китай) работают безотказно, например при наезде на тензодатчик машиной, тензодатчик конечно выходит из строя, но на нем просто срезает резьбу, нарезаем новую резьбу и датчик снова исправен.

 

 

Определяем маркировку проводов для измерительного датчика  весов.

Применяем  теорию на практике.  В качестве образца рассмотрим датчик с весов CAS DB H, у которого нам надо определить  назначения контактов с датчика, а именно входные/выходные цепи.

Для справки.  Весы CAS DB H со старым АЦП, дисплей люминесцентный с накалом. Напряжение питания может отличаться от весов с черным АЦП.

Провода имеют  цветовую маркировку и их 5 – черный, синий, зеленый, красный, белый. Черный откидываем сразу, он ни с чем не звонится – это экран. Будем отталкиваться от того факта, что большинство  датчиков имеют выходное сопротивление измерительного моста кратным 350 Ом, а сами датчики подключены по мостовой схеме.  Измеряем сопротивления между всеми выводами, получаем 6 значений:

  1. красный-белый 422 Ом
  2. синий-зеленый 350 Ом
  3. синий-красный 335 Ом
  4. зеленый-красный 335 Ом
  5. синий-белый 261 Ом
  6. зеленый-белый 261 Ом

Способ №1 классический.

Более быстрый, но дающий результат, в случае если датчик имеет выходное сопротивление измерительного моста кратное 350 Ом.

Как можно увидеть синий и зеленый провод  являются контактами  выходного сопротивления измерительного моста, так как сопротивление между ними кратно 350 Ом. Соответственно  оставшиеся два контакта красный и белый  - это контакты питания датчика.

Определяем входные и выходные цепи датчика с весов CAS DB H.

Рис. Определяем входные и выходные цепи датчика с весов CAS DB H.

Для справки. Остальные данные по сопротивлению проводов весового датчика весов CAS DB H можно посмотреть здесь. Допускается отклонение сопротивления от указанных +-1 Ом. Стандартное напряжение питания датчика – это  +5В, но датчики обычно рассчитываются на 12В.  

Паспорт датчика

Способ №2 альтернативный.

Проверялся только на мостовой схеме, для других схем подключения может не подойти.

Находим контакты с максимальным  сопротивлением, красный и белый провод имеют сопротивление больше всех , 422 Ом – это контакты для входного напряжения. Соответственно оставшиеся два синий и зеленый, есть контакты выходного сопротивления измерительного моста.

 Мы намеренно опустили определение полярности входных и выходных групп контактов, что бы не перегружать материал информацией.

 

Определение полярности контактов для измерительного датчика весов (в разработке).

Тут все несколько неоднозначно, по крайней мере,  для нас. Поэтому выкладываем только данные практических экспериментов. В качестве объекта измерения выбраны весы CAS DB 1H с тензодатчиком BC-150DB.  Зная паспортные данные тензодатчика,  имея 4 варианта   подключения и зная правильную ориентацию на станине – снимем показания с выходного датчика. Правильное подключение по паспорту.

 

Вариант 1. (паспортное подключение)

Подключение тензодатчика по заводским параметрам.Рис.   Подключение тензодатчика по заводским параметрам.

Питание от 5В

  • 0кг, на выходе  0мВ
  • 20кг, на выходе 1мВ
  • 40кг, на выходе 1,9мВ

 

Показания родного АЦП с весов

  • 0 кг, показания АЦП, канал неизвестен  1,160
  • 20 кг, показания АЦП, канал неизвестен  5,956
  • 40 кг, показания АЦП, канал неизвестен  10,751

Давление на датчик снизу вверх - дает на выходе отрицательное напряжение.

 

Вариант 2. (перевернутое подключение)

Подключение тензодатчика наоборот, на входе плюс подключаем к минусу, на выходе плюс соединяем к минусу.Рис.   Подключение тензодатчика наоборот, на входе плюс подключаем к минусу, на выходе плюс соединяем к минусу.

Питание от 5В

  • 0кг, на выходе  0мВ
  • 20кг, на выходе 1мВ
  • 40кг, на выходе 1,9мВ

 

Показания родного АЦП с весов

  • 0 кг, показания АЦП, канал неизвестен  1,150
  • 20 кг, показания АЦП, канал неизвестен  5,916
  • 40 кг, показания АЦП, канал неизвестен  10,679

Давление на датчик снизу вверх - дает на выходе отрицательное напряжение.

Как видно из показаний, данные АЦП несколько отличаются. В рабочем режиме  весы начинают «врать», то есть показывать меньший вес, но если весы откалибровать - показания становятся правильными и весы становятся полностью работоспособными.

 

Вывод.

Фактически подключение не влияет на работоспособность весов в целом, но показания при разных подключениях имеют небольшое отличие. Тензодатчик можно заставить работать в обоих подключениях.  Два других варианта подключения рассматривать не будем, так как показания вольтметра на выходе получаются отрицательными, а соответственно нас не интересуют.   

 

 

 

 

 

 

1

 

zival.ru

Закон Техники. Ремонт и техническое обслуживание. • Просмотр темы

Тензометрический датчик – деталь дорогая и капризная: боится сварки, скачков напряжения и даже может выйти из строя при неправильном подключении. Вдобавок, производители тензодатчиков (особенно китайские) могут указать ошибочную цветовую маркировку проводов (или не указать ее совсем).

Изображение

Испытуемый: 4-х проводной тензодатчик производства Корея (6-ти проводной будет рассмотрен ниже).

Инструменты: мультиметр в режиме омметра.Время: 5 мин.Сложность: средняя.

1. Один из проводов - экран. Обычно он черного цвета. Для уверенности можно зачистить часть верхнего слоя изоляции кабеля. Для наших измерений он не нужен.

2. Поочередно измеряем сопротивление между оставшимися 4-мя концами. Всего 6 вариантов: назовем концы 1, 2, 3, 4 (Белый, Красный, Зелелный, Синий), тогда варианты измерений такие – 1-2 (Бел.-Кр.), 1-3 (Бел.-Зел.), 1-4 (Бел.-Син.), 2-3 (Кр.-Зел.), 2-4 (Кр.-Син.) и 3-4 (Зел.-Син.).

Изображение

В нашем случае получаем:1-2 (Бел.-Кр.) – 405,9 Ом,1-3 (Бел.-Зел.) – 342,5 Ом,1-4 (Бел.-Син.) – 343,8 Ом,2-3 (Кр.-Зел.) – 288,3 Ом,2-4 (Кр.-Син.) – 287,4 Ом,3-4 (Зел.-Син.) – 350,6 Ом.

3. Тензометрические датчики имеют стандарт величины выходного сопротивления: 350, 700 и 1050 Ом. Существуют, конечно, и нестандартные датчики. Но могу сказать с 99,9% гарантией – ваш тензодатчик имеет 350 или 700 Ом на выходе. Собственно, вся задача проверки подключений тензодатчика сводится к поиску пары выходного сигнала (на схеме обозначена "+ Сигнал" и "– Сигнал"). Полярность "плюс" или "минус" – не важно.

Изображение

Итак, в нашем случае видим, что тензодатчик скорее всего исправен и выходной сигнал должен сниматься с концов 3-4 (Зел.-Син.), т.к. сопротивление точно соответствует 350 Ом. Методом исключения находим, что питание должно подводиться на концы 1-2 (Бел.-Кр.). Здесь полярность тоже безразлична.

Схема подключения 6-ти проводного тензодатчика:

Изображение

То есть, нужно только определить, какие концы являются дублирующими для "+ Питание" и "– Питание". Делается это мультиметром в режиме позвонки (проверки диодов).

Справка. Обратная связь по питанию используется некоторыми производителями весопреобразующих устройств для коррекции показаний весов. Большинство производителей не используют эти выводы совсем, или подключают их параллельно с питанием тензодатчика.

Вот, собственно, и все. Таким незамысловатым способом были подключены некоторые тензодатчики, производители которых не потрудились указать маркировку или этикетка с маркировкой стерлась.

Можно, конечно, приобрести специальный тестер для тензометрических датчиков. Но так как необходимость такой проверки возникает максимум раз в пол-года – тестирование омметром считаю самым оптимальным способом.

© Разрешается использование материалов сайта с обязательной установкой активной гиперссылки www.biltech.ru

biltech.ru

Тензометрические датчики (Тензодатчики). Виды. Работа

На многих предприятиях существует необходимость для измерения различных параметров, изменения состояния деталей, различных конструкций. Для решения этих задач используются тензометрические датчики. Они преобразовывают величину деформации в электрический сигнал. Это получается за счет уменьшения или увеличения сопротивления датчика во время деформации, нарушения геометрии формы датчика от сжатия или растяжения. В результате определяется значение деформации.

Резистивный преобразователь, является главной составной частью высокоточных устройств и приборов. Изготавливают датчик из чувствительного тензорезистора, представляющего собой тонкую алюминиевую проволоку или фольгу. Резистор в результате деформации изменяет свое сопротивление, подает сигнал на индикатор.

Виды

В разных отраслях промышленности используется множество видов тензометрических датчиков.

  1. Приборы, измеряющие силу и нагрузку.
  2. Контроль давления.
  3. Измерители ускорения.
  4. Измерители перемещения.
  5. Датчики контроля момента для станков, моторов автомобилей.

Модели датчиков разнообразны, но чаще всего используется датчик определения веса, который изготавливается в различных вариантах: шайбовый, бочковой, S-образный. Исходя из назначения подбирается необходимое исполнение.

Тензометрические датчики имеют классификацию, как по форме, так и по особенностям конструкции, которая зависит от вида чувствительного элемента. Применяются следующие виды датчиков:

  1. Из фольги.
  2. Пленочные.
  3. Из проволоки.
Датчик из фольги;

Применяется в виде наклеивания на поверхность. Конструкция датчика состоит из фольговой ленты 12 мкм. Частично пленка плотная, остальная часть решетчатая. Эта конструкция отличительна тем, что к ней можно припаять вспомогательные контакты. Такие датчики легко используются при низких температурах.

Пленочные датчики;

изготовлены по аналогии с фольговыми, кроме материала. Такие виды производятся из тензочувствительных пленок, имеющих специальное напыление, повышающее чувствительность датчика. Эти измерители удобно применять для контроля динамической нагрузки. Пленки изготавливаются из германия, висмута, титана.

Проволочный вариант;

датчика может измерить точную нагрузку от сотых частей грамма до тонн. Они называются одноточечные, так как измерение происходит не на площади, а в одной точке, в отличие от датчиков из фольги и пленки. Проволочными датчиками можно контролировать растяжение и сжатие.

Принцип действия тензодатчиков

Тензометрические датчики представляет собой конструкцию из тензорезистора, имеющего контакт на панели. Она соприкасается с телом для измерения. Принципиальная схема действия датчика заключается в действии на чувствительный элемент исследуемой детали. Для подключения датчика к питанию используются электроотводы, соединенные с чувствительной пластиной.

В контактах существует постоянное напряжение. На тензодатчик кладется деталь через подложку. Вес детали разрывает цепь путем деформации. Деформация видоизменяется в сигнал тока.

Мост измерения тензодатчика дает возможность измерить минимальные нагрузки, расширяя этим применяемость прибора. Схема подключения мостом датчика основывается на законе Ома. Если сопротивления равны, то проходящий ток будет одинаковым. Действие снаружи обрело название «внешний фактор», изменение сигнала – «внутренний фактор». Тогда можно сказать, что принцип работы датчика заключается в определении внешнего фактора с помощью внутреннего.

В быту тензометрические датчики работают в весах. Тензорезисторы подключены с поверхностью работы весов. Подключение к питанию весов осуществляется через батареи.

Этот контрольный прибор имеет высокую точность. Погрешность чувствительных элементов составляет менее 0,02%, это высокий показатель. Существуют приборы с чувствительностью гораздо выше этого. Их работа основана на контроле действия силы. Значение силы давления прямопропорционально преобразованному сигналу тензодатчика.

Принцип действия датчиков силы

Датчики силы, другими словами динамометры входят в состав приборов, измеряющих вес. Их отсутствие делает невозможным работу системы по автоматизированию техпроцессов на производстве. Они используются в сельском хозяйстве, строительстве, металлургии.

Работа основывается на изменении деформации в сигнал. В действии происходит много разных явлений, которые обусловили несколько типов тензодатчиков:

  • Тактильные.
  • Резистивные.
  • Пьезорезонансные.
  • Пьезоэлектрические.
  • Магнитные.
  • Емкостные.
Тактильные датчики

Этот тип датчиков самый новый, появился после возникновения робототехники. Тактильные датчики делятся на: датчики усилия, касания, проскальзывания. Первые два определяют силу и отличаются сигналом. От других они отличаются небольшой толщиной из-за применения специальных материалов, обладающих прочностью, эластичностью, гибкостью.

Конструкция состоит из 2-х пластин(1 и 2). Между ними находится прокладка (3) с ячейками из изоляционного материала. Один провод соединен с верхней, второй с нижней пластиной. При воздействии силы на верхнюю пластину она прогибается и замыкается с нижней. Падение напряжения на резисторе является сигналом выхода.

Резистивный тензодатчик

Это широко применяемый вид датчиков, так как интервал усилий работы составляет от 5 Н до 5 МН, используются для разных нагрузок. Преимуществом его стала линейность сигнала выхода. Рабочий элемент – тензорезистор, состоящий из проволоки на гибкой подложке.

1 — Подложка2 — Чувствительный элемент3 — Контакты

Датчик приклеивают к измеряемому предмету. Под действием деформации изменяется сопротивление резистора, а соответственно подающего сигнала.

Пьезорезонансный тензодатчик

В этом типе датчиков применяются два эффекта: обратный и прямой. Элемент чувствительности датчика – резонатор. Пьезоэффект обратный обуславливается напряжением, которое вызывает заряды, это называется прямым пьезоэффектом.

Колебания резонатора вызывают резонансные колебания. Пьезорезонансные датчики подключаются по разным схемам. На рисунке изображена схема с генератором частоты и фильтра резонанса. Сила действует на резонатор, изменяет настройки частоты фильтра, от которых зависит напряжение выхода.

Пьезоэлектрические датчики

Работа заключается на основе прямого пьезоэффекта. Им обладают такие материалы: кристаллы титаната бария, турмалина, кварца. Они химически устойчивы, имеют высокую прочность, их свойства мало зависят от окружающей температуры.

Суть эффекта состоит в действии силы на материал. Возникают заряды разной полярности, величина которых зависит от силы. Датчик состоит из корпуса, двух пьезопластин, выводов. При воздействии силы пластины сжимаются, возникает напряжение, поступающее на усилитель сигнала.

Такие тензометрические датчики используются для контроля динамических сил.

Магнитные тензометрические датчики

Магнитострикция является основным явлением для работы датчиков этого типа. Такой эффект меняет геометрию размеров в магнитном поле. Изменение геометрии изменяет магнитные свойства, что называется магнитоупругого эффекта. При снятии усилия свойства тела возвращаются.

Это определяется изменением расположения атомов в решетке кристаллов в магнитном поле или под действием силы. В нашем варианте катушка индуктивности расположена на ферромагнитном сердечнике. От силы сердечник деформируется, получая состояние напряженности.

Изменение сердечника дает изменение его проницаемости, а, следовательно, изменяется магнитное сопротивление и индуктивность катушки.

Широко применяемыми стали датчики с двумя катушками. Первичная – запитана генератором, во вторичной образуется ЭДС. Во время деформации магнитная проницаемость меняется. В результате меняется ЭДС 2-й обмотки.

Емкостные датчики

Это параметрический тип датчиков, представляющий собой конденсатор. Чем больше площадь пластин, тем больше емкость. А чем больше промежуток между пластинами, тем меньше емкость.

Это свойство применяют для конструкции емкостных датчиков. Чтобы было удобно пользоваться измерениями, емкость преобразуют в ток. Для этого пользуются разными схемами подключения.

Обычно применяют вариант со сжатием диэлектрика между пластинами.

Преимущества тензометрических датчиков:
  1. Повышенная точность измерения.
  2. Сочетаются с измерениями напряжений, не имеют искажений данных измерения. Это удобство незаменимо при применении датчиков на транспорте или в критических ситуациях и условиях.
  3. Малые размеры дают возможность применять их в любых измерениях.

К недостаткам тензометрических датчиков, можно отнести снижение чувствительности при резких изменениях температуры. Для получения точных результатов рекомендуется делать контроль измерения при комнатной температуре.

Подключение тензодатчиков

Подключить датчики можно легко самому, используя схему. Перед приобретением тензодатчиков определите длину кабеля подключения. Если короткий кабель наращивать в длину, то точность измерения индикатором будет значительно меньше. Оптимизацию этого параметра можно произвести контроллером SE 01, который действует вместо усилителя.

Если в конструкции весов применяются разные индикаторы, то их соединяют по параллельной схеме с помощью специальных коробок. Проводники датчиков обязательно заземляются, независимо от вида питания. Установка заземления производится в общей одной точке. Для этих целей применяется коробка для разветвления.

Далее проверяется правильность подключения по схеме датчиков, надежность контактов и заземления. Монтаж прибора осуществляется экранированным кабелем. Он заглушает помехи, вспомогательные модули при его использовании не нужны. По подобию подсоединяется преобразователь в дозатор.

Похожие темы:

 

electrosam.ru

Тензодатчики для весов | Все своими руками

Опубликовал admin | Дата 2 апреля, 2016

     Тензодатчики, представляющие собой приборы электромеханического действия, используются в различных отраслях промышленности, а также в повседневной жизни достаточно широко. В каждом из них размещаются тензорезисторы, деформация которых преобразуется в электрический сигнал. На этом принципе работают тензодатчики веса.

     Тензорезистор (от лат. tensus — напряжённый и лат. resisto — сопротивляюсь) — резистор, сопротивление которого изменяется в зависимости от его деформации. Тензорезисторы используются в тензометрии. С помощью тензорезисторов можно измерять деформации механически связанных с ними элементов. Тензорезистор является основной составной частью тензодатчиков, применяющихся для косвенного измерения силы, давления, веса, механических напряжений, крутящих моментов и пр.

Тензорезисторы, tenzorezistor

Принцип действия тензодатчиков

     При растяжении проводящих элементов тензорезистора увеличивается их длина и уменьшается поперечное сечение, что увеличивает сопротивление тензорезистора, при сжатии — наоборот. Относительные изменения сопротивления весьма малы (менее 10-3) и для их измерений требуются чувствительные вольтметры, прецизионные усилители или АЦП. Таким образом, деформации преобразуются в изменение электрического сопротивления проводников или полупроводников и далее — в электрический сигнал, обычно сигнал напряжения.

     Тензодатчики, о которых хочу рассказать я, приобретены через Ебей в Китае. Это дешевые тензодатчики, ни каких документов на них нет, естественно ни о какой точности измерений, термостабильности преобразования, линейности преобразования и т.д. и т.п., я, думаю, и говорить не стоит. Тем более не известен материал, из которого сделан корпус тензодатчика, и что самое главное, материал, примененный в тензорезисторах. Для снижения влияния температуры должны применяться сплавы с низким ТКС. Внешний вид приобретенных датчиков можно увидеть на фото 1.

Тензодатчики фото, 5кГ, ris-foto

     Схема включения тензорезисторов датчика показа на рисунке 1. Опытным путем было определены номиналы резисторов. Величина резисторов входящих в состав моста равна 1000 Ом. Номинал термокомпенсационного резистора Rk равен 75 Ом. Максимальная допустимая нагрузка датчика – 5кГ. Так как относительное изменение сопротивления тензодатчика очень малы, то и электрический сигнал с тензомоста будет очень маленьким, поэтому будет необходимо применение усилителя сигнала датчика. Для таких целей служат специальные инструментальные усилители. Инструментальный или измерительный усилитель, это устройство с дифференциальным входом. Он строится так, чтобы усиливать только разность напряжений, поданных на его входы и не реагировать на синфазное входное напряжение. Такой усилитель присутствует в специализированной микросхеме INA125. Схема данной микросхемы, взятой из документации на нее, показана на рисунке 2.

Микросхема INA125

Микросхема INA125,shema-ina

     Здесь так же показана схема подключения тензодатчика мостового типа к данной микросхеме. Кроме инструментального усилителя в состав данной микросхемы сходит ИОН – источник опорного напряжения для питания моста тензодатчика. Выходное напряжение ИОН можно изменять дискретно, подключая к соответствующим выводам микросхемы, вывод 4. Эти же напряжения можно использовать в качестве опорного напряжения для АЦП при оцифровке выходного напряжения сигнала. Это уменьшает ошибки оцифровки при флуктуациях напряжения питания устройства. Еще одним из достоинств этой микросхемы является и то, что требуемый коэффициент усиления инструментального усилителя (масштабирующего), устанавливается всего одним резистором, на схеме – R1.

     Микросхема и резистор, задающий коэффициент усиления инструментального усилителя установлены на небольшой печатной плате, рисунок 3.

Тензодатчики для весов, plata

     Для проверки всей схемы был использован наспех собранный цифровой вольтметр, состоящий из АЦП преобразователя и микроконтроллера с индикатором. В качестве АЦП была применена микросхема ADS1286, это 12 разрядный АЦП, позволяющий оцифровывать напряжение сигнала на выходе INA125 с точностью до 0,001В. В программу контроллера была введена подпрограмма коррекции нуля.     И так, выяснилось, что зона чувствительности моего датчика начинается с пятидесяти граммов, примерно. Потом идет нелинейный участок до 370 граммов. Далее начинается линейный участок. Точность линеаризации проверить не удалось за неимением точных разновесов. Таким образом, в случае использования датчика в составе цифровых весов, последний должен быть преднагружен 370 граммами. Повторяемость показаний в принципе не плохая. Дрейф показаний при длительных нагрузках особо не проверял. Но при нагрузке в 1000 граммов через 9 часов непрерывного взвешивания показания изменились на 1 грамм. Это мое первое знакомство с данными датчиками, поэтому сделать однозначный конкретный вывод не могу. Но думаю, что существуют определенные места, где можно будет использовать эти «сверхточные» устройства.

Скачать “Скачать статью” tenzodatchiki-dlya-vesov.rar – Загружено 405 раз – 94 KB

Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".

Просмотров:8 453

www.kondratev-v.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта