Eng Ru
Отправить письмо

Источники энергии – Солнце. Использование энергии, излучаемой Солнцем. Солнца мощность


Мощность излучения Солнца и использование энергии на Земле

Солнце вид с космического аппарата SOHO

Солнце вид с космического аппарата SOHO

Почти вся энергия на Землю, приходит от Солнца. Если бы не оно, Земля была бы холодной и безжизненной. Растения растут, потому что получают необходимую энергию. Солнце ответственно за ветер, и даже ископаемое топливо это энергия нашей звезды, запасенная миллионы лет назад. Но сколько энергии на самом деле, приходит от него?

Как вы, наверное, знаете, в его ядре, температура и давление настолько высоки, что атомы водорода сливаются в атомы гелия.

Излучение Солнца

В результате этой реакции синтеза, звезда производит 386 миллиардов мегаватт. Большая часть излучается в пространство. Вот почему мы видим звезды, которые удалены на десятки и сотни световых лет от Земли. Мощность излучения Солнца равна 1,366 киловатт на квадратный метр. Около 89000 тераватт проходит через атмосферу и достигает поверхности Земли. Получается его энергия на Земле составляет около 89000 тераватт! Просто для сравнения, общее потребление каждого человека составляет 15 тераватт.

Так что Солнце дает в 5900 раз больше энергии, чем люди в настоящее время производят. Нам просто нужно научится использовать ее.

Наиболее эффективный способ использовать излучение нашей звезды это фотоэлементы. Как таковое, это преобразование фотонов в электричество. Но энергия создает ветер, который заставляет работать генераторы. Солнце помогает расти культурам, которые мы используем для производства биотоплива. И, как мы уже говорили, ископаемые виды топлива, такие как нефть и уголь это концентрированное солнечное излучение, собранное растениями в течение миллионов лет.

comments powered by HyperComments

Понравилась запись? Расскажи о ней друзьям!

Просмотров записи: 4912

Система Orphus

spacegid.com

34. Какую мощность излучения р имеет Солнце? Излучение Солнца считать близким к излучению абсолютно черного тела. Эффективная температура Солнца 5800 к. Радиус Солнца считать равным 7108 м.

Решение

Энергетическая светимость Солнца (как абсолютно черного тела) по закону Стефана-Больцмана равна: . С другой стороны по определению, гдеE- излучаемая энергия, S- площадь излучающей поверхности, t-время, в течении которого происходит излучение, N- мощность излучения.

Т.о.,  (Считаем Солнце шаром с радиусом 7108 м). Получаем, что мощность излучения Солнца составляет 3,91026 Вт

35. Найти солнечную постоянную К, т.е. количество лучистой энергии, посылаемой Солнцем в единицу времени через единичную площадку, перпендикулярную к солнечным лучам и находящуюся на таком же расстоянии от него, как и Земля. Температура поверхности Солнца 5800 К. Излучение Солнца считать близким к излучению абсолютно черного тела.

Решение.

Энергетическая светимость Солнца (как абсолютно черного тела) по закону Стефана-Больцмана равна: . А мощность солнечного излучения, гдеr- радиус Солнца. Т.к. солнечная энергия не теряется, то на расстоянии орбиты Земли .

Получаем .Откуда,Е=1389 Вт/м2.

36. Известно, что атмосфера Земли поглощает 10% лучистой энергии, посылаемой Солнцем. Определите максимальную и минимальную мощность излучения L, получаемую от Солнца горизонтальным участком Земли, на котором расположен город Калуга. Площадь города принять равной 50 км2. Излучение Солнца считать близким к излучению абсолютно черного тела.

Решение

Максимальная мощность излучения Lmax, получаемая от Солнца горизонтальным участком Земли, будет в тот день, когда высота Солнца над горизонтом наибольшая (это день летнего солнцестояния). Определим в этот день высоту Солнца в Калуге.

Широта Калуги =54 31, а склонение Солнца =23,5, тогда hmax=90- 54,5+ 23,5=59 (по формуле h = 90-  + ).

Мощность излучения, получаемая от Солнца горизонтальным участком, равна , гдеЕ – солнечная постоянная для Земли, S - площадь участка, перпендикулярного к солнечным лучам, равная (S – площадь данного участка (города Калуги)), n- коэффициент поглощения земной атмосферы.

Т.о.,,Lmax=51010 Вт.

Минимальная мощность излучения Lmin, получаемая от Солнца горизонтальным участком Земли, будет в тот день, когда высота Солнца над горизонтом наименьшая (это день зимнего солнцестояния). Определим в этот день высоту Солнца в Калуге. Склонение Солнца в этот день =-23,5, тогда hmin=90- 54,5- 23,5=12. Минимальная же мощность излучения Lmin будет равна ,

Lmin= 1,21010 Вт.

37. В 1947 г в западных отрогах Сихотэ-Алиня (Приморский край) упал огромный железо-никелевый метеорит. Во время движения в атмосфере он разбился на многочисленные осколки и рассеялся металлическим дождем на площади 35 км2. Масса метеорита оценивается в 60 т, общий вес собранных осколков достиг 27 т. В Калужском государственном музее истории космонавтики им. К.Э. Циолковского хранится осколок сихоте-алиньского метеорита массой 7,7 кг. Оцените массу никеля в этом метеорите, если процентное содержание железа в нем 93,3%, а никеля – 6%.

Дано:

Решение:

Рассчитаем массу никеля в метеорите по формуле:

Ответ: 0,46 кг никеля.

38. Видеокамеры лунного зонда «Клементина» запечатлели поверхность Луны на 11 частотах видимого и инфракрасного диапазона спектра. Съемка на волнах 750 и 950 нм позволила составить карту распределения железа в поверхностных лунных грунтах. Наибольшая концентрация этого металла (до 16% оксида железа (II)) отмечена в морях видимой стороны, наименьшая - в центральных областях обратной стороны. В будущем, для нужд лунного производства, предполагается наладить получение железа на Луне. На Земле одной из наиболее богатых железом горных пород является магнитный железняк, содержащий до 70% железа. Сравните массу лунного грунта, богатого железом, и магнитного железняка, которые необходимо переработать для получения металлического железа массой 1,0 т.

Дано:

Решение:

1. Рассчитаем массу магнитного железняка, содержащую 1,0 т железа:

2. Найдем массовую долю железа в лунном грунте.

Рассчитаем массовую долю железа в оксиде железа (II), как отношение относительной атомной массы железа к относительной молекулярной массе оксида железа (II):

Массу железа в лунном грунте можно вычислить по формуле:

Рассчитаем массовую долю железа в лунном грунте:

3. Рассчитаем массу лунного грунта, содержащую 1,0 т железа:

Ответ: 1,4 т магнитного железняка; 7,7 т лунного грунта.

30. В Калужском Государственном музеи истории космонавтики среди образцов минералов, доставленных с поверхности Луны автоматической станцией «Луна-24», представлен оливин. На Земле оливин распространенный силикатный минерал состав которого плавно меняется от Mg2SiO4 (фостерит) до Fe2SiO4 (фаялит). Рассчитайте массовые доли кислорода в фостерите и фаялите.

Дано:

Решение:

Рассчитаем массовую долю кислорода в фостерите и фаялите:

,

Ответ: 45,7%, 31,4%.

40. Фотосфера – единственный на Солнце слой (не считая солнечной атмосферы), где водород существует в форме нейтральных атомов. Рассчитайте давление водорода в нижних слоях фотосферы Солнца, если плотность вещества в ней составляет 510-4 кг/м3, а температура 6000 К.

Дано:

Решение:

Запишем уравнение Менделеева-Клапейрона, . Выразив из него давление через плотность:.

Подставим числовые данные

Проверим единицы измерения

Ответ: 2,5104 Па.

ТЕМА «ОСНОВЫ КОСМОНАВТИКИ»

41. В фантастической повести «Вне Земли», написанной Циолковским в 1896 г, есть такие строки: «… Сейчас на своей ракете мы летаем вокруг Земли на расстоянии 1000 км, делая полный оборот в 100 минут…». Подтвердите расчетами, что корабль, находясь на данной высоте, двигается с указанным периодом.

Решение.

Спутник движется с постоянной по модулю скоростью по круговой орбите радиусом R+H под действием силы всемирного тяготения, следовательно, по  закону Ньютона , ускорение ракеты, где– период обращения,- масса ракеты,- масса Земли. Получим, откуда. Учитывая, что, получим более рациональную для расчета формулу. После подстановки численных данных найдем, что Т105 мин.

42. Первый искусственный спутник Земли представлял собой шар диаметром 580 мм (Его копию можно увидеть в Калужском государственном музее истории космонавтики им. К.Э. Циолковского). Посчитайте, на каком расстоянии от земного наблюдателя должен был бы двигаться этот спутник, чтобы с его помощью можно было бы хоть мгновение наблюдать полное солнечное затмение? Оцените (очень приблизительно), каков был бы период обращения этого спутника вокруг Земли?

Справочные данные (округлённые): Диаметр Земли 12700 км. Диаметр Солнца 1400000 км. Диаметр Луны 3500 км. Расстояние Земля-Солнце 150000000 км. Расстояние Земля-Луна 380000 км. Звёздный период обращения Луны вокруг Земли 27,3 средних солнечных суток.

Решение

Видимый угловой размер спутника должен быть таким как и видимый угловой размер Солнца, т.е. примерно 1/2 углового градуса, поэтому расстояние от наблюдателя до спутника должно быть во столько раз меньше, чем от наблюдателя до Солнца, во сколько раз диаметр спутника меньше диаметра Солнца . Откуда. Следовательно, высота спутника не должна превышать 62 м. На такой высоте слишком велико сопротивление атмосферы, поэтому спутник не сможет сделать ни одного оборота.

43. Одной из достопримечательностей города Калуги является космический корабль «Восток», установленный на возвышении берега Яченского водохранилища. На космических кораблях этой серии для регенерации кислорода, необходимого для дыхания экипажа, использовали надпероксид калия (КО2), который, взаимодействуя с выдыхаемым космонавтами углекислым газом образует кислород и карбонат калия. На борту космического корабля находится 47,7 кг КО2. Космонавт в течение часа выдыхает 30 г углекислого газа. Определите, в течение скольких суток будет обеспечиваться на орбите жизнедеятельность экипажа, состоящего из двух человек?

Дано:

Решение:

1. Запишем уравнение химической реакции:

2. Из уравнения реакции следует, что 1 моль углекислого газа взаимодействует с 2 моль надпероксида калия.

3. Найдем, какая масса надпероксида калия расходуется за 1 час.

За 1 час два космонавта выдыхают углекислый газ массой или количеством веществаЗначит, согласно уравнению реакции за 1 час расходуется надпероксид калия количеством веществаили массой

4. Время жизнедеятельности экипажа на орбите можно определить как отношение массы надпероксида калия, находящейся на корабле, к его массе, расходуемой экипажем за час.

5. Подставим в полученную формулу числовые значения

Получаем Проверим единицы измерения

Ответ: 246 ч или 10 суток.

studfiles.net

Мощность солнечного излучения на квадратный метр

 

Энергия нашего Солнца

Почти вся энергия на Землю, приходит от Солнца. Если бы не оно, Земля была бы холодной и безжизненной. Растения растут, потому что получают необходимую энергию. Солнце ответственно за ветер, и даже ископаемое топливо это энергия нашей звезды, запасенная миллионы лет назад. Но сколько энергии на самом деле, приходит от него?

Как вы, наверное, знаете, в его ядре, температура и давление настолько высоки, что атомы водорода сливаются в атомы гелия.

Излучение Солнца

В результате этой реакции синтеза, звезда производит 386 миллиардов мегаватт. Большая часть излучается в пространство. Вот почему мы видим звезды, которые удалены на десятки и сотни световых лет от Земли. Мощность излучения Солнца равна 1,366 киловатт на квадратный метр. Около 89000 тераватт проходит через атмосферу и достигает поверхности Земли. Получается его энергия на Земле составляет около 89000 тераватт! Просто для сравнения, общее потребление каждого человека составляет 15 тераватт.

Так что Солнце дает в 5900 раз больше энергии, чем люди в настоящее время производят. Нам просто нужно научится использовать ее.

Наиболее эффективный способ использовать излучение нашей звезды это фотоэлементы. Как таковое, это преобразование фотонов в электричество. Но энергия создает ветер, который заставляет работать генераторы. Солнце помогает расти культурам, которые мы используем для производства биотоплива. И, как мы уже говорили, ископаемые виды топлива, такие как нефть и уголь это концентрированное солнечное излучение, собранное растениями в течение миллионов лет.

Мощность излучения Солнца и использование энергии на Земле

Мощность излучения Солнца равна 1,366 киловатт на квадратный метр. Получается его энергия на Земле составляет около 89000 тераватт

Источник: spacegid.com

 

Солнце:

НАШ САМЫЙ КРУПНЫЙ И САМЫЙ ЩЕДРЫЙ ИСТОЧНИК ЭНЕРГИИ

Солнце – первопричина всей жизни на Земле и наш важнейший поставщик энергии. Оно – невероятный сгусток энергии. Энергия, излучаемая с поверхности Солнца и попадающая на земной шар, примерно в 10.000 раз превышает сегодняшнюю мировую потребность в энергии. Однако используемая доля исходящей от Солнца энергии сейчас еще очень мала.

Максимальная мощность солнечного излучения составляет 1.000 ватт на один квадратный метр земной поверхности:

Ясное синее небо

Общая мощность излучения или так называемая глобальная радиация представляет собой сумму прямого и рассеянного излучения. Важно различать эти виды излучения, т.к. современные солнечные установки рассчитаны на различное излучение. Так, например, термические солнечные установки, предназначенные для подогрева воды, используют как прямое, так и рассеянное излучение солнца. Они преобразуют энергию излучения в тепло даже при облачной погоде.

На графике показаны годовые колебания усредненного общего излучения в г. Карлсруэ, Германия

КАК СОЛНЕЧНЫЕ ЛУЧИ ПРЕВРАЩАЮТСЯ В ЭЛЕКТРИЧЕСКИЙ ТОК: ИНФОРМАЦИЯ О СИСТЕМЕ «ФОТОВОЛЬТАИК»

«Фотовольтаик» – специальный термин, обозначающий непосредственное преобразование солнечного излучения в электрический ток с помощью так называемых солнечных батарей (фотогальванической установки). В настоящее время они изготавливаются почти исключительно из кремния – материала, получаемого из кварцевого песка, имеющегося почти в неограниченном количестве.

Солнечные батареи изготавливаются из разного кремния:

Если солнце светит в условиях тумана, облачности или же находится низко над горизонтом, то оно светит «вполсилы», а это значит, что и солнечная батарея работает лишь вполовину своей производительности. Наибольшего КПД фотогальваническая установка достигает при перпендикулярном облучении. Установка с жестким креплением должна быть расположена по возможности под углом в 30 о и направлена на юг.

ФОТОГАЛЬВАНИЧЕСКИЕ УСТАНОВКИ: ПОДСОЕДИНЕННЫЕ К СЕТИ ИЛИ НЕ ЗАВИСЯЩИЕ ОТ НЕЕ

Фотогальванические установки, отдающие ток в общую энергосеть , подсоединены к ней через инвертор, который преобразует производимый солнечными батареями постоянный ток в переменный и подает его в сеть

Номинальная мощность фотогальванических установок указывается в ваттах пик. Подсоединенная к сети установка с номинальной мощностью в 1 киловатт пик имеет площадь примерно 10 квадратных метров и стоит, считая и монтаж, около 10.000 Евро. Такая установка может произвести примерно 900 киловатт-часов электроэнергии в год. Для сравнения – одна семья из 3 человек ежегодно потребляет в среднем 3.000 киловатт-часов энергии.

Автономные фотогальванические установки работают в так называемом «островном режиме», т.е. они не подсоединены к общественной энергосети. Для работы в мало солнечное время и ночью для них необходимы подзаряжаемый аккумулятор для накопления энергии. Величина солнечного генератора зависит от режима потребления тока и емкости аккумулятора, причем это должен быть обязательно специальный солнечный аккумулятор. Использование автономных установок имеет смысл только в тех случаях, когда подключение к общей сети невозможно или если стоимость такого подключения намного превосходит стоимость самой установки.

ОСОБЕННО ЦЕЛЕСООБРАЗНО: НАГРЕВАНИЕ ВОДЫ СОЛНЕЧНЫМИ КОЛЛЕКТОРАМИ

С помощью солнечных термоустановок солнечную энергию в наших широтах можно эффективно использовать для подогрева воды и в помощь отопительной системе. Хорошие коллекторы и правильно подобранная по размеру установка могут покрыть до 25 % годового потребления тепла за счет солнечной энергии и к тому же уберечь окружающую среду и сэкономить энергоресурсы.

Для подогрева воды солнечное тепло улавливается плоскими коллекторами или коллекторами с вакуумными трубками. Между солнечными коллекторами и отдельным накопителем горячей воды в доме циркулирует жидкость с антифризом, нагреваемая лучами солнца. Это тепло затем отдается воде через теплообменник. В пасмурные дни вода для бытовых нужд нагревается от отопительного котла.

Для подогрева воды достаточно 1,3 кв. м площади коллектора в расчете на одного человека. Эксперты подсчитали, что объем водонакопителя при температуре воды 50 о должен составлять 80 литров на человека, но не менее 300 литров .

КОМБИНИРОВАННЫЕ СОЛНЕЧНЫЕ УСТАНОВКИ ГРЕЮТ ВОДУ И РАЗГРУЖАЮТ СИСТЕМЫ ОТОПЛЕНИЯ

Количество солнечных установок, которые только нагревают бытовую воду, уже довольно велико. Комбинированные же солнечные установки, которые и воду для бытовых нужд греют, и участвуют в отоплении – это новое, еще более прогрессивное и эффективное решение. Весной и осенью такие установки могут сделать заметный вклад в отопление помещений и разгрузить систему отопления. Для домов на одну — две семьи хорошо проявили себя на практике комбинированные установки с поверхностью коллектора от 8 до 15 кв. м и с комбинированным накопителем – для нагрева бытовой воды и для создания запаса воды на отопление – емкостью от 500 до 1000 литров .

Возобновляемые источники энергии - Солнце-ЗАО Технологический парк Могилев

Солнце: НАШ САМЫЙ КРУПНЫЙ И САМЫЙ ЩЕДРЫЙ ИСТОЧНИК ЭНЕРГИИ Солнце – первопричина всей жизни на Земле и наш важнейший поставщик энергии. Оно – невероятный сгусток энергии. Энергия,

Источник: www.technopark.by

 

Мощность солнечного излучения на квадратный метр

С олнце составляет 99,98% всей энергии нашей планеты (остальная энергия — геотермальная). Солнце состоит из водорода (71%), гелия (27%) и твердой материи (2%). Температура вблизи ядра приблизительно 16 000 000 градусов, а на его поверхности-фотосфере — около 5770 К. Мощность энергии, излучаемой Солнцем, составляет

63 МВт с каждого квадратного метра его поверхности, всего около 3,72 х 10 20 МВт.

Единицей измерения потока солнечной энергии в системе СИ является ватт на квадратный метр (Вт/м 2 ). При среднем расстоянии от Земли до Солнца — 150 000 000 км — плотность энергии солнечного излучения, которое достигает атмосферы Земли, составляет в среднем 1,367 КВт/м 2 . Эта величина называется солнечной постоянной. Различные процессы внутри Солнца и на его поверхности (солнечные пятна и вспышки) приводят к флуктуациям этой величины, но они не превышают 0,1%.

Расстояние от Земли до Солнца изменяется из-за эллиптичности его орбиты Земли, поэтому солнечное излучение в верхней границе атмосферы на 6,6% больше 4 января (когда Земля ближе всего к Солнцу, в перигелии), чем 4 июля (когда Земля наиболее удалена от Солнца, в афелии). Эти даты не совпадают с датами зимнего и летнего солнцестояния потому, что ось вращения Земли наклонена к плоскости эклиптики на 23,5 о .

Из-за большого расстояния между Солнцем и Землей солнечное излучение, которое достигает верхней границы атмосферы, падает в виде почти параллельных лучей. Это излучение включает в себя ультрафиолетовое излучение (УФ), видимый свет и ближнее инфракрасное излучение (БИК). Максимальная интенсивность излучения приходится на диапазон видимого спектра — излучение с длиной волны от 400 до 800 нм. Интенсивность ультрафиолетового и инфракрасного излучения, приходящего от Солнца, очень мала, однако, когда Земля нагревается под действием солнечного излучения, она излучает ближнее и дальнее ИК излучение, которое, в свою очередь, поглощается и отражается газами, частицами и облаками в атмосфере.

При прохождении через атмосферу часть солнечного излучения достигает поверхности Земли, а часть рассеивается молекулами газов, аэрозольными частицами, каплями воды и кристаллами льда. Молекулы газов и аэрозоли отвечают за большую часть поглощения излучения. Рассеивание солнечного излучения на каплях воды и кристаллах льда происходит во всем спектральном диапазоне. Молекулы же в основном рассеивают излучение коротких длин волн, а аэрозоли — более длинных.

Рис. 2. Участки спектра излучения. Синим цветом обозначено длинноволновое УФ-излучение, желтым — средневолновое УФ-излучение, белым — видимый свет, кремовым — ближнее инфракрасное излучение и розовым — дальнее инфракрасное излучение. Синяя линия показывает солнечное излучение на земной поверхности, черная — чувствительность человеческого глаза, зеленая — спектральную чувствительность типичного фотоэлемента, красная — чувствительность пиранометра со стеклянным куполом и розовая — чувствительность пиргеометра. Для сравнения все приведено к условному максимуму 1,0.

Эти процессы в значительной степени влияют на спектр излучения, которое достигает земной поверхности. Когда Солнце находится прямо над головой, оптическая масса атмосферы является минимальной и по определению имеет для этой местности атмосферную массу, равную 1,0. Когда Солнце опускается к горизонту, оптическая масс атмосферы увеличивается приблизительно в 11 раз и ее влияние на поглощение и рассеивание солнечного излучения становится значительно больше.

Некоторые из этих процессов легко наблюдать. Молекулы атмосферы намного сильнее рассеивают короткие иволны, чем более длинные — рэлеевское рассеивание. Поэтому, когда Солнце находится высоко, небо выглядит синим. Когда же Солнце находится вблизи горизонта, короткие волны, проходя через толстый слой атмосферы, испытывают полное рассеивание, и небо по утрам и вечерам выглядит красным.

В безоблачный день поток солнечной энергии, достигающий земной поверхности в местный полдень, обычно находится в интервале от 700 до 1300 Вт/м 2 в зависимости от широты, долготы, высоты над уровнем моря и времени года.

Наблюдения за солнечным излучением на земной поверхности ведут в двух диапазонах длин волн: коротковолновом излучении с длиной волны от 300 до 4000 нм и длинноволновом — от 4500 нм (4,5 мкм) до 40 мкм. Коротковолновое излучение включает ультрафиолетовое, видимое, и ближнее, инфракрасное излучение.

Часть солнечного излучения, которая достигает земной поверхности, отражается от нее, а другая часть поглощается. Снег и лед имеют высокую отражательную способность (альбедо), темные и/или неровные поверхности — более низкую. Часть излучения, которая поглощается земной поверхносьтю, излучается обратно в атмосферу в ближнем (инфракрасном) диапазоне. Углекислый газ (СО2), метан (СН4) и водяной пар (Н2О) в атмосфере способны поглощать это излучение, нагревая, в свою очередь, земную атмосферу. Это — так называемый «парниковый эффект». В целом же существует равновесие: Земля получает столько же солнечного излучения, сколько излучает обратно в Космос. Иначе Земля нагревалась бы или остывала.

Метеорологическое оборудование МТР-5 фирмы АТТЕХ, актинометрические датчики фирмы Kipp & Zonen

НПО АТТЕХ предлагает метеорологическое оборудование — температурные профилемеры МТР-5 (МТП-5), актинометрические датчики Kipp & Zonen

Источник: attex.net

 

avtonomny-dom.ru

на что влияет и как определяется

солнечное излучение

Содержание:

  • Что такое солнечная энергия?
  • Виды солнечного излучения
  • Как распределяется энергия в солнечном спектре?
  • Что необходимо учитывать при расчете солнечного генератора?
  • Размещение панелей
  • Выбор фотоэлектрической системы для построения солнечного генератора

На земле существует большое количество альтернативных источников энергии, каждый из которых имеет свои особенности при использовании. И одним из самых экологичных является энергия солнечного света. На самом деле ею человечество пользуется из самых древних времен и в различной форме:

  • Летом используется тепло солнечных лучей для нагрева теплиц и создания оптимальных условий для их развития.
  •  Под лучами солнца человек сушил морепродукты, грибы, целебные травы и прочее.
  • При конструировании солнечных печей можно вскипятить воду с использованием системы зеркал.

Все это непостоянно, нагретые солнцем за день предметы ночью быстро остывают. Человечество долго думало о том, как бы сохранить эту энергию и только в XXI-ом столетии стало использовать ее для накопления в виде тепла и электричества. Получение электрической мощности из солнечного излучения – это довольно действенный способ, который сегодня используется для обеспечения энергией от одиночных домов до небольших поселений или комплексов. И даже учитывая крайне небольшое время качественного солнечного излучения, популярность использования панелей не утихает. Но чтобы определить целесообразность этого генератора, необходимо посчитать мощность солнечных батарей. Об этом речь пойдет ниже в статье, прежде необходимо ознакомиться с понятием «солнечное излучение».     

Что такое солнечная энергия?

Солнечная энергия – на самом деле это огромная сила, но чтобы ее получить, необходимо приложить немало усилий. Все дело в том, что технологии изготовления солнечных генераторных панелей имеют высокую цену и порой при расчете выгоды может оказаться так, что установка таких у себя дома будет окупаться на протяжении десятков лет, при условии постоянно ясных дней. А на самом деле эта цифра увеличится как минимум в 5 раз, и выгода будет заметна только вашим внукам или правнукам. И то, если конструкция панелей будет надежна и сможет столько прослужить. В идеальном расчете современные солнечные батареи могут выдавать до 1,35 кВт/м кв. и для получения 10 кВт потребуется всего 7,5 кв. м панелей. Но это в идеальных условиях. В реальности - площади солнечных батарей потребуется в 5-6 раз больше для получения той же мощности.          

атмосфера солнца

Современные солнечные панели обладают не так уж и большим КПД. Фотоэлемент, площадью 1 кв. м выдает в идеальных условиях 1 кВт электрической энергии. Но это условие справедливо, если расстояние от поверхности панели минимально, солнце находиться над ней, лучи – строго перпендикулярно к плоскости и прозрачность атмосферы составляет не менее 100%. Таким условиям соответствует лишь вершина горы в тропической зоне и ясную погоду. В нашей климатической зоне можно добиться максимум 20%, следовательно, с 1 кв. м можно получить от 150 до 600 Вт электрической энергии. Все дело в том, что интенсивность солнца в наших широтах весьма мала. К примеру, рассматривая российские города от Архангельска до Южно-Сахалинска, за месяц эксплуатации солнечной батареи можно получить максимум 209.9 кВтч/м кв. И то, эта цифра справедлива только в Сочи. При установке солнечной панели в Архангельске, месячный максимум получится не более 159.7 кВтч/м кв.

В средних широтах, в которых собственно мы с вами и проживаем, показатель мощности солнечной энергии соответствует уровню 100 Вт/кв. м. Но и эти данные весьма неточные, при повышенной облачности эта цифра будет уменьшаться до 2 и более раз.

Виды солнечного излучения

В зависимости от потока излучение разделяется на 2 вида: рассеянное и прямое. В зависимости от вида освещения выбирается угол наклона панели, тем самым повышая КПД установки. При прямом излучении угол должен быть строго определен, при рассеянном этот показатель не важен, потому что интенсивность освещения во всех точках пространства примерно равна. Но между двумя этими разновидностями имеется существенное отличие, заключающееся в мощности солнечного излучения на квадратный метр. В первом случае она многократно раз превышает второй, обеспечивая панель мощным потоком фотонов. Но таких ясных деньков в наших широтах, да и по всей планете, не так уж и много, поэтому производителям панелей приходиться использовать весь научно-технический потенциал, чтобы получить максимум энергии из того излучения. Такие технологии станут многим не по карману, не говоря уже о сроке окупаемости, который может стать непостижимым на нашем веку.

Влияние атмосферы на солнечное излучение

Как распределяется энергия в солнечном спектре?

Солнце представляет собой универсальный генератор, который вырабатывает потоки световой энергии не только различной мощности, но и различной частоты, что говорит о возможности разложения солнечного света в спектр. Весь его охватить не удастся, потому что принимающее тело должно быть идеально черного цвета. Тем более что не все виды излучений доходят до поверхности земли. Самые активные и энергонесущие потоки поглощаются другими телами в космосе и атмосфере. Задачей человечества стало определение диапазона частот, в котором поток световой энергии максимален. Традиционно спектр раскладывается не по частотам, а по длинам волн. И его грубо можно разделить на 3 зоны:

  • Ультрафиолетовая, ей соответствуют длины волн от 0 до 380 мкм.
  • Видимый свет, находиться в диапазоне от 380 до 760 мкм.
  • Инфракрасный, соответствует участку с длинами волн от 760 до 3300 мкм.

Зоной, где энергия фотонов самая высокая, является именно первый диапазон, но в нем частиц ничтожно мало, по сравнению с видимым диапазоном света. Поэтому для получения электрической энергии стали использовать именно видимый и инфракрасный диапазоны с длинами волн от 380 до 1800 мкм. Все, что выше относится к радиочастотному диапазону и энергия здесь также мала, по причине практически полного отсутствия энергии фотонов, несмотря на их большое количество.

Главной проблемой установки солнечных батарей в наших климатических условиях является существенное различие в длительности светового дня в зависимости от поры года. Самый короткий день почти в 2,5 раза меньше самого длинного, что сказывается и на энергии излучения, которому зимой еще приходиться преодолевать и более толстые слои атмосферы. Следовательно, использование солнечных батарей в зимний период не даст никакой выгоды, а в летний период жарким днем выдаст не меньше энергии, чем на экваторе.

Что необходимо учитывать при расчете солнечного генератора?

Солнечный свет, как и любая другая физическая величина, имеет ряд параметров, которые должны использоваться при расчете генератора. К ним относятся:

  • Уровень освещенности или мощность солнечного излучения на квадратный метр. Под ним подразумевается усредненное значение солнечного излучения, измеряемого в верхних слоях атмосферы Земли и расположенного перпендикулярно световым потокам. На примере Сочи эта величина равна 1365 Вт.
  • Максимальная мощность излучения солнца. Это полезная световая энергия, которая достигает поверхности Земли на уровне моря на экваторе и в безоблачный день. В среднем она равна 1 кВт/м кв.      
  • Инсоляция – это усредненное время, в течение которого солнце освещает поверхность с максимальной интенсивностью. Обычно оно находится в пределах от 3 до 5 часов по российской территории.
  • Общая энергия излучения – величина, измеряемая за день облучения поверхности. Она определяется как произведение 1 кВтч и количества инсоляционных часов.
  • Солнечная мощность – величина энергии, рассчитанная за сутки (24 часа). Этот показатель рассчитывается как соотношение общей энергии за день к 24 часам.

Размещение панелей

размещение солнечных панелей

В наших климатических условиях, когда интенсивность солнечной энергии изменяется с течением дня, очень важно предусмотреть систему автоматической коррекции положения панелей. Необходимо, чтобы лучи падали на приемные элементы перпендикулярно, тем самым выбивая из них больше заряженных электронов. Но чтобы это обеспечить придется организовать поворот или наклон солнечных батарей с ходом солнца. При угле падения лучей в 30 градусов коэффициент отражения лучей составляет не менее 5%, а 95% световой энергии оказываются полезными. При увеличении угла отражения до 60 градусов потери вырастают вдвое, а при угле отражения 80 градусов коэффициент потерь находиться на отметке 40%. Но кроме угла отражения немаловажное значение имеет эффективная площадь перекрытия панели солнечным потоком. Эта величина расчетная и находиться из отношения реальной площади к синусу угла между плоскостью и направлением солнечных лучей. В итоге получается, что для получения постоянно качественного потока панели необходимо время от времени поворачивать к солнцу. А это соответственно будет требовать определенных технологий, что оказывается весьма дорогостоящим удовольствием.

Можно пойти и простым путем, ориентировать солнечную батарею в одной плоскости под определенным углом. Например, для Москвы, которая расположена на 56 градусах широты, угол наклона к горизонту составит, соответственно, 56 градусов или отклонения от вертикали на 34 градуса. Тогда потребуется лишь обеспечить панели вращением в одной плоскости и возврат ее в исходную точку. Все это удорожает систему и делает ее менее надежной.

При конструировании системы поворота панелей большое значение имеет вес рамы, на которой будут располагаться фотоэлементы. И как следствие получается, что на вращение требуется много энергии, что снижает количество полезной энергии.

Выбор фотоэлектрической системы для построения солнечного генератора

Для построения действительно качественного солнечного генератора необходимо учесть следующие данные:

  • Среднее значение коэффициента полезного действия имеющихся в продаже солнечных панелей. У кремниевых батарей он лежит в пределах от 12 до 17% при условии использования кристаллического материала, КПД тонкопленочных батарей лежит в пределах от 8 до 12%.
  • Мощность солнечной панели, вырабатываемой одним квадратным метром панели. Для ее определения необходимо солнечную энергию умножить на КПД одной панели с преобразованием в целое число.
  • Пиковая мощность – измеряется в безоблачный солнечный день и равна произведению КПД и величине «Стандартного солнца» (1 кВт).
  • Суммарная усредненная энергия. Рассчитывается как произведение пиковой мощности и количества часов инсоляции.
  • Выработанная энергия – это величина мощности, которую панель отдала в нагрузку в фактических условиях за 24 час. Определяется как соотношение суммарной усредненной энергии к 24 часам. Для панелей из кристаллического кремния эта величина равна 0.6-0.85 кВт/м кв., для пленочного кремния – 0.4-0.6 кВт/м кв.
  • Общая энергия – количество мощности, выработанной панелью за год эксплуатации, и рассчитывается как произведение как полная энергия и количество дней в году. Для кристаллических панелей (CSi) – 219-310 кВт ч, для пленочных (TF) – 146-219 кВт ч. Но при расчете окончательных показателей необходимо учесть потери в импульсном преобразователе, которые составляют обычно 5%.
  • Цена электрической энергии. Пожалуй, самый главный показатель, который зачастую предопределяет целесообразность приобретения солнечного генератора. На сегодняшний день такой генератор пока еще нецелесообразен, так как без поломок более 10 лет практически ничто не прослужит. Но технологии не стоят на месте, и в скором будущем стоимость световых генераторных панелей станет намного меньше, сделав их доступными для всех.

Подписаться на рассылку

Подписаться

ekobatarei.ru

Мощность - солнечное излучение - Большая Энциклопедия Нефти и Газа, статья, страница 1

Мощность - солнечное излучение

Cтраница 1

Мощность солнечного излучения, отраженного от какой-либо поверхности и воспринимаемого оптико-электронным прибором, зависит не только от параметров прибора, но и от характеристик отражающей поверхности. Так, если поле зрения прибора направлено на Землю, то в его пределы могут попасть и облака, и земная поверхность с атмосферой.  [1]

Мощность солнечного излучения, падающего на всю земную поверхность, так велика, что для ее замены понадобилось бы около 30 миллионов мощных электростанций.  [2]

Мощность солнечного излучения в этом участке составляет 4 Вт / м2 или 108 Дж / м2 в год.  [3]

Вт, мощность солнечного излучения, попадающего в атмосферу Земли, составляет 1 7 1013 кВт, а мощность инфракрасного излучения, испускаемого атмосферой Земли в обе стороны, равна 2 7 1013 кВт, Как видно, мощность электрической машины Земли существенно меньше мощности других естественных процессов и сравнима с мощностью современных атомных электростанций.  [4]

Если № - мощность солнечного излучения, поглощаемая каждым квадратным метром земной атмосферы, то энергия, выделяемая на Солнце в 1 сек, равна Е 4nD W, где D - расстояние от Земли до Солнца.  [5]

Если W - мощность солнечного излучения, поглощаемая в земной атмосфере, то энергия, выделяемая на Солнце в 1 сек, равна E 4nD2W, где О - расстояние от Земли до Солнца.  [6]

Солнечная постоянная I - характеризует мощность солнечного излучения, приходящегося на 1 м2 площади.  [8]

Экосистема получает определенное количество внешней энергии, ограниченное мощностью солнечного излучения в данной местности. Следовательно, природная экосистема является системой, получающей постоянное количество внешней энергии с ограниченной мощностью. Поэтому пределы роста мощности экосистемы определены мощностью солнечной энергии, доступной для этой системы, и ограничены этой мощностью.  [9]

Ресурсы солнечной энергии настолько велики, что их можно условно принять бесконечными. Мощность солнечного излучения, падающего на землю, составляет ( 0 12 - 0 17) - 1015 кВт, что эквивалентно 190 - 1012 т у.  [10]

На пути практической реализации метода преобразования концентрированного солнечного излучения также возникает ряд проблем. Во-первых, при повышении мощности солнечного излучения пропорционально увеличивается плотность генерируемого в СЭ фототока, что требует усложнения конструкции СЭ для уменьшения омических потерь. Во-вторых, увеличивается тепловая нагрузка на СЭ, что требует создания эффективной системы теплоотвода. В-третьих, необходима разработка высокоэффективных и дешевых концентраторов излучения. В-четвертых, необходимо точное наведение и слежение установок за положением Солнца, что усложняет конструкцию и эксплуатацию СФЭУ. В то же время благодаря применению концентраторов появляется возможность использования в крупномасштабной солнечной электроэнергетике дефицитных и дорогих полупроводниковых материалов, например арсенида галлия и твердых растворов на его основе, обеспечивающих получение термостабильных сильноточных СЭ с высоким КПД. Повышение освещенности приводит к дополнительному росту КПД, а также позволяет использовать эффект комбинированного термического, фотонного и инжекционного отжига радиационных дефектов, возникающих при эксплуатации СФЭУ в космосе. Поскольку при этом используются СЭ сравнительно небольшой площади, появляется возможность обеспечить их более эффективную защиту от неблагоприятных факторов окружающей среды, в частности за счет экранирующего действия концентраторов.  [11]

Из-за наклона лучей, отражения и поглощения их в атмосфере в средних широтах достигает Земли не более 10 % этой энергии. Но даже при плотности населения 200 чел / км2 мощность солнечного излучения составляет 700 кВт - ч на человека. Если бы удалось построить солнечные электрогенераторы с КПД, равным хотя бы 1 %, то человечество получило бы в 3 раза больше энергии, чем требуется по приведенным выше прогнозам. Однако уже имеются электрогенераторы с КПД до 10 - 15 % ( см. § 38), но они дороги.  [12]

Оставшиеся более 2 / 3 - затрачиваются на испарение и генерацию явных турбулентных потоков тепла в атмосфере и океане, т.е. определяют все макроскопические движения у поверхности Земли. Цифры на потоках показывают проценты от падающей на Землю мощности солнечного излучения. Все наблюдаемые нами упорядоченные процессы на земной поверхности генерируются в результате распада фотонов солнечного излучения.  [13]

Солнце непрерывно излучает энергию ( см. разд. Очень небольшая часть этого излучения попадает на Землю. Мощность солнечного излучения, попадающего на единицу площади земной поверхности, называется солнечной постоянной.  [14]

Выходную мощность преобразователя косвенно характеризуют ток короткого замыкания / к. Отношение максимальной мощности Рмакс с единицы его площади к плотности мощности солнечного излучения, падающего нормально к освещаемой поверхности, - КПД преобразователя. Выходная мощность и КПД характеризуют качество преобразователя.  [15]

Страницы:      1    2

www.ngpedia.ru

Источники энергии – Солнце. Использование энергии, излучаемой Солнцем

01 06 2016      greenman       Пока нет комментариев  

Источники энергии – СолнцеВозможна ли жизнь на Земле без Солнца?

Чтобы ответить на этот вопрос, представим себе то, чего на самом деле быть не может. Вообразим, что Солнце вдруг исчезло, или что какая-то огромная заслонка преградила путь его лучам к нашей планете. Тогда Земля внезапно погрузится во мрак. Луна и планеты, отражающие солнечные лучи, также перестанут светить. Лишь тусклый свет далеких звезд будет освещать Землю. Зеленые растения погибнут, так как они могут усваивать углерод из воздуха только под воздействием солнечных лучей.

Животным нечем будет питаться, и они начнут вымирать от голода. Помимо этого, все живое станет замерзать от страшного холода, который быстро распространится по Земле. Воздух, океаны и суша очень скоро отдадут мировому пространству ту энергию, которую они постоянно получают от Солнца. Перестанут дуть ветры, и замерзнут все водоемы. Начнет сжижаться воздух, и на Землю польется дождь из жидкого кислорода и азота. В результате наша планета покроется слоем льда из твердого воздуха. Сможет ли в таких условиях существовать жизнь? Конечно, нет.

К счастью, ничего этого быть не может и каждый день Солнце посылает на Землю свои животворные лучи, нагревая сушу, воды и воздух, заставляя испаряться водоемы, приводя к образованию облаков и ветров, способствуя выпадению осадков, давая тепло и свет животным и растениям.

Энергия, излучаемая Солнцем

Энергия Солнца огромна. Даже та ничтожная ее доля, которая попадает на Землю, оказывается очень большой. Если предположить полное использование энергии солнечных лучей, падающих на квадратный метр земной поверхности, можно заставить работать двигатель мощностью около двух лошадиных сил. Вся Земля в целом получает от Солнца в десятки тысяч раз больше энергии, чем могли бы выработать все источники электроэнергии мира, если бы они работали на полную мощность.

С Земли Солнце кажется нам сравнительно небольшим. Его легко заслонить горошиной на расстоянии вытянутой руки. Если подобный опыт выполнить с большой точностью, то можно рассчитать, что расстояние до Солнца в 107 раз превышает его диаметр. А поперечник у Солнца очень велик, он в 109 раз больше диаметра Земли, который, как известно, составляет около 13 тыс. км. Теперь легко высчитать размеры Солнца и величину расстояния до него в километрах.

Зная расстояние до Солнца и количество энергии, которое доходит от него к нам, можно определить количество энергии, излучаемое его поверхностью. Чем ближе мы подходим к источнику света, тем более концентрированным оказывается его излучение. Если бы Земля была к Солнцу вдвое ближе, то она получала бы от него в 4 раза больше энергии, чем сейчас. Таким же путем, если подойти вплотную к поверхности Солнца, можно найти, что мощность излучения возрастет в 46 тыс. раз.

Откуда берет энергию Солнце

Представьте себе, что каждая площадка на Солнце величиной с клеточку в школьной тетради подогревается двумя обычными электроплитками, и вы получите примерное представление о мощности излучения поверхности Солнца. Из физики известно, что такую мощность излучения имеет тело, нагретое до температуры около 6000°. Следовательно, такова температура поверхности Солнца. Поэтому 1 кв. см. поверхности Солнца излучает больше 6 кВт энергии.

По массе Солнце в 333 тыс. раз больше Земли, а по объему оно больше в 1 млн. 301 тыс. раз. Поэтому плотность Солнца меньше плотности Земли. В среднем Солнце раза в полтора плотнее воды. Но это только в среднем. Внутри Солнца вещество сильно сжато давлением вышележащих слоев и раз в десять плотнее свинца. Зато наружные слои Солнца в сотни раз разреженнее воздуха у поверхности Земли.

Давление — это вес всех слоев, расположенных над площадкой в один квадратный сантиметр. Если из Солнца вырезать вдоль диаметра столбик вещества сечением в 1 кв. см и взвесить его с помощью воображаемых весов, то потребуется гиря с массой в двести тысяч тонн! На Солнце, где сила тяжести во много раз больше, чем на Земле, такая гиря будет в тысячи раз тяжелее. Поэтому давление в недрах Солнца превышает 100 млрд. атмосфер.

При таком огромном давлении температура возрастает до значения, превышающего 10 млн. градусов! Оказывается, что в этих условиях вещество находится в газообразном состоянии. Однако по своим свойствам этот газ сильно отличается от обычных знакомых нам газов, например воздуха. Дело в том, что в нем почти все атомы полностью теряют свои электроны и превращаются в голые атомные ядра. Свободные электроны, оторвавшиеся от атомов, становятся составной частью газа, называемого в этих условиях плазмой.

Термоядерная энергия Солнца

Частицы плазмы, нагретой до 10 млн. градусов, движутся с огромными скоростями в сотни и тысячи километров в секунду! При этом вследствие чрезмерного давления частицы сильно сближаются, а отдельные ядра атомов иногда даже проникают друг в друга. В моменты такого проникновения происходят термоядерные реакции.

Атом гелия имеет чуть меньшую массу, чем четыре атома водорода, которые пошли на его образование. Этот дефект массы и выделяется в недрах Солнца в виде энергии, являющиеся источником неиссякаемой энергии Солнца.

В основном Солнце состоит из тех же самых химических элементов, что и Земля. Однако водорода на Солнце несравненно больше, чем на Земле. Можно сказать, что Солнце почти целиком состоит из водорода, в то время как всех остальных элементов значительно меньше. Поэтому водород является основным источником энергии, излучаемой Солнцем за счет термоядерных реакций.

За все время своего существования, которое, по-видимому, составляет не менее 6 млрд. лет, Солнце не израсходовало еще и половины своих запасов водородного ядерного топлива. В течение почти всего этого времени излучение Солнца примерно такое же, как и теперь. Так оно будет светить еще много миллиардов лет — до тех пор, пока в недрах Солнца весь водород не превратится в гелий.

Как же выделяется ядерная энергия внутри Солнца?

Когда ядра одного элемента (например, водорода), соединяясь, образуют ядра другого (например, гелия), возникают особые гамма-лучи, обладающие огромной энергией.

Всякие лучи испускаются атомами в виде отдельных порций, называемых квантами. Энергия квантов гамма-лучей очень велика. Атомы вещества в недрах Солнца обладают свойством жадно поглощать всякое излучение. При этом, как правило, поглощая квант с очень большой энергией, атом излучает два или несколько квантов с меньшей энергией. Пока порожденные термоядерными реакциями гамма-лучи дойдут до поверхности Солнца, произойдет очень много таких дроблений квантов первоначальных гамма-лучей. В результате с поверхности Солнца уже будут испускаться преимущественно лучи со значительно меньшей энергией: ультрафиолетовые, видимые и инфракрасные.

Ядерные реакции происходят в ядре Солнца, и здесь же выделяется энергия. Диаметр ядра составляет примерно 1/3 диаметра самого Солнца. В ядре сосредоточена наибольшая часть солнечного вещества.

К ядру примыкает самый протяженный слой Солнца, в котором в результате поглощения квантов, их дробления и переизлучения, энергия изнутри переносится наружу. Выше находится слой протяженностью около 1/10 солнечного радиуса, называемый конвективной зоной. Эта зона уже заметно холоднее. Она переходит в самые внешние слои Солнца — его атмосферу. Вследствие своей более низкой температуры конвективная зона не может обеспечить перенос всей энергии, поступающей снизу, только путем поглощения и переизлучения.

Поэтому в конвективной зоне в переносе излучения принимает участие само вещество: из глубины поднимаются вверх отдельные потоки более горячих газов, передающих свою энергию непосредственно внешним слоям. Солнечная атмосфера также состоит из нескольких весьма различных слоев. Самый глубокий и тонкий из них называется фотосферой, что по-русски означает «сфера света». Здесь возникает подавляющее количество световых и тепловых лучей, посылаемых Солнцем в мировое пространство.

Фотосфера — это та самая поверхность Солнца, которую можно наблюдать в телескоп, предварительно снабженный специальным темным светофильтром. Если этого не сделать, то наблюдатель неминуемо ослепнет.

Толщина фотосферы всего лишь 200—300 км, а более глубоких слоев Солнца мы уже совсем не видим. Это происходит потому, что вещество фотосферы непрозрачно, подобно густому туману.

Чем глубже слон фотосферы, тем они горячее. Когда мы смотрим на центр солнечного диска, то видим наиболее глубокие слои фотосферы. Это происходит по той же причине, по какой земная атмосфера в зените всегда заметно прозрачнее, чем у горизонта. Когда мы смотрим на край Солнца, мы видим не такие глубокие слои, как в центре. Поскольку эти слои холоднее и дают меньше света, на краю диск Солнца кажется темнее, а сам край его очень резким.

С помощью большого телескопа можно изучить характерную структуру фотосферы

Чередование маленьких (на самом деле размером около 1000 км) светлых пятнышек, окруженных темными промежутками, создает впечатление, что на поверхности Солнца рассыпаны рисовые зерна. Эти пятнышки называются гранулами. Они представляют собой отдельные элементы конвекции, поднявшиеся из конвективной зоны. Они горячее, а следовательно, и ярче окружающей фотосферы. Темные промежутки между ними — потоки опускающихся более холодных газов.

От движения гранул в солнечной атмосфере возникают волны, очень похожие на те, которые появляются в земной атмосфере при полете реактивного самолета. Распространяясь вверх в солнечной атмосфере, эти волны поглощаются, а их энергия переходит в теплоту. Поэтому в солнечной атмосфере над фотосферой температура начинает повышаться, и чем дальше от фотосферы, тем больше. В сравнительно тонком слое, называемом хромосферой, она поднимается до нескольких десятков тысяч градусов. А в наиболее разреженной, самой внешней оболочке Солнца, в короне, температура достигает миллиона градусов!

Хромосферу и корону можно видеть в редкие моменты полных солнечных затмений. Когда Луна целиком закрывает ослепительно яркую фотосферу, вокруг ее диска, который кажется черным, внезапно вспыхивает серебристо-жемчужное сияние в виде венца, часто имеющего длинные лучи. Это и есть солнечная корона — чрезвычайно разреженная газовая оболочка. Она простирается от Солнца на расстояние многих его радиусов. Форма короны сильно меняется со временем, о чем можно судить, сравнивая различные ее фотографии. Непосредственно вокруг черного диска Луны во время затмения видна блестящая тонкая розовая кайма. Это и есть хромосфера Солнца, слой раскаленных газов толщиной 10—15 тыс. км.

Хромосфера значительно прозрачнее фотосферы. Она имеет линейчатый спектр, испускаемый раскаленными парами водорода, гелия, кальция и других элементов. Поэтому хромосферу можно наблюдать, если с помощью специальных приборов выделить излучаемые этими элементами лучи.

 

В фотосфере много нейтральных атомов. В хромосфере вследствие высокой температуры атомы водорода и гелия начинают переходить в ионизованное состояние. Это значит, что они теряют свои электроны и становятся электрически заряженными, а их электроны начинают двигаться как свободные частицы. В короне, где температура несравненно больше, ионизация вещества настолько сильна, что все легкие химические элементы полностью лишаются своих электронов, а у тяжелых атомов их недостает более десятка. Это происходит потому, что при температуре в миллион градусов отдельные частицы движутся так быстро и с такой силой сталкиваются, что, образно говоря, от них «щепки летят». Таким образом, атмосфера Солнца, как и его недра, состоит из плазмы.

В короне плазма очень сильно разрежена. В каждом ее кубическом сантиметре содержится не более 100 млн. «ободранных» атомов и оторванных от них свободных электронов. Это в 100 млрд. раз меньше, чем молекул в воздухе. Если бы всю корону, простирающуюся на много солнечных радиусов, сжать до плотности воздуха на Земле, то получился бы ничтожный слой толщиной в несколько сантиметров, окружающий Солнце.

Вследствие столь большой разреженности корона еще прозрачнее для видимого света, чем хромосфера. По той же причине и количество излучаемого ею света ничтожно: яркость короны в миллион раз меньше яркости фотосферы. Именно поэтому в обычное время она незаметна на ярком фоне дневного неба и видна только во время полных солнечных затмений. Таким образом, хотя самые внешние слои солнечной атмосферы имеют температуру миллион градусов, их излучение составляет ничтожную долю от общей энергии, испускаемой Солнцем.

Почти всю эту энергию излучает фотосфера, имеющая температуру около 6000°. Поэтому такую температуру приписывают Солнцу в целом. Значение температуры миллион градусов, установленное в короне, говорит только о том, что ее частицы движутся с огромными скоростями, доходящими до сотен и тысяч километров в секунду.

Однако как же узнали, что температура солнечной короны так велика, если она излучает так мало? Дело в том, что наряду с другими лучами Солнце испускает относительно много радиоволн, во всяком случае, гораздо больше, чем должно давать тело, нагретое до 6000°. Солнечная корона очень сильно поглощает радиоволны. Поэтому доходящее до нас радиоизлучение Солнца в основном возникает не в фотосфере, а в короне. Измерения при помощи специальных радиотелескопов мощности этого радиоизлучения позволили определить температуру короны.

Солнечная активность

Время от времени в солнечной атмосфере появляются так называемые активные области, количество которых регулярно повторяется с периодом в среднем около 11 лет.

Наиболее существенным проявлением активной области являются наблюдаемые в фотосфере солнечные пятна. Они возникают в виде маленьких черных точек (пор). За несколько, дней поры развиваются в крупные темные образования. Обычно пятно окружено менее темной полутенью, состоящей из радиально, вытянутых прожилок. Оно кажется как бы «дыркой» на поверхности Солнца, такой большой, что в нее свободно можно закинуть «мячик», размером с Землю.

Если наблюдать Солнце изо дня в день, то, по перемещению пятен можно убедиться, что оно вращается вокруг своей оси и примерно, через 27 дней то или иное пятно снова проходит через центральный меридиан. Интересно, что на разных широтах скорость вращения Солнца различна: вблизи экватора вращение быстрее, а у полюсов оно медленнее.

За некоторое время до возникновения пятен на небольшом участке фотосферы появляется яркая область. По форме она напоминает сильно размазанную лужу причудливых очертаний с бесчисленными прожилками и яркими точками. Эти яркие области называются факелами. Они на несколько сотен градусов горячее фотосферы. Атмосфера над факелами также горячее и несколько плотнее. Факелы всегда окружают пятна.

По мере разрастания факела в активной области постепенно усиливается магнитное поле, особенно на некотором малом участке, где в дальнейшем может образоваться пятно. Такие пятна обладают сильным магнитным полем, останавливающим всякие движения и течения ионизованного газа, от чего в области пятна под фотосферой останавливаются конвективные движения и тем самым прекращается дополнительный перенос энергии из более глубоких слоев наружу.

Поэтому температура пятна оказывается примерно на 1000° ниже, чем в окружающей фотосфере, на фоне которой оно кажется темным. Появление факела также объясняется магнитным полем. Когда оно еще слабое и неспособно остановить конвекцию, тормозится только беспорядочный характер движений поднимающихся струй газа в конвективной зоне. Поэтому в факеле горячим газам легче подняться из глубины, вследствие чего он кажется ярче окружающей его фотосферы.

В хромосфере и короне над активной областью наблюдается много интереснейших явлений. К ним относятся хромосферные вспышки и протуберанцы.

Вспышки — один из самых быстрых процессов на Солнце. Обычно вспышка начинается с того, что за несколько минут яркость некоторой точки активной области сильно возрастает. Бывали даже такие сильные вспышки, которые по яркости превышали ослепительную фотосферу. После возгорания несколько десятков минут длится постепенное ослабление свечения, вплоть до исходного состояния. Вспышки возникают вследствие особых изменений магнитных полей, приводящих к внезапному сжатию вещества хромосферы.

Происходит нечто подобное взрыву, в результате которого образуется направленный поток очень быстрых заряженных частиц и космических лучей. Этот поток, проходя через корону, увлекает с собой частицы плазмы. Как струны скрипки, колеблемые гигантским смычком, эти частицы приходят в колебание и испускают при этом радиоволны.

Небольшая область, занятая вспышкой (всего лишь несколько сотен тысяч квадратных километров), создает очень мощное излучение. Оно состоит из рентгеновских, ультрафиолетовых и видимых лучей, радиоволн, быстро движущихся частиц (корпускул) и космических лучей. Все виды этого излучения оказывают сильное воздействие на явления, происходящие в земной атмосфере.

Лучистая энергия Солнца

Ультрафиолетовые и рентгеновские лучи быстрее всего достигают Земли, прежде всего ее ионосферы — верхних, ионизированных слоев атмосферы. От состояния земной ионосферы зависит распространение радиоволн и слышимость радиопередач. Под воздействием солнечных ультрафиолетовых и рентгеновских лучей увеличивается ионизация ионосферы. Вследствие этого в нижних ее слоях начинают сильно поглощаться короткие радиоволны. Из-за этого происходит замирание слышимости радиопередач на коротких волнах.

Ионосферные слои отражают короткие радиоволны и частично поглощают их.

Одновременно ионосфера приобретает способность лучше отражать длинные радиоволны. Поэтому во время вспышки на Солнце можно обнаружить внезапное усиление слышимости далекой радиостанции, работающей на длинной волне.

Поток частиц (корпускул) достигает Земли примерно только через сутки после того, как на Солнце произошла вспышка. «Продираясь» через солнечную корону, корпускулярный поток вытягивает ее вещество в длинные, характерные для ее структуры лучи.

Вблизи Земли поток корпускул встречается с магнитным полем Земли, которое не пропускает заряженных частиц. Однако трудно остановить частицы, мчащиеся со скоростью, всего лишь в несколько сот раз меньшей скорости света. Они прорывают преграду и как бы вдавливают магнитные силовые линии, окружающие земной шар. От этого на Земле происходит так называемая магнитная буря, заключающаяся в быстрых и неправильных изменениях магнитного поля. Во время магнитных бурь стрелка компаса совершает беспорядочные колебания и пользоваться этим прибором становится совершенно невозможно.

Подходя к Земле, поток солнечных частиц врывается в окружающие Землю слои очень быстрых заряженных частиц, образующих так называемые радиационные пояса. Пройдя эти пояса, некоторые частицы прорываются глубже в верхние слои атмосферы и вызывают очень красивые свечения воздуха, наблюдаемые большей частью в полярных широтах Земли. Эти переливающиеся различными цветами радуги свечения, то принимающие вид лучей, то как бы висящие подобно занавесям, называются полярными сияниями. Таким образом, вспышки на Солнце приводят к важным последствиям и тесно связаны с различными явлениями, происходящими на Земле.

В короне над активной областью также происходят грандиозные явления. Порой вещество короны начинает ярко светиться и можно видеть, как его потоки устремляются в хромосферу. Эти облака раскаленных газов, выбрасываемые из хромосферы и вверх, в десятки раз превышающие земной шар, называются протуберанцами. Протуберанцы поражают разнообразием своих форм, богатой структурой, сложными движениями отдельных узлов и внезапными изменениями, которые сменяются длительными пе-риодами спокойного состояния.

Протуберанцы холоднее и плотнее окружающей их короны и обладают примерно такой же температурой, как и хромосфера.

На движение и возникновение протуберанцев, как и на другие активные образования в солнечной атмосфере, сильное влияние оказывают магнитные поля. По-видимому, эти поля являются основной причиной всех активных явлений, происходящих в солнечной атмосфере. С магнитными полями связана также периодичность солнечной активности — пожалуй, наиболее интересная из всех особенностей солнечных явлений. Эту периодичность можно проследить по всем явлениям, но особенно легко ее заметить, если день за днем подсчитывать количество имеющихся на Солнце пятен.

Период, когда пятен совсем нет, называется минимумом. Вскоре после минимума пятна начинают появляться на большом расстоянии от солнечного экватора. Потом постепенно их число увеличивается и они возникают все ближе и ближе к экватору. Через 3—4 года наступает максимум солнечных пятен, отличающийся наибольшим количеством активных образований на Солнце. Затем солнечная активность постепенно спадает, и примерно через 11 лет снова наступает минимум.

Возможно, «секрет» солнечной активности связан с удивительным характером вращения Солнца: на экваторе вращение быстрее, чем у полюсов. Через 1 оборот Солнца (около 27 дней) детали, располагавшиеся на одном меридиане, снова пройдут через него одновременно.

Периодичность солнечной активности пока еще остается увлекательной загадкой Солнца. Только в последние годы удалось приблизиться к ее решению. По-видимому, причина солнечной активности связана со сложным взаимодействием между ионизованным веществом Солнца и его общим магнитным полем. Результат этого взаимодействия — периодическое усиление магнитных полей.

Использование альтернативной энергии Солнца

Некоторые люди ошибаются, говоря о тепловой энергии Солнца. До нашей планеты солнечная энергия доходит в виде лучей, излучения. Поэтому разумно говорить о лучистой энергии Солнца. Сегодня модно упоминать об альтернативных источниках. Но Солнце, пожалуй, самый безальтернативный источник энергии. Понятно, что радетели за зеленую планету призывают отказаться от бензина и заправлять машины Солнцем.

Но не будь Солнца, не было бы ни бензина, ни нефти, ни газа, ни самих радетелей за зеленую планету. Не стоит жонглировать словами и подменять понятия. Обман и самообман никогда не дает лучшего результата и, кроме того, имеет свойство быть раскрытым. Солнечные батареи и биологические концентраторы, как и водород – не альтернативные, а более эффективные (в перспективе) источники энергии. А поскольку альтернатив Солнцу нет, давайте будем и дальше радоваться безальтернативной энергии, которую нам дает наше светило и стараться использовать ее, с максимально возможным к.п.д. Даешь повышение КПД!

Просто о сложном – Источники энергии – Солнце

  • Галерея изображений, картинки, фотографии.
  • Солнце как источник энергии – основы, возможности, перспективы, развитие.
  • Интересные факты, полезная информация.
  • Зеленые новости – Солнце как источник энергии.
  • Ссылки на материалы и источники – Источники энергии – Солнце.

greensource.ru

Мощность излучения Солнца

e-nergiya-solntsaПочти вся энергия на Землю, приходит от Солнца. Если бы не оно, Земля была бы холодной и безжизненной. Растения растут, потому что получают необходимую энергию. Солнце ответственно за ветер, и даже ископаемое топливо это энергия нашей звезды, запасенная миллионы лет назад. Но сколько энергии на самом деле, приходит от него?

Как вы, наверное, знаете, в его ядре, температура и давление настолько высоки, что атомы водорода сливаются в атомы гелия.

Излучение Солнца

В результате этой реакции синтеза, звезда производит 386 миллиардов мегаватт. Большая часть излучается в пространство. Вот почему мы видим звезды, которые удалены на десятки и сотни световых лет от Земли. Мощность излучения Солнца равна 1,366 киловатт на квадратный метр. Около 89000 тераватт проходит через атмосферу и достигает поверхности Земли. Получается его энергия на Земле составляет около 89000 тераватт! Просто для сравнения, общее потребление каждого человека составляет 15 тераватт.

Так что Солнце дает в 5900 раз больше энергии, чем люди в настоящее время производят. Нам просто нужно научится использовать ее.

Наиболее эффективный способ использовать излучение нашей звезды это фотоэлементы. Как таковое, это преобразование фотонов в электричество. Но энергия создает ветер, который заставляет работать генераторы. Солнце помогает расти культурам, которые мы используем для производства биотоплива. И, как мы уже говорили, ископаемые виды топлива, такие как нефть и уголь это концентрированное солнечное излучение, собранное растениями в течение миллионов лет.

lfly.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта