Заземление и зануление - в чем разница? Заземление и зануление электроустановок. Заземление и зануление электроустановок их защитное действиеЗаземление и зануление электроустановок | Novation.byЗаземление электроустановки - это обеспечение электробезопасности путём целенаправленной электрической связи корпуса устройства с "землёй". Защита делится на два варианта: заземление и зануление. Их общей целью является нейтрализация вредного для человека при касании воздействия электрического тока, если оборудование на корпусе или же в любой другой доступной точке пробило на опасное напряжение. ЗаземлениеСуть защитного заземления в обеспечении безопасной эксплуатации электрооборудования путём соединения его защищаемой части с соответствующим устройством - "землёй". Если на внешнем кожухе установки или любой другой её детали внезапно окажется электрический потенциал, вред для человека будет сведён к минимуму. Главная характеристика заземляющего устройства - его сопротивление, качество защиты улучшается с его понижением. Заземление можно разделить на две основные детали - заземлитель и проводящие соединители, обеспечивающие контакт с заземляемой деталью. Областью использования защитного заземления являются трёхфазные сети, нейтраль в которых изолирована. Защитное заземление действует на основе серьёзного уменьшения разности потенциалов между деталью, на которую пробило напряжение (корпус и т.д.), и землёй, вплоть до безопасного для человека уровня. Если заземление отсутствует, контакт с опасным местом электроустановки является непосредственным контактом с фазой. У возникающего электрического тока нет иных путей, кроме тела человека. При низком электрическом сопротивлении надетой обуви, самого пола и наличии изолированности проводов от "земли" величина тока окажется недопустимой для пострадавшего. Если организация работы по охране труда была выполнена грамотно и проблемная деталь имеет защитное заземление, то даже в случае больших значений воздействующего напряжения, оно не вызовет серьёзных последствий для организма. Согласно закону Ома, сила тока будет обратно пропорциональна сопротивлению. При наличии двух параллельных цепей - человеческого тела и заземляющего контура, при равном значении исходного напряжения (фаза), сила проходящего тока будет тем выше, чем меньше сопротивление цепи. Сконструированное с учётом обеспечения минимального сопротивления защитное заземление примет на себя основной электрический ток, обезопасив имеющего значительно более высокое сопротивление человека. Два типа заземленияЗаземлители делятся на два типа - естественные и искусственные. Если для заземления используются уже существовавшие при постройке здания металлические конструкции (трубы, арматура и т.п.), заземлитель называют естественным. Когда стальные стержни, уголки или трубы специально забивают или закапывают в землю, конструкция является искусственной. В целях повышения безопасности длина искусственного заземлителя не может быть меньше 2.5 м., а улучшая защиту, металлические фрагменты комбинируют путём сварки стальными накладками или проволокой. Чтобы обеспечить электрический контакт между заземляемым прибором и заземлителем, принято использовать шины, выполненные из меди или стали. Заземляющие проводники крепят к корпусу оборудования при помощи сварки или с использованием надёжного резьбового соединения. Обязательная защита с использованием технологии заземления требуется для трансформаторов, электрических шкафов и щитов, а также большинства промышленных и некоторых бытовых приборов и механизмов. Хотя защитное заземление в большой степени уменьшает риск для человека, оно не ликвидирует его полностью. Потенциальная проблема в наличии своего собственного сопротивления у заземлителя, соединительных проводов и даже земли. Если изоляция нарушена, замыкающий ток проделает путь от заземляемой детали до земли, и на каждом этапе имеющееся сопротивление создаст дополнительную разность потенциалов. Итоговое суммарное напряжение будет значительно ниже общепринятых в России 220 В, однако всё ещё может составлять небезопасные для человека значения. Чтобы снизить суммарное напряжение надо уменьшить сопротивление заземлителя относительно финальной точки - земли. Общепринятой практикой является увеличение количества искусственных заземлителей. ЗанулениеВторым видом защиты от удара током при пробое на корпус является защитное зануление. Оно заключается в целенаправленном соединении частей электрического прибора, потенциально могущих оказаться под фазой, с заземленным выводом источника переменного или с аналогичной средней точкой в сетях постоянного тока. Тем самым пробой любой фазы на корпус оборудования переводится в короткое замыкание с заземлённым нулём. Протекающий при защитном занулении ток в разы больше, чем в случае заземления. Поэтому основной целью создания защитного зануления является быстрое прекращение работы и полное обесточивание сломанного устройства в принципе. Нулевой проводник бывает рабочим и защитным. Рабочий проводник предназначен для полноценного питания электроустановки, поэтому не отличается от других носителей по толщине и качеству изоляции, материалу и сечению провода. Защитный проводник имеет целью всего лишь создание в краткий период времени короткого замыкания очень высокого тока, который позволит сработать защите и оперативно обесточить неисправное устройство. В качестве нулевого защитного провода часто выступают используемые при прокладывании проводки стальные трубы или нулевые провода без дополнительных деталей (выключателей и предохранителей). Равно как и заземление, зануление не может полностью защитить человека от воздействия электричества при непосредственном контакте с находящимся под фазой элементом конструкции. Если обеспечение электробезопасности в помещении требует повышенного внимания, строго необходимо комбинировать зануление с другими мерами защиты - выравниванием потенциала и защитным отключением. www.novation.by Заземление и зануление электроустановок: виды, достоинства и недостаткиЛюбая электроустановка состоит не только из проводников электрического тока. Они помещаются в корпуса и оболочки, закрыты кожухами. Между токоведущими частями корпусами, в которых они находятся или на которых расположены, размещаются изоляционные материалы. Все изоляторы подвержены способности повреждаться. При этом они теряют свои свойства и начинают проводить электрический ток. Потенциал рабочих частей электроустановки, находящихся под напряжением, проникает через место повреждения на токопроводящие корпуса и оболочки. При прикосновении к ним человека последний получает опасный для жизни удар электрическим током. Способы защиты от опасных потенциаловСитуацию с повреждением междуфазной изоляции электрооборудования мгновенно пресекают защитные устройства: автоматические выключатели или предохранители. Но она лишь косвенно представляет опасность для человека. Опаснее для людей как раз однофазное замыкание, в результате которого корпуса электродвигателей, электрошкафов, кабельных конструкций оказываются под напряжением. Чтобы исключить риск поражения электротоком, нужно, чтобы при попадании напряжения на корпус произошло гарантированное короткое замыкание и потенциал на корпусе был максимально снижен. Первое защитное действие достигается созданием цепи между корпусом и заземленной нейтралью электроустановки. При замыкании возникает ток, достаточно большой для срабатывания тех же защитных аппаратов, работающих при междуфазных замыканиях. Это называется защитным отключением. Для реализации второго метода всем потенциально опасным металлическим частям электрооборудования придают потенциал земли. Делается это преднамеренным их соединением с заземляющим устройством. Мероприятие носит название – защитное заземление. Системы заземления электроустановок до 1000 В получили в 7-м издании ПУЭ классификацию. Рассмотрим эти системы по очереди. Система заземления TN-CВ этой конструкции нет ничего нового. Она была такой долгие годы. Для питания потребителей в ней используется 4 провода. Три из них – фазные, один – нулевой. По последнему протекает рабочий ток нагрузки. Но он же используется и для реализации защитных целей, соединяясь с контуром заземления нейтрали силового трансформатора, питающего электроустановки. К нему же присоединяются и корпуса электрооборудования. Называется он проводником PEN. Из-за того, что в нем сочетаются функции защиты и транспортировки рабочего тока к месту назначения, он получил название «совмещенный проводник». В итоге реализуются обе задачи: ток замыкания на землю высок – отключение поврежденного участка происходит достаточно быстро. К тому же при повреждении малое сопротивление PEN-проводника шунтирует тело прикоснувшегося к корпусу человека, имеющее сопротивление порядка килоома. Большая часть тока стекает в землю. Но по PEN-проводнику протекает рабочий ток нагрузки. Контактные соединения от этого могут нарушиться, соединение – стать ненадежными или прерваться вовсе. Так исчезает столь необходимая связь с заземляющим устройством. Даже, если имеется повторное заземление PEN-проводника на вводе в здание. Мало того, наличие тока в этом проводнике приводит к возникновению потенциала, увеличивающегося по мере удаления от точки связи с контуром заземления. А при обрыве проводника PEN картина и вовсе ужасающая. Потенциал на корпусах за местом обрыва может теоретически достигнуть и 220 В. Добавим ко всему этому технологически трудную реализацию соединения корпусов некоторых электроприемников с PEN. Как заземлить корпус электроплитки, подключаемой к сети через розетку? Развитие бытовых электроприборов, требующих применения защитных мер по электробезопасности, привело к усовершенствованию системы TN-C. Подробнее о системе TN-C можно почитать в отдельной статье. Система заземления TN-SОтличие от предыдущей рассмотренной системы заземления в том, что функции рабочего-нулевого и защитного проводника разделены в разных физических проводниках. Нулевой рабочий (N) – проводит ток нагрузки, нулевой защитный (РЕ) – подключается к контуру заземления. В результате происходит полное избавление от потенциала на корпусах, появляющихся в «особо отдаленных районах» электрической сети, а также – при обрывах проводников. Максимум, что грозит при отсутствии целостности проводника РЕ – отсутствие защиты. Но оборваться у него шансов немного – ток-то по нему не протекает, с чего бы вдруг потеряться выполненным по всем электрическим правилам контактным соединениям? Поскольку сечение РЕ-проводников в составе кабельных линий обычно оказывается равным сечению фазных, упростилась задача присоединить их к корпусам любого электрооборудования. Даже к заземляющему контакту розетки. Что позволило распространить защитные меры безопасности на все бытовые электроприборы: на ту же электроплитку, в частности. Правда, в силовые кабельные линии добавилась лишняя жила. Ну что же – за безопасность надо платить. Все вновь монтируемые электроустановки теперь, как правило, выполняются по этой системе заземления. Подробнеео системе TN-S можно почитать в отдельной статье. Система заземления TN-C-S.Существенной проблемой при реализации системы TN-S является то, что реконструкция электроустановок и строительство новых происходит зачастую без реконструкции самой трансформаторной подстанции. Обычно переделывается какая-то ее часть, начиная от распределительного щита на вводе до последнего потребителя. До этого щитка система заземления неизбежно сохраняет старую конструкцию. Эта проблема заранее решена тем же самым пунктом ПУЭ, описывающим переходной вариант системы заземления, обозначенный, как TN-C-S. В нем нетронутая реконструкцией часть электроустановки вполне себе официально не меняет своей структуры, оставаясь то же TN-C. А вот с некоторой точки распределительная сеть выполняется по новым правилам. Суть в разделении проводника PEN на два: рабочий и защитный.Выполняется это во вводном распределительном устройстве. В нем устанавливается две распределительных шинки: N и РЕ. Проводник PEN в обязательном порядке присоединяется к РЕ, а между самими шинками монтируется перемычка. Подробнее о системе TN-C-S можно почитать в отдельной статье. Почему к РЕ?Если перемычка между шинами оборвется (этого нельзя исключать ни в коем случае), то при таком способе соединения нулевая рабочая шина потеряет связь с нейтралью электроустановки. При этом возможны тяжелые последствия для электрооборудования – но соединение с защитной шиной не пострадает, люди останутся в безопасности. К тому же не заметить сей факт обрыва невозможно. Его сразу побегут искать. При обратной же схеме коммутации обрыв перемычки заметят разве что при плановых измерениях целостности защитной цепи. А за это время люди останутся без защиты – корпуса «повиснут в воздухе». Хорошо бы, если так. Предоставленная сама себе сеть из соединенных между собой защитных проводников таит не меньшую опасность, чем при обрыве PEN-проводника система TN-C. Блоки питания бытовой аппаратуры (компьютеров или стиральных машин, к примеру) и полупроводниковые ПРА люминесцентных ламп при отсутствии соединения их корпусов с заземляющим устройством выдают на них потенциал порядка 110 В через конденсаторы входного помехоподавляющего фильтра блока питания. Он распространяется по всей сети, появляясь на прочих металлических частях, соединенных с РЕ-проводником. Не стоит забывать о том, что эта система унаследовала от TN-C ее главные недостатки: потенциал на PEN-проводнике и опасные напряжения на нем при его обрыве. Главный метод борьбы с ними – собственный контур повторного заземления, вывод от которого присоединяется к шине РЕ вводного щитка. Но есть и другие системы заземления, использующиеся в частных случаях для защиты людей. Система заземления ТТВ предыдущих системах все заземляющие устройства соединяются в единую цепь проводниками PEN или (и) РЕ. В системе ТТ потребитель имеет свой собственный контур заземления, не связанной с проводником PEN питающей линии. Все его электрооборудование связано с этим контуром проводниками РЕ. Таким образом, исчезают проблемы с возможным обрывом питающего потребителя PEN- проводника. Он используется как нулевой рабочий и никак не связан с корпусами. Защита с помощью предохранителей и автоматических выключателей у потребителя работает только на устранение междуфазных замыканий, а также – между фазой и нулевым проводником. Мерой же для защитного отключения служит обязательная установка УЗО у потребителя. Внедрение этого метода заземления имеет показания к применению и при большой протяженности питающих линий, когда повышенное сопротивление петли фаза-нуль не позволяет произвести защитное отключение в нормируемое время. Подробнеео системе TT можно почитать в отдельной статье. Система заземления ITА здесь нулевой проводник отсутствует вовсе, так как эта система – с изолированной нейтралью. Подключение нагрузки возможно только на линейные напряжения сети. Ничего опасного для потребителя при возникновении повреждения одной фазы на корпус не происходит. Ток замыкания на землю ничтожен и не принесет организму особого вреда. А для ликвидации опасных по величине токов все линии защищают УЗО в обязательном порядке. Но для фиксации замыканий на землю в таких сетях устанавливаются специальные элементы – реле утечки. При его срабатывании повреждение требуется активно поискать. А при возникновении второго замыкания участок сети с повреждением подлежит немедленному отключению. pue8.ru Что такое защитное заземление и зануление?Для обеспечения защиты людей при прикосновении к металлическим нетоковедущим частям, которые могут по каким-либо причинам оказаться под напряжением, наряду с другими средствами применяются защитное заземление и зануление. Согласно ГОСТ 12.1.009-76 «Система стандартов безопасности труда. Электробезопасность. Термины и определения» защитное заземление - преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Назначение защитного заземления - устранение опасности поражения людей электрическим током при появлении напряжения на конструктивных частях электрооборудования, т. е. при замыкании на корпус. Защитному заземлению подлежат металлические нетоковедущие части электрооборудования, которые из-за неисправности изоляции могут оказаться под напряжением и к которым возможно прикосновение людей и животных. Принцип действия защитного заземления - снижение напряжения между корпусом, оказавшимся под напряжением, и землей до безопасного значения. Следует отметить, что в техническом кодексе установившейся практики «Электроустановки на напряжение до 750 кВ. Линии электропередачи воздушные и токопроводы, устройства распределительные и трансформаторные подстанции, установки электросиловые и аккумуляторные, электроустановки жилых и общественных зданий. Правила устройства и защитные меры электробезопасности. Учет электроэнергии. Нормы приемо-сдаточных испытаний», утвержденном постановлением Министерства энергетики Республики Беларусь от 23 августа 2011 г. № 44, дается определение не только термину «заземление», но и производным от него терминам: заземление - преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством; заземление защитное - заземление, выполненное в целях электробезопасности; заземление функциональное (рабочее, технологическое) - заземление точки или точек системы, или установки, или электрооборудования в целях, отличных от целей электробезопасности. Согласно ГОСТ 12.1.009-76 «Система стандартов безопасности труда. Электробезопасность. Термины и определения» зануление - преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением. Назначение зануления - устранение опасности поражения людей током при пробое на корпус. Принцип действия зануления - превращение замыкания на корпус в однофазное короткое замыкание (т. е. замыкание между фазным и нулевым проводами) с целью вызвать большой ток, способный обеспечить срабатывание защиты и тем самым автоматически отключить поврежденную установку от питающей сети. Такой защитой могут быть плавкие предохранители, магнитные пускатели со встроенной тепловой защитой, контакторы в сочетании с тепловыми реле, автоматы, осуществляющие защиту одновременно от токов короткого замыкания и от перегрузки. Занулению подлежат металлические конструктивные нетоковедущие части электрооборудования, которые должны быть заземлены: корпуса машин, аппаратов и др. В сети с занулением корпус приемника нельзя заземлять, не присоединив его к нулевому защитному проводу. ohranatruda.of.by Заземление и зануление электроустановок их защитное действиеОдним из основных защитных мероприятий является заземление, заключающееся в преднамеренном электрическом соединении корпуса электроустановки и заземляющего устройства. Существует два варианта – заземление и зануление электроустановок. Их основной функцией является защита от воздействия электрического тока во время прикосновения человека к корпусу устройства или его отдельным частям. Как правило, эти части оказываются под напряжением, в результате нарушения изоляции. Особенности защитного заземленияЧаще всего, применяется защитное заземление. В настоящее время используются специальные розетки, оборудованные заземляющими контактами. Эффективность заземляющего устройства тем выше, чем ниже его сопротивление. При пробое изоляции корпус прибора нередко оказывается под напряжением. При наличии заземления, ток не будет представлять опасности, он просто уйдет в землю по заземлителю, обладающему низким сопротивлением. Кроме заземлителя, в состав заземляющего устройства входят заземляющие проводники. Заземлители могут быть естественными, состоящими из металлических конструкций зданий и сооружений, соединенных с землей. Искусственные заземлители изготавливаются из стальных труб, уголков или стержней, длина которых должна быть не менее 2,5 м. Они забиваются в землю и соединяются между собой стальными полосами или проволокой. Благодаря защитному заземлению значительно снижается опасное напряжение. Его сопротивление можно уменьшить за счет применения большого количества дополнительных искусственных заземлителей. Применение защитного зануленияВ отличие от заземления, защитное зануление заключается в преднамеренном электрическом соединении тех частей электроустановок, которые нормально не находятся под напряжением. У них имеется глухозаземленная нейтраль и нулевой провод. При замыкании на корпус установки какой-либо фазы, возникает короткое замыкание этой фазы и нулевого провода. Величина тока, в этом случае, значительно возрастает по сравнению с обычным защитным заземлением. Поврежденное оборудование быстро и полностью отключается, что и является главной целью зануления. Существует два проводника, выполняющих различные функции. Роль нулевого рабочего проводника состоит в питании электроустановок. В нем такая же изоляция, как и в других проводах, через его сечение свободно проходит рабочий ток. Основным назначением нулевого защитного проводника является создание короткого замыкания на кратковременный период. При этом, происходит быстрое отключение, обеспечивающее защиту электроустановок. Таким образом, заземление и зануление электроустановок позволяет не только надежно защитить их, но и уберечь от поражения электрическим током. electric-220.ru Защитное заземление и занулениеВведение Защитное заземление, (зануление), является основной мерой защиты металлоконструкции. Основная цель этого мероприятия — защитить от возможного удара током пользователя прибора при замыкании на корпус в том случае, например поражения электрическим током в случае замыкания фазного провода на, когда нарушена изоляция. Иными словами, заземление является дублером защитных функций предохранителей. Заземлять все электроприборы, имеющиеся в доме, нет необходимости: у большинства из них имеется надежный пластмассовый корпус, который сам по себе защищает от поражения электрическим током. Защитное зануление отличается от заземления тем, что корпуса машин и аппаратов соединяются не с "землей", а с заземленным нулевым проводом, идущим от трансформаторной подстанции по четырехпроводной линии электропередач. Для обеспечения полной безопасности человека сопротивление заземлителей (вместе с контуром) не должно превышать 4 ом. С этой целью два раза в год (зимой и летом) производится их контрольная проверка специальной лабораторией. Заземление — преднамеренное электрическое соединение какой-либо точки электрической сети, электроустановки или оборудования, с заземляющим устройством. Заземляющее устройство состоит из заземлителя (проводящей части или совокупности соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду) и заземляющего проводника, соединяющего заземляемую часть (точку) с заземлителем. Заземлитель может быть простым металлическим стержнем (чаще всего стальным, реже медным) или сложным комплексом элементов специальной формы. Качество заземления определяется значением сопротивления заземляющего устройства, которое можно снизить, увеличивая площадь заземлителей или проводимость среды — используя множество стержней, повышая содержание солей в земле и т. д. Электрическое сопротивление заземляющего устройства определяется требованиями ПУЭ Терминология· Глухозаземлённая нейтраль — нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно. Глухозаземлённым может быть также вывод источника однофазного переменного тока или полюс источника постоянного тока в двухпроводных сетях, а также средняя точка в трёхпроводных сетях постоянного тока. · Изолированная нейтраль — нейтраль трансформатора или генератора, не присоединённая к заземляющему устройству или присоединённая к нему через большое сопротивление приборов сигнализации, измерения, защиты и других аналогичных им устройств. ОбозначенияОбозначение на схемах (два символа справа) Проводники защитного заземления во всех электроустановках, а также нулевые защитные проводники в электроустановках напряжением до 1 кВ с глухозаземленной нейтралью, в том числе шины, должны иметь буквенное обозначение PE (Protective Earthing) и цветовое обозначение чередующимися продольными или поперечными полосами одинаковой ширины (для шин от 15 до 100 мм) желтого и зеленого цветов. Нулевые рабочие (нейтральные) проводники обозначаются буквой N и голубым цветом. Совмещенные нулевые защитные и нулевые рабочие проводники должны иметь буквенное обозначение PEN и цветовое обозначение: голубой цвет по всей длине и желто-зеленые полосы на концах. Обозначения системы заземленияПервая буква в обозначении системы заземления определяет характер заземления источника питания: · T — непосредственное соединения нейтрали источника питания с землёй; · I — все токоведущие части изолированы от земли. Вторая буква определяет состояние открытых проводящих частей относительно земли: · T — открытые проводящие части заземлены, независимо от характера связи источника питания с землёй; · N — непосредственная связь открытых проводящих частей электроустановки с глухозаземленной нетралью источника питания. Буквы, следующие через чёрточку за N, определяют характер этой связи — функциональный способ устройства нулевого защитного и нулевого рабочего проводников: · S — функции нулевого защитного PE и нулевого рабочего N проводников обеспечиваются раздельными проводниками; · C — функции нулевого защитного и нулевого рабочего проводников обеспечивается одним общим проводником PEN. Защитная функция заземленияПринцип защитного действияЗащитное действие заземления основано на двух принципах: · Уменьшение до безопасного значения разности потенциалов между заземляемым проводящим предметом и другими проводящими предметами, имеющими естественное заземление. · Отвод тока утечки при контакте заземляемого проводящего предмета с фазным проводом. В правильно спроектированной системе появление тока утечки приводит к немедленному срабатыванию защитных устройств (устройств защитного отключения — УЗО). Таким образом, заземление наиболее эффективно только в комплексе с использованием устройств защитного отключения. В этом случае при большинстве нарушений изоляции потенциал на заземленных предметах не превысит опасных величин. Более того, неисправный участок сети будет отключен в течение очень короткого времени (десятые ÷ сотые доли секунды — время срабатывания УЗО). Разновидности систем заземленияКлассификация типов систем заземления приводится в качестве основной из характеристик питающей электрической сети. ГОСТ Р 50571.2-94 «Электроустановки зданий. Часть 3. Основные характеристики» регламентирует следующие системы заземления: TN-C, TN-S, TN-C-S, TT, IT. Система TN-C Система TN-C (фр. Terre-Neutre-Combine) предложена немецким концерном AEG в 1913 году. Рабочий ноль и PE-проводник (англ. ProtectionEarth) в этой системе совмещены в один провод. Самым большим недостатком была возможность появления фазного напряжения на корпусах электроустановок при аварийном обрыве нуля. Несмотря на это, данная система все еще встречается в постройках стран бывшего СССР. Система TN-S Разделение нулей в TN-S и TN-C-S На замену условно опасной системы TN-C в 1930-х годах была разработана система TN-S (фр.Terre-Neutre-Separe), рабочий и защитный ноль в которой разделялись прямо на подстанции, а заземлитель представлял собой довольно сложную конструкцию металлической арматуры. Таким образом, при обрыве рабочего нуля в середине линии, корпуса электроустановок не получали линейного напряжения. Позже такая система заземления позволила разработать дифференциальные автоматы и срабатывающие на утечку тока автоматы, способные почувствовать незначительный ток. Их работа и по сей день основывается на законах Кирхгофа, согласно которым текущий по фазному проводу ток должен быть численно равным текущему по рабочему нулю току. Также можно наблюдать систему TN-C-S, где разделение нулей происходит в середине линии, однако, в случае обрыва нулевого провода до точки разделения, корпуса окажутся под линейным напряжением, что будет представлять угрозу для жизни при касании. Система TN-C-SВ системе TN-C-S трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с точкой заземления трансформаторной подстанции. Для обеспечения этой связи на участке трансформаторная подстанция — электроустановки здания применяется совмещенный нулевой защитный и рабочий проводник (PEN), в основной части электрической цепи — отдельный нулевой защитный проводник (PE). Система TTВ системе TT трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с землёй через заземлитель, электрически независимый от заземлителя нейтрали трансформаторной подстанции. Система ITВ системе IT нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части заземлены. Ток утечки на корпус или на землю в такой системе будет низким и не повлияет на условия работы присоединенного оборудования. Система IT применяется, как правило, в электроустановках зданий и сооружений специального назначения, к которым предъявляются повышенные требования надежности и безопасности, например в больницах для аварийного электроснабжения и освещения. Зануление — это преднамеренное электрическое соединение открытых проводящих частей электроустановок, не находящихся в нормальном состоянии под напряжением, с глухозаземленной нейтральной точкой генератора или трансформатора, в сетях трехфазного тока; с глухозаземленным выводом источника однофазного тока; с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности. Защитное зануление является основной мерой защиты при косвенном прикосновении в электроустановках до 1 кВ с глухозаземленной нейтралью. Принцип действияПринцип действия зануления Принцип работы зануления: если напряжение (фаза) попадает на соединенный с нулем металлический корпус прибора, происходит короткое замыкание. Автоматический выключатель, включенный в поврежденную цепь срабатывает от короткого замыкания и отключает линию от электричества. Кроме этого, отключение электричества от линии может выполнять плавкий предохранитель. В любом случае, ПУЭ регламентируют время автоматического отключения поврежденной линии. Для номинального фазного напряжения сети 380/220 В. оно не должно превышать 0,4 с. mirznanii.com Заземление и зануление - в чем разница? Заземление и зануление электроустановок :: SYL.ruЭлектричество делает нашу жизнь комфортнее, удобнее и интереснее вот уже несколько сотен лет. Придумано и сделано великое множество разных машин, устройств и приборов, работающих на электричестве, создающих для нас материальные блага, или таких, как печально известный электрический стул. Но, к сожалению, электричество может убивать не только на электрическом стуле по приговору суда. Поток крохотных электронов представляет собой грозную и могучую силу, относиться к которой стоит с должным уважением. Естественно, что человеком придумано большое количество разнообразных способов защиты от поражения электрическим током. В чем разница? Заземление и зануление будут далее рассмотрены в качестве примера. Это два способа, помогающих уберечься от электрического тока путем отведения его потока в сторону. Оба метода работают по одному принципу, но в то же время отличаются друг от друга. Что такое электричествоЧтобы уяснить для себя, что такое электробезопасность, защитное заземление, зануление, как это всё работает, напомним суть явления электрического тока. Все тела во Вселенной состоят из атомов, строение которых известно каждому школьнику: положительно заряженное ядро внутри и вращающиеся вокруг ядра отрицательные электроны. Существует ряд химических элементов – металлов, у которых несколько электронов, находящихся на самых дальних от ядра орбитах, легко могут быть оторваны (притянуты сильным положительным зарядом). Таким образом, если взять металлический провод, приложить к его концам противоположные электрические заряды, то электроны, оторвавшись от своих атомов, начнут движение в сторону положительного заряда. Однако при движении в толще металла электроны постоянно «натыкаются» на атомы, заставляют их слегка вибрировать в узлах кристаллических решёток. Это приводит к выделению тепла. Причём нагрев может быть таким сильным, что металл способен раскаляться до тысяч градусов (как спираль лампы накаливания). В некоторых случаях металл и вовсе может расплавиться и даже испариться. Как электрический ток действует на тело человекаТело человека на три четверти состоит из воды. Вода является неплохим проводником электрического тока (правда, механизм проводника несколько иной, нежели у металлов – ионный). Прохождение электрического тока по телу человека сопровождается рядом неприятных явлений. На заземление и зануление электроустановок иногда тратятся огромные, в масштабах предприятий, средства, чтобы это действие предотвратить. Электроны, двигаясь по живым тканям, вызывают их нагрев, жидкость, содержащаяся в клетках, мгновенно закипает. Кроме этого, электрический ток, воздействуя на нейронные окончания, вызывает конвульсивное спазматическое сокращение всех мышц. Судорога приводит к остановке сердца, к блокировке дыхания. Для человека опасен проходящий по телу электрический ток от 0,1 А. А вот, какой величины он достигнет, зависит от ряда факторов: от сухости кожных покровов, качества контакта, напряжения, расположения точек «входа» и «выхода» электронов. Самыми опасными «маршрутами» считаются следующие: - рука – рука; - правая нога – левая рука или наоборот; - голова – любая часть тела. Виды защиты от поражения электрическим токомСпособы защититься от поражающих факторов тока делятся на активные и пассивные. Активные способы предполагают наличие защитной автоматики. Дело в том, что тело человека обладает определённым электрическим сопротивлением и ёмкостью, и, дотрагиваясь до оголённого провода, мы как бы «включаем» в сеть дополнительный элемент. Умные приборы в состоянии зафиксировать такое изменение и за доли секунды обесточить цепь. Другие меры направлены на исключение непосредственно контакта тела с источниками: использование защитных перчаток, диэлектрической обуви, специальных ковриков. Даже встав на табурет из сухого дерева во время проведения электромонтажных работ, человек в значительной степени уменьшает риск получить смертельный удар. А есть и другие методы, такие как защитное заземление и зануление. Суть их действия, если говорить просто, сводится к тому, чтобы предоставить электрическому току более лёгкий и «привлекательный» маршрут по сравнению с человеческим телом. Чем опасны электроприборыКак эти меры работают и в чем разница? Заземление и зануление относятся к защитным мероприятиям, которым уделяется достаточно много внимания ещё на стадии проектирования электрических машин и производств. Представим себе, что в каком-либо бытовом или промышленном приборе произошло замыкание фазы на корпус. Что произойдет, если человек голой рукой дотронется до машины? Учитывая, что планета Земля – прекрасный приёмник электрического тока, электроны устремятся через человеческое тело в грунт. Как сработает заземлениеИтак, как защитит человека заземление? Все обращали внимание на третий контакт бытовых электрических вилок, появившийся в нашей стране в конце прошлого века. Два привычных контакта – это «ноль» и «фаза», куда же ведёт третий? А он и есть заземление и ведёт, как понятно из названия, в землю. Что происходит, если человек дотрагивается до обычного или заземлённого прибора, в чем разница? Заземление и зануление как бы создают второй параллельный маршрут для потока электронов. В случае с заземлением с корпуса прибора проложен электрический провод с хорошим сечением и малым сопротивлением, подсоединённый к металлическим штырям или другим элементам, специально заглубленным в грунт (причём обязательно ниже точки промерзания – лёд плохой проводник). Если объяснять принцип работы заземления простым языком: электроны, идя по пути наименьшего сопротивления, в основном двигаются в землю по проводу заземления, поток же, идущий через человеческое тело, за счёт этого значительно ослабевает. Как защищает занулениеА вот другой, аналогичный метод защиты от поражения электрическим током. В чем разница между заземлением и занулением? Если заземление соединяет открытые детали электрических машин с почвой, то зануление – с нулевым проводом. Электрический ток здесь опять-таки выбирает более лёгкий для себя путь, благодаря чему удар тока, получаемый человеком, значительно ослабевает. Но есть ещё одно существенное отличие заземления от зануления. При касании фазного провода зануления происходит фактически короткое замыкание системы. А это практически всегда приводит в действие автоматическую защиту и обесточивает систему. Таким образом несчастный случай предотвращается заранее. Технические особенности обеих системПочему в разных условиях применяются различные методы защиты, чем отличается заземление от зануления в эксплуатации? - заземление предусматривает также возможность молниезащиты (хотя специалисты и не рекомендуют этого делать), зануление не предназначено для этого; - зануление предполагает обязательное использование автоматов защиты, без них устройство зануления запрещено; - зануление не всегда применимо в технике из-за обесточивания определённых участков электропроводки при срабатывании. Где применяется заземлениеВ быту с целью защиты от поражения электрическим током чаще применяется заземление. В качестве заземлителей прекрасно могут работать естественные конструкции, такие как металлические, зарытые в землю трубопроводы или арматура железобетонных конструкций. Но чаще делается специальный заземляющий контур из соединённых вместе вбитых в землю штырей. В чем разница? Заземление и зануление предназначены для обеспечения электробезопасности, в то время как при замыкании фазного провода на заземляющий контур, он сам становится источником опасности. Если в вашем доме, к примеру, сосед заземлил свою стиральную машину на систему отопления, то в случае «пробития» электричества на корпус, элементы системы отопления лучше не трогать всем жителям здания. При использовании же специального заземляющего контура жильцам ничего не грозит. При монтаже индивидуальных заземляющих систем в частном строительстве, часто их объединяют с системами молниезащиты. Специалисты делать этого ни в коем случае не рекомендуют, так как в случае удара молнии вся проводка в доме становится фактором повышенной опасности, а многие электроприборы просто выходят из строя. Где делается занулениеЗаземление применяется в основном в жилом фонде. В промышленности же чаще всего используется защитное заземление и зануление электроустановок в комплексе. Здесь учитывается, что при попадании напряжения на корпус того или иного прибора, агрегата, работающего от сети с напряжением гораздо выше бытового, опасность для человека возрастает многократно. Кроме того, подвергается опасности дорогостоящее оборудование. Поэтому в этом случае лучше, если участок цепи будет мгновенно обесточен защитной автоматикой. При использовании электрических машин и агрегатов с напряжением 380В и выше для переменного тока или 440В и выше для постоянного тока, монтаж системы зануления обязателен. Меры безопасности при обращении с электричествомЕсть несложные правила, которые при пользовании бытовыми и промышленными электроприборами позволят избежать беды. - вилку из розетки не вытягивают за шнур, её необходимо извлекать из гнезда, крепко обхватив пальцами; - включать-выключать электроприборы или освещение (розеткой в вилку или посредством выключателя) ни в коем случае не стоит с мокрыми руками; - не нужно использовать в светильниках лампы большей мощности, чем это указано в инструкции к данному осветительному прибору; - если прибор заискрил, или при его работе слышится характерный треск короткого замыкания, проводить с ним какие-либо действия можно лишь после выключения его из розетки; - полезно знать, где и как обесточивается вся электропроводка в доме, иногда это может сохранить жизни и имущество; - если в руководстве к прибору не указано, что он относится к оборудованию, которое можно оставлять без присмотра, то делать это ни в коем случае нельзя. www.syl.ru 4)Защитное заземлениеЗащитным заземлением называется преднамеренное соединение с землей всех нетоковедущих металлических частей электроустановки, не находящихся под напряжением, но которые могут оказаться под напряжением в результате пробоя изоляции. Следует различать рабочее заземление и защитное заземление. Рабочее заземление - соединение нейтрали с землей, определяющее режим заземленной нейтрали. Защитное заземление - соединение корпусов и других деталей с заземлителем. Заземлителями могут служить труба, уголковая сталь, швеллер, полосовая сталь, лист железа, помещенные во влажную землю (а также арматура железобетонных конструкций, стальные опоры ЛЭП и др.). Переходное сопротивление устройства заземления должно быть не более 2 Ом в подземных условиях угольных шахт, в помещениях с повышенной опасностью и особо опасных. В других случаях не более 4 Ом, на опорах ЛЭП не более 10 Ом. Соединение корпусов с заземлителем осуществляется стальным проводом, сечением не менее 24 мм, в земле стальной шинкой сечением 50-120 мм, медным проводом сечением не более 25 мм. При соединении предпочтительнее сварка. Передвижные электроприемники заземляются через заземляющую жилу кабеля, питающего электроустановку. Принцип действия защитного заземления - снижение напряжения прикосновения корпуса до безопасной величины за счет малого сопротивления заземлителя (рис. 4).
Рис. 13.5. Принцип действия защитного заземления Напряжением прикосновения называется напряжение на какой-либо токопроводящй части электроустановки в момент прикосновения к ней человека. Напряжение прикосновения обусловливает величину тока через тело человека. В аварийных ситуациях это напряжение может быть опасным Для снижения напряжения прикосновения необходимо обеспечить эффективное заземление или зануление электроустановки. прикосновения КЗ 3 ' При малом сопротивлении заземления (Яз = 2 Ом) напряжение на корпусе электроаппарата в случае пробоя изоляции будет невелико, большая часть тока замыкания Ь пойдет через заземлитель, а не через тело человека (Яц = = 1000 Ом), включенного параллельно сопротивлению заземления. 5)Защитное зануление. Принцип действияЗанулением называется преднамеренное электрическое соединение металлических нетоковедущих частей электроустановок с нулевым, многократно заземленным проводом. Нулевой защитный провод имеет сечение в два раза меньшее, чем нулевой рабочий провод. Нулевой рабочий провод используется в 4-проводных сетях с несимметричной нагрузкой (например, бытовой). Назначение защитного зануления - устранение опасности поражения током в случае прикосновения к корпусу, оказавшемуся под напряжением. Принцип действия - превращение замыкания на корпус в однофазное короткое замыкание и отключение его максимальной токовой защитой (плавкими вставками, автоматами и др). Зануление осуществляет 2 защитных действия:
Область применения - трехфазные четырехпроводные сети до 1000 В с глухозаземленной нейтралью, в однофазных двухпроводных сетях переменного тока; в трехпроводных сетях постоянного тока - с глухозаземленной средней точкой. Для схемы зануления необходимы: нулевой защитный проводник, глухое заземление нейтрали и повторное заземление нулевого защитного провода (рис. 13.6). Нулевой защитный провод снижает сопротивление цепи короткого замыкания и обеспечивает тем самым достаточно большой ток замыкания для надежного срабатывания максимальной токовой защиты. Глухое заземление нейтрали обеспечивает малое напряжение прикосновения. Повторное заземление нейтрали обеспечивает малое напряжение прикосновения для удаленных электроприемников.
Рис. 13.6. Защитное зануление Защитное отключение. Принцип действия Назначение защитного отключения - обеспечение автоматического отключения электроустановки при возникновении в ней опасности поражения человека током. Меры защиты - быстрое отключение участка сети. Устройство защитного отключения (УЗО) включает в себя прибор защитного отключения и исполнительный орган - автоматический выключатель. Прибор защитного отключения - совокупность отдельных элементов, которые воспринимают входную величину, реагируют на ее изменение и при заданном ее значении дают сигнал на отключение выключателя. Исполнительный орган - автоматический выключатель. УЗО применяются в электроустановках, где по каким-либо причинам трудно обеспечить эффективное заземление или зануление, где высока вероятность прикосновения людей к токоведущим частям (передвижные электроустановки, ручной электроинструмент). УЗО делятся на следующие типы, реагирующие на:
Устройства, реагирующие на потенциал корпуса УЗО с реле напряжения УЗО с предохранителем Рис. 13.7. При возникновении опасных напряжений на корпусе электроустановки срабатывает реле напряжения РН (рис. 6), включенное между корпусом и землей, размыкает свой нормально замкнутый контакт РН в цепи питания отключающей катушки ОК, которая отключает электроустановку от сети. В другом варианте (рис. 6) при появлении опасного напряжения на корпусе электроустановки срабатывает реле напряжения РН, замыкает свой контакт, вызывая короткое замыкание и перегорание предохранителя, обесточивая тем самым электроустановку. Рис.13.8. Устройства, реагирующие на ток замыкания на землю. При возникновении опасных напряжений на корпусе электроустановки (рис. 7) возникает ток утечки, срабатывает реле тока РТ, включенное между корпусом и землей, размыкает свой нормально замкнутый контакт в цепи питания отключающей катушки ОК, которая отключает электроустановку от сети.
Рис. 13.9. УЗО, реагирующие на напряжение нулевой последовательности Снижение сопротивления или пробой изоляции одной из фаз является причиной возникновения несимметричного режима токов и напряжений, появляется напряжение нулевой последовательности, которое можно использовать для отключения электроустановки. Реле напряжения РН включаются между землей и нулевой точкой, образованной либо тремя большими сопротивлениями (рис. 13.9.а), либо тремя конденсаторами. Если вторичные обмотки трансформатора включить последовательно (рис. 13.9 в), то реле напряжения РН, включенное в такую цепь, будет реагировать на напряжение нулевой последовательности, возникающее при несимметричном режиме.
Во вторичной обмотке трансформатора тока, охватывающего своим магнитопроводом все три фазы кабеля (рис. 9), протекает сумма токов фаз А, В и С, с учетом коэффициента трансформации. Рис. 13.10. УЗО, реагирующие на ток нулевой последовательности В симметричном режиме ток отсутствует, так как
В несимметричном режиме (снижение или пробой изоляции) возникает ток нулевой последовательности, срабатывает реле тока РТ, подается команда на отключение электроустановки. studfiles.net |