Eng Ru
Отправить письмо

Лекция 4 Характеристики и параметры биполярного транзистора. Характеристики транзистора


7. Статические характеристики биполярного транзистора

Транзистор в электрических схемах используется в качестве четырехполюсника, характеризующегося четырьмя величинами: входным и выходным напряжениями и входным и выходным токами ( uВХ, uВЫХ, iВХ, iВЫХ). Функциональные зависимости между этими величинами называются статическими характеристиками транзистора, Чтобы установить функциональные связи между указанными величинами, необходимо две из них взять в качестве независимых переменных, а две оставшиеся выразить в виде функций этих независимых переменных. Как правило, применительно к биполярному транзистору в качестве независимых переменных выбирают входной ток и выходное напряжение. В этом случае входное напряжение и выходной ток выражаются следующим образом:

На практике удобнее использовать функции одной переменой. Для перехода к таким функциям необходимо вторую переменную, называемую в этом случае параметром характеристики, поддерживать постоянной. В результате получаются четыре типа характеристик транзистора:

; (3.31)

; (3.32)

; (3.33)

. (3.34)

Статические характеристики транзистора могут задаваться соответствующими аналитическим выражениями, а могут быть представлены графически. Несколько характеристик одного типа, полученные при различных значениях параметра, образуют семейство характеристик. Семейства входных и выходных характеристик транзистора считаются основными и приводятся в справочниках, с их помощью легко могут быть получены два других семейства характеристик. В различных схемах включения транзистора в качестве входных и выходных токов и напряжений выступают токи, протекающие в цепях различных электродов, и напряжения, приложенные между различными электродами. Поэтому конкретный вид статических характеристик зависит от схемы включения транзистора. Рассмотрим статические характеристики транзистора в наиболее распространенных схемах ОБ и ОЭ. Статические характеристики в схеме ОБ. В схеме с ОБ (см. рис.3,а) входным током является ток эмиттера iЭ, а выходным - ток коллектора iК, соответственно, входным напряжением является напряжение uЭБ, а выходным - напряжение uКБ.

Входная характеристика в схеме ОБ представляет собой зависимость

Однако, реально в справочниках приводится обратная зависимость

Семейство входных характеристик кремниевого n-p-n-транзистора приведено на рис.20. Выражение для идеализированной входной характеристики транзистора в активном режиме имеет вид:

Следует отметить, что в выражении (3.35) отсутствует зависимость тока iЭ от напряжения на коллекторном переходе uКБ. Реально такая зависимость существует и связана она с эффектом Эрли. Как показано в п. 3.3, при увеличении обратного напряжения uКБ. сужается база транзистора , в результате чего несколько увеличивается ток эмиттера iЭ. Увеличение тока iЭ с ростом uКБ. отражается небольшим смещением входной характеристики в сторону меньших напряжений  uЭБ.  - см. рис. 3.20. Режиму отсечки формально соответствует обратное напряжение uЭБ.>0 , хотя реально эмиттерный переход остается закрытым ( iЭ  0) и при прямых напряжениях  uЭБ меньших порогового напряжения.

Выходная характеристика транзистора в схеме ОБ представляет собой зависимость

Семейство выходных характеристик n-p-n-транзистора приведена на рис.21. Выражение дляидеализированной выходной характеристики в активном режиме имеет вид: iК = · iЭ+ IКБ0. (3.36)

В соответствие с этим выражением ток коллектора определяется только током эмиттера и не зависит от напряжения uКЭ. Реально (см. рис.21) имеет место очень небольшой рост iК при увеличении обратного напряжения uКБ, связанный с эффектом Эрли. В активном режиме характеристики практически эквидистантны (расположены на одинаковом расстоянии друг от друга), лишь при очень больших токах эмиттера из-за уменьшения коэффициента передачи тока эмиттера  эта эквидистантность нарушается, и характеристики несколько приближаются друг к другу. При iЭ= 0 в цепи коллектора протекает тепловой ток ( iК= IКБ0). В режиме насыщения на коллекторный переход подается прямое напряжение uКБ, большее порогового значения, открывающее коллекторный переход. В структуре транзистора появляется инверсный сквозной поток электронов, движущийся из коллектора в эмиттер навстречу нормальному сквозному потоку, движущемуся из эмиттера в коллектор. Инверсный поток очень резко увеличивается с ростом  uКБ. , в результате чего коллекторный ток уменьшается и очень быстро спадает до нуля - см. рис.21.

Статические характеристики в схеме ОЭ

В схеме с общим эмиттером (см. рис. 3.3,б) входным током является ток базы iБ, а выходным - ток коллектора iК, соответственно, входным напряжением является напряжение uБЭ, а выходным - напряжение uКЭ.

Входная характеристика в схеме ОЭ представляет собой зависимость

Однако, реально в справочниках приводится обратная зависимость

Семейство входных характеристик кремниевого n-p-n-транзистора приведено на рис.22. Выражение для идеализированной входной характеристики в активном режиме имеет вид:

, (3.37)

где uБЭ - прямое напряжение на эмиттерном переходе. Так же, как и в схеме ОБ, входная характеристика имеет вид, характерный для прямой ветви ВАХ p-n-перехода (см. рис.22). однако, входной ток iБ здесь в (  + 1) раз меньше, чем в схеме ОБ. Экспоненциальный рост тока базы при увеличении uБЭ связан с увеличением инжекции электронов в базу и соответствующим усилением их рекомбинации с дырками. В выражении (3.37) отсутствует зависимость тока iБ от напряжения uКЭ. Реально эта зависимость имеет место, она связана с эффектом Эрли. С ростом обратного напряжения на коллекторном переходе сужается база транзистора, в результате чего уменьшается рекомбинация носителей в базе и, соответственно, уменьшается ток базы. Снижение тока базы с ростом uКЭ отражается небольшим смещением характеристик в область больших напряжений uБЭ - см. рис. 3.22.При uКЭ< uБЭ открывается коллекторный переход, и транзистор переходит в режим насыщения. В этом режиме вследствие двойной инжекции в базе накапливается очень большой избыточный заряд электронов, их рекомбинация с дырками усиливается, и ток базы резко возрастает - см. рис.22.

Выходная характеристика в схеме ОЭ представляет собой зависимость

Семейство выходных характеристик n-p-n-транзистора приведено на рис.23. Выражение для идеализированной выходной характеристики в активном режиме имеет вид:

. (3.38)

Особенностью выходной характеристики транзистора в схеме с общим эмиттером по сравнению с характеристикой в схеме с общей базой, является то, что она целиком лежит в первом квадранте. Это связано с тем, что в схеме ОЭ напряжение uКЭ распределяется между обоими переходами, и при uКЭ< uБЭ напряжение на коллекторном переходе меняет знак и становится прямым, в результате транзистор переходит в режим насыщения при uКЭ >0 (cм. рис.23). В режиме насыщения характеристики сливаются в одну линию, то есть ток коллектора не зависит от тока базы. Так же, как и в схеме ОБ, идеализированная характеристика в активном режиме не зависит от напряжения uКЭ. Реально имеет место заметный рост тока iК с ростом uКЭ (см. рис.23), связанный с эффектом Эрли. Этот рост выражен значительно сильнее, чем в схеме ОБ в связи с более резкой зависимостью от напряжения на коллекторном переходе коэффициента передачи тока базы  по сравнению с коэффицентом передачи тока эмиттера  . Также более резкой зависимостью  от тока эмиттера и, соответственно, от тока базы объясняется практическое отсутствие эквидистантности характеристик. При iБ=0 в цепи коллектора протекает ток iКЭ0=  iБЭ0.

Увеличение тока в  раз по сравнению со схемой ОБ объясняется тем, что в схеме ОЭ при iБ=0 и uКЭ >0 эмиттерный переход оказывается несколько приоткрыт напряжением uКЭ, и инжектируемые в базу электроны существенно увеличивают ток коллектора.

studfiles.net

Лекция 4 Характеристики и параметры биполярного транзистора

1.3. Характеристики и параметры биполярного транзистора

в схеме ОЭ

Биполярный транзистор описывается в первую очередь семейством входных и выходных характеристик. Эти характеристики называют статическими, поскольку их снимают при отсутствии в цепях транзистора резисторов и относительно медленных изменениях токов и напряжений. Входными называют семейство вольт-амперных характеристик входной цепи транзистора, построенных для ряда фиксированных значений напряжения выходной цепи. Выходными называют семейство вольт-амперных характеристик выходной цепи транзистора, построенных для ряда фиксированных значений входного тока. Как видно из рис.1.7, каждой схеме включения соответствует определенное сочетание входных и выходных токов и напряжений. Поэтому вид и входных и выходных характеристик транзистора будет определяться схемой его включения.

Типичные входная и выходная статические характеристики транзистора типа n-p-n для схемы включения ОЭ представлены на рис.1.8 и 1.9. Характеристики транзистора типа p-n-p аналогичны, но значения напряжений U и U - отрицательные.

Входная характеристика транзистора в схеме ОЭ – это семейство зависимостей IБ (U), построенных при постоянных значениях напряжения U. Однако, как видно из рис.1.8, приводятся две зависимости: одна для U = 0, а другая для значения напряжения U, соответствующего центру рабочего интервала значений данного параметра. Это связано с тем, что вольт-амперные характеристики входной цепи для рабочего интервала значений U практически не отличаются друг от друга. В данном случае зависимость IБ (U) по существу является вольт-амперной характеристикой эмиттерного p-n перехода, поскольку коллекторный переход находится в закрытом состоянии. При U= 0, кроме эмиттерного, открытым будет и коллекторный переход, зависимость IБ (U) представляет собой вольт-амперную характеристику уже двух переходов, включенных параллельно (токи эмиттера и коллектора суммируются в базе).

Рис.1.8. Входная характеристика Рис.1.9. Выходная характеристика биполярного транзистора биполярного транзистора

Выходная характеристика транзистора в схеме ОЭ, как видно из рис.1.9, - это семейство зависимостей I(U), построенных для ряда значений тока IБ. Каждая вольт-амперная характеристика имеет три участка: начальный, на котором происходит резкое увеличение коллекторного тока при подъеме напряжения U; рабочий участок, где коллекторный ток незначительно увеличивается при увеличении напряжения U, при этом зависимость I (U) – линейная; участок пробоя коллекторного перехода. Резкое увеличение коллекторного тока в начале вольт-амперной характеристики соответствует закрытию коллекторного перехода, когда по абсолютному значению напряжение U становится больше напряжения U и обеспечивается перенос рабочих носителей заряда из базового слоя в коллекторный. При этом увеличение тока базы (при увеличении напряжения база-эмиттер) обусловлено увеличением поступления рабочих носителей заряда из эмиттерного слоя в базовый.

Соотношения (1.1) и (1.2) позволяют получить выражение для рабочих участков выходной характеристики.

I= β IБ + I. (1.3)

В этом выражении I= I - является начальным током транзистора в схеме ОЭ, который получается приIБ = 0. Параметр β=- коэффициент передачи тока в схеме ОЭ, который характеризует усиление транзистора по току. Поскольку значениеα составляет 0,9 – 0,99, величина параметраβ обычно находится в пределах 9 – 99.

Соотношение (1.3) правильно отражает линейное увеличение коллекторного тока при увеличении тока базы, но не передает зависимость тока I от напряжения U. Последнее учитывается введением в соотношение (1.3) дополнительного слагаемого, после чего оно принимает вид

I= β IБ + + I, (1.4)

где r - дифференциальное сопротивление выхода транзистора в схеме ОЭ.

Область значений выходных параметров, при которых допускается эксплуатация транзистора, называется рабочей. Границы этой области, показанной на рис.1.9, определяются тремя факторами:

  • максимальным значением напряжения U, превышение которого приводит к электрическому пробою коллекторногоp-nперехода;

  • максимальным значением коллекторного тока I, превышение которого приводит к перегреву эмиттерногоp-n перехода;

  • максимальным значением мощности, рассеиваемой в коллекторном переходе, Р,превышение которого приводит к перегреву этого перехода. На рис.1.9 последнему фактору соответствует гипербола

I U = Р.

В маломощных транзисторах значение Рне превышает 0,3 Вт, в транзисторах средней мощности – 3 Вт. Современные транзисторы высокого уровня мощности обеспечивают рассеяние мощности до 100 Вт.

Внутри рабочей области транзистор обычно эксплуатируется в составе усилителей. Начальный участок вольт-амперной характеристики, где происходит резкое увеличение коллекторного тока, используется в устройствах импульсной техники при работе транзистора в ключевом режиме.

Как отмечалось, в рабочей области коллекторный ток весьма слабо зависит от напряжения U. Кроме того, из хода вольт-амперной характеристики входной цепи видно, что малому изменению напряжения U соответствует большое изменение базового тока. Из этого следует целесообразность установки электрического режима транзистора по величинам тока базы и напряжения коллектор-эмиттер, т.е. их выбора в качестве параметров режима прибора. В таком качестве они используются при построении статических характеристик: входные характеристики строятся для ряда значений напряжения U, а выходные – для ряда значений тока IБ.

1.4. Схемы замещения биполярного транзистора

При расчетах электрических цепей с транзисторами реальный прибор заменяется схемой замещения, которая может быть либо бесструктурной, либо структурной. В первом случае транзистор представляется в виде эквивалентного четырехполюсника, во втором – в виде эквивалентной схемы, отражающей физические связи между ее элементами.

Хотя транзистор является нелинейным элементом, но как видно из рис.1.8 и 1.9, на входной и выходной характеристиках можно выделить участки, где зависимости между токами и напряжениями близки к линейным. Такие участки находятся внутри рабочей области. Поэтому транзистор, параметры которого соответствуют рабочей области, можно заменить эквивалентным четырехполюсником, линейными соотношениями которого связываются не значения его входных и выходных токов и напряжений, а величины приращений данных параметров. Поскольку электрический режим биполярного транзистора в схеме ОЭ определяется входным током I Б и выходным напряжением U, величины приращений его параметров целесообразно связать через h-параметры:

Δ U=hΔ I Б + hΔ U, (1.5)

Δ I= hΔ I Б + hΔ U. (1.6)

Из соотношения (1.5) при Δ U = 0 следует

h= , (1.7)

а при Δ I Б = 0

h =. (1.8)

Аналогичным образом из соотношения (1.6) можно получить

h =, (1.9)

h=. (1.10)

Согласно соотношениям (1.7) – (1.10)

h является входным сопротивлением транзистора при постоянном значении напряжения U;

h - коэффициент обратной связи по напряжению;

h - коэффициент передачи тока в схеме ОЭ, характеризующий усилительные свойства транзистора при постоянном значении напряжения U;

h - выходная проводимость транзистора при постоянном токе базы.

Дифференцирование соотношения (1.4) при условии U = const показывает, что

h = β. (1.11)

Значения h-параметров транзистора рассчитываются, если известны входные и выходные характеристики. Обычно величина параметра h находится в пределах от нескольких сот до единиц тысяч Ом, а величина параметра h - в пределах 10- 10-4 См. Величина параметра h практически равна нулю.

В соответствии с рис.1.7,б эквивалентную схему транзистора можно представить в виде Т-образной схемы. Такая простейшая схема для случая включения транзистора с ОЭ приведена на рис.1.10, где приращения токов и напряжений обозначаются как iБ, iК, uБЭ, uКЭ. Для рабочей области прибора параметры элементов схемы можно считать постоянными величинами.

Левая часть эквивалентной схемы транзистора отражает эмиттерный переход, находящийся в открытом состоянии. Поэтому в соответствии со схемой замещения p-n перехода (при ключе К на рис.1.4 в положении «а») резистор rЭ представляет собой сопротивление открытого перехода, величина которого невелика и лежит в пределах от единиц до нескольких десятков Ом. Резистор rБ представляет сопротивление базового слоя, величина которого определяется входным сопротивлением прибора, поскольку сопротивление rЭ мало. Правая часть схемы рис.1.10 отражает коллекторный переход, находящийся в закрытом состоянии. Согласно схеме рис.1.4 (при ключе К в положении «б») он представляется параллельным соединением сопротивления rК(Э) и емкости СК. Кроме того, параллельно им включен источник тока βiБ, отражающая факт переноса рабочих носителей заряда в коллекторный слой. На низких частотах емкостное сопротивление велико и шунтирующим действием емкости СК на источник тока βiБ можно пренебречь, в связи с чем подключение емкости СК на рис.1.10 обозначено пунктиром.

Рис.1.10. Эквивалентная схема биполярного транзистора

Согласно эквивалентной схеме рис.1.10 с учетом малой величины сопротивления rЭ приращение коллекторного тока

,

что находится в соответствии с соотношением (1.4), поскольку при небольших изменениях электрического режима транзистора величина обратного тока IК(0) практически не изменяется. Это подтверждает обоснованность введение второго слагаемого в правую часть соотношения (1.4). Нетрудно также убедиться, что согласно (1.10)

r = .

studfiles.net

Характеристики транзистора в схеме с ОБ

Вольта-мперные характеристики транзистора в схеме с ОБ приведены на рис. 3.5. Выходные характеристики отражают зависимость тока коллектора Iк от напряжения коллектор-база Uкб при фиксированном токе эмиттера Iэ(рис. 3.5, а).

Вольт-амперные характеристики имеют три характерные области: 1 – нелинейная начальная область (область насыщения), 11– линейная область (рабочая область) и 111 – пробой коллекторного перехода (нерабочая область).

Для схемы с ОБ характерно расположение области 1 левее оси координат. Это обусловлено тем, что напряжение на коллекторном переходе в схеме с ОБ определяется суммой jо + Uкб (см. рис. 3.2, г). Поэтому при Uкб = 0 дырки, инжектированные эмиттером и дошедшие до коллектора, втягиваются внутренним полем коллекторного перехода и создают ток Iк, близкий по величине к току Iэ. При отрицательном напряжении на коллекторе (левее оси ординат) коллектор, так же, как и эмиттер, инжектирует в базу встречный поток электронов, поэтому результирующий ток резко уменьшается. В таком режиме база наводнена (т. е. насыщена) неосновными носителями, поэтому этот режим называется режимом насыщения.

Как известно (см. 3.8) зависимость выходного тока Iк от входного Iэ определяется выражением: Iк = aIэ + Iко.

В соответствии с этим выражением, ток Iк в рабочей линейной области 11 при постоянном токе Iэ должен оставаться постоянным. Некоторое увеличение тока Iк обусловлено увеличением коэффициента a, а также приращением тока Iкопри увеличении напряжения на коллекторе.

 

Рис. 3.5. Характеристики транзистора, включённого с общей базой: а – выходные; б – входные

Возрастание тока Iк на выходных характеристиках при повышении напряжения Uкб характеризуется дифференциальным сопротивлением коллекторного перехода:

rк = DUк /DIк, при Iэ = const. (3.15)

Сопротивление rк может быть найдено как отношение приращений напряжения и тока, при постоянном токе Iэ, равном номинальному для транзистора. У маломощных транзисторов величина rк составляет 0,5 – 1 МОм.

При повышении температуры растёт неуправляемый ток коллектора Iк0, его величина примерно удваивается при повышении температуры на каждые 100С. Из-за малости тока Iк0абсолютноеувеличение тока Iк незначительно, поэтому транзистор в схеме с ОБ считается достаточно температурно-стабильным.

Входные характеристики транзистора в схеме с ОБ (рис. 3.5, б) представляют собой зависимость тока Iэ от напряжения Uэб при постоянном напряжении Uкб. Они по виду близки к прямой ветви вольт–амперной характеристики диода. Входная характеристика, снятая при большем напряжении Uкб, располагается левее и выше. Это объясняется тем, что при подаче напряжения Uкбпо цепи коллектор – база протекает неуправляемый ток Iко и на внутреннем сопротивлении базы создается напряжение, которое обеспечивает дополнительное прямое смещение эмиттерного перехода и, как следствие, увеличение тока Iэ. Это свидетельствует о наличии обратной связи в транзисторе.

Похожие статьи:

poznayka.org

Входная характеристика биполярного транзистора.

Рис. 4.1 Схематическое устройство и условное графическое обозначение биполярного транзистора.

 

Каждая из областей БТ имеет металлический электрод, с помощью которого транзистор соединяют с внешней электронной цепью. Электрод и соединенная с ним область, где формируются основные носители зарядов, называется эмиттером (Э). Второй крайний электрод называется коллектором (К). Средний электрод и сравнительно узкая область, которая соединена с ним, называется базой (Б). Это управляющий электрод, с помощью которого изменяется состояние p-n-переходов. Физические процессы БТ определяются свойствами двух p-n-переходов и зависят от полярности напряжений между электродами транзистора. Имеется два типа транзисторов: p-n-p- типа (рис.4.1а) и n-p-n- типа (рис.4.1б), но чаще используются n-p-n- типа, т.к. они имеют лучшую теплостойкость.

Свойства транзистора зависят от схемы включения. Используют три схемы включения БТ: с общим эмиттером (рис.4.2а), с общей базой (рис.4.2б) и с общим коллектором, которая будет рассмотрена позже.

 

Рис. 4.2.Схемы включения биполярного n-p-n транзистора (а - с общим эмиттером, б - с общей базой.

Свойства транзистора наиболее полно описываются вольтамперными характеристиками (ВАХ).

 

Входная характеристика биполярного транзистора.

Ток базы БТ связан с напряжением между базой и эмиттером входной характеристикой I Б (U Б) при постоянном напряжении U К между коллектором и эмиттером. Эта зависимость аналогична по форме ВАХ диода в прямом направлении. Схема для получения входной характеристики транзистора приведена на рис. 4.3.

 

Рис.4.3.

 

В демонстрации «demo4_1» показана схема (рис.4.4) получения семейства входных характеристик IБ(UБ).

 

Рис.4.4. demo4_1. Схема для получения входных ВАХ. Аргумент ВАХ – напряжение UБ изменяется в пределах от 0 до 1В с шагом 1мВ, параметр семейства UК изменяется в пределах от 0 до 15В с шагом 0.1В.

 

На рис.4.5 приведено семейство полученных входных характеристик БТ. Из графиков следует, что в интервале значений параметра UК от 0 до 0.5В вид ВАХ существенно зависит от параметра, но далее кривые практически сливаются, т.е. влияние параметра UК при его значениях больше 0.5В можно не учитывать. В реальных электронных устройствах напряжение UК >0.5В, поэтому свойства транзистора описывают одной входной характеристикой при напряжении UК≈10В.

 

Рис.4.5. Входные характеристики, полученные в demo4_1.

Рабочим участком входной ВАХ транзистора в электронных устройствах является линейный участок AB. При малых изменениях тока базы эта связь на линейном участке AB (рис. 4.6) описывается параметром h21 – входное сопротивление транзистора. Для примера на рис.4.6 следует:

h21 =∆ U Б/∆ I Б=(0.85-0.8)/(908-425)*106=103.5 Ом при U K=const. По сути это дифференциальное сопротивление. Этот параметр приводится в справочниках.

Рис.4.6. Входная характеристика биполярного транзистора в схеме с общим эмиттером I Б (U Б) при постоянном напряжении U К.

На участке A B можно аппроксимировать входную ВАХ транзистора прямой линией (красная линия на рис.4.6):

U Б= h21 I Б + U` Б

Здесь постоянные параметры: h21 –входное сопротивление транзистора,

U` Б - напряжение «отпирания» транзистора.

Таким образом, входная характеристика позволяет найти ток базы при заданном напряжении между базой и эмиттером биполярного транзистора.

Похожие статьи:

poznayka.org

Выходная характеристика транзистора.

Выходные характеристики БТ так же получают экспериментально с помощью схемы на рис.4.3. Однако, аргументом выбирают напряжение U К, функцией - ток коллектора IК , а параметром – ток базы IБ.

Схема опыта, проведенного в демонстрации demo4_2, приведена на рис.4.7.

Рис.4.7.Схема получения выходных характеристик (demo4_2).

Полученное семейство выходных характеристик IК(UК, IБ) приведено на рис.4.8.

 

Рис.4.8. demo4_2. Семейство выходных характеристик IК(UК, IБ) биполярного транзистора, включенного по схеме с общим эмиттером.

 

Основное свойство биполярного транзистора – большое влияние тока базы на ток коллектора. На рис. 4.8 видно, что при изменении тока базы на 10 мкА и при постоянном напряжении на коллекторе 10 В ток коллектора изменяется почти на 2мА. Отношение приращения тока коллектора к приращению тока базы при изменениях тока базы и постоянном напряжении между коллектором и эмиттером - коэффициент передачи тока h31 , важный параметр транзистора. В нашем примере

при U К=10 В h31 = ∆ I К / ∆ I Б ≈ 2*10-3 / 10*10-6 = 200.

Анализ показывает, что значение h31 зависит от режима транзистора. На рис.4.9 на примере demo4_3 показана зависимость h31(IБ, UК) при значениях UК= 0.5, 2.5…15.5. Здесь видно, что на начальном участке при малых токах базы параметр h31 быстро растет, достигает максимума, а потом плавно уменьшается.

 

Рис.4.9. Зависимости параметра h31 от тока базы при разных напряжениях между коллектором и эмиттером БТ.

Из этого семейства следует, что можно использовать для расчетов только некоторое среднее значение параметра h31 в рабочей области характеристик.

Другой важной ВАХ транзистора является статическая переходная характеристика транзистора IК(IБ) при фиксированном напряжении Uк. На рис.4.10 из demo4_3 приведено семейство переходных характеристик при UКЭ= 0.5, 2.5…15.5.

 

 

Рис.4.10. Статические переходные характеристики IК(IБ,UК) БТ.

На рис.4.10 видно, что практически зависимости IК(IБ) можно считать линейными при значительном изменении напряжения UК: IК= h31IБ

Транзисторы имеют предельные эксплуатационные параметры, которые не должны быть превышены при подключении транзистора к источникам энергии:

IК< IК, макс,

UК< UК,макс,

PК< P К, макс.

Отсюда –кривая максимальной допустимой мощности транзистора P К, макс:

IК= P К, макс /UК.

Эти значения определяют границы доступной для работы области выходных характеристик транзистора, которые изображены на рис.4.11 пунктирными линиями.

Рис.4.11. Рабочая область семейства выходных характеристик транзистора.

Похожие статьи:

poznayka.org

Характеристики транзистора. Основные параметры транзисторов

⇐ ПредыдущаяСтр 7 из 24Следующая ⇒

При включении транзистора в различных схемах представляют практический интерес графические зависимости напряжения и тока входной цепи (входные вольт-амперные характеристики) и выходной цепи (выходные или коллекторные вольт-амперные характеристики). Вид характеристик зависит от способа включения транзистора. Наибольшее распространение получили входные и выходные статические характеристики для двух схем включения транзистора: с общей базой и общим эмиттером.

Схема с общей базой

Семейство входных характеристик схемы с ОБ представляет собой зависимость IЭ = f(UЭБ) при фиксированных значениях параметра UКБ - напряжения на коллекторном переходе (рисунок 4.10).

Рис.4.10. Семейство входных характеристик в схеме с ОБ (рисунок выполнен авторами)

При UКБ = 0 характеристика подобна вольт-амперной характеристике p-n перехода. С ростом обратного напряжения UКБ (UКБ < 0 для p-n-p транзистора) вследствие уменьшения ширины базовой области (эффект Эрли - влияние обратного напряжения на коллекторном переходе на токи биполярного транзистора) происходит смещение характеристики вверх: IЭ растет при выбранном значении UЭБ. Если поддерживается постоянным ток эмиттера (IЭ = const), т.е. градиент концентрации дырок в базовой области остается прежним, то необходимо понизить напряжение UЭБ, (характеристика сдвигается влево). Следует заметить, что при UКБ<0 и UЭБ=0 существует небольшой ток эмиттера IЭ0, который становится равным нулю только при некотором обратном напряжении UЭБ0.

Семейство выходных характеристик схемы с ОБ представляет собой зависимости IК= f(UКБ) при заданных значениях параметра IЭ (рисунок 4.11).

Рис.4.11. Семейство выходных характеристик в схеме с ОБ (рисунок выполнен авторами)

Выходная характеристика p-n-p транзистора при IЭ = 0 и обратном напряжении |UКБ < 0| подобна обратной ветви p-n перехода (диода). При этом в соответствии с IК = IКБО, т. е. характеристика представляет собой обратный ток коллекторного перехода, протекающий в цепи коллектор - база. При IЭ > 0 основная часть инжектированных в базу носителей (дырок в p-n-p транзисторе) доходит до границы коллекторного перехода и создает коллекторный ток при UКБ = 0 в результате ускоряющего действия контактной разности потенциалов. Ток можно уменьшить до нуля путем подачи на коллекторный переход прямого напряжения определенной величины. Этот случай соответствует режиму насыщения, когда существуют встречные потоки инжектированных дырок из эмиттера в базу и из коллектора в базу. Результирующий ток станет равен нулю, когда оба тока одинаковы по величине (например, точка А' на рисунок 4.11). Чем больше заданный ток IЭ, тем большее прямое напряжение UКБ требуется для получения IК = 0. Область в первом квадранте на рис. 4.11, где UКБ < 0 (обратное) и параметр IЭ > 0 (что означает прямое напряжение UЭБ) соответствует нормальному активному режиму (НАР). Значение коллекторного тока в НАР определяется формулой IК = α IЭ + IКБО. Выходные характеристики смещаются вверх при увеличении параметра IЭ. В идеализированном транзисторе не учитывается эффект Эрли (эффект Эрли - влияние обратного напряжения на коллекторном переходе на токи биполярного транзистора), поэтому интегральный коэффициент передачи тока α можно считать постоянным, не зависящим от значения |UКБ|. Следовательно, в идеализированном биполярном транзисторе выходные характеристики оказываются горизонтальными (IК = const). Реально же эффект Эрли при росте |UКБ| приводит к уменьшению потерь на рекомбинацию и росту α. Так как значение α близко к единице, то относительное увеличение α очень мало и может быть обнаружено только измерениями (Биполярные транзисторы). Поэтому отклонение выходных характеристик от горизонтальных линий вверх на самом деле не заметно (на рисунке 4.11 не соблюден масштаб).

Схема с общим эмиттером

Семейство входных характеристик схемы с ОЭ представляет собой зависимости IБ = f(UБЭ), причем параметром является напряжение UКЭ (рисунок 4.12). Для p-n-p транзистора отрицательное напряжение UБЭ (UБЭ < 0) означает прямое включение эмиттерного перехода, так как UЭБ = -UБЭ > 0. Если при этом UКЭ = 0 (потенциалы коллектора и эмиттера одинаковы), то и коллекторный переход будет включен в прямом направлении:

UКБ = UКЭ + UЭБ = UЭБ > 0.

Поэтому входная характеристика при UКЭ = 0 будет соответствовать режиму насыщения (РН), а ток базы равным сумме базовых токов из-за одновременной инжекции дырок из эмиттера и коллектора. Этот ток, естественно, увеличивается с ростом прямого напряжения UЭБ, так как оно приводит к усилению инжекции в обоих переходах (UКБ = UЭБ) и соответствующему возрастанию потерь на рекомбинацию, определяющих базовый ток.

Рис.4.12. Семейство входных характеристик в схеме с ОЭ (рисунок выполнен авторами)

Вторая характеристика на рисунке 4.12 (UКЭ < 0) относится к нормальному активному режиму, для получения которого напряжение UКЭ должно быть в p-n-p транзисторе отрицательным и по модулю превышать напряжение UЭБ. В этом случае UКБ = UКЭ + UЭБ = UКЭ - UБЭ < 0. Формально ход входной характеристики в НАР можно объяснить с помощью выражения: IБ = (1 - α )IЭ - IКБО. При малом напряжении UБЭ инжекция носителей практически отсутствует (IЭ = 0) и ток IБ= -IКБО, т.е. отрицателен. Увеличение прямого напряжения на эмиттерном переходе UЭБ = -UБЭ вызывает рост IЭ и величины (1 - α ) IЭ. Когда (1 - α) IЭ = IКБО, ток IБ = 0. При дальнейшем роете UБЭ (1 - α) IЭ > IКБО и IБ меняет направление и становится положительным (IБ > 0) и сильно зависящим от напряжения перехода. Влияние UКЭ на IБ в НАР можно объяснить тем, что рост |UКЭ| означает рост |UКБ| и, следовательно, уменьшение ширины базовой области (эффект Эрли). Последнее будет сопровождаться снижением потерь на рекомбинацию, т.е. уменьшением тока базы (смещение характеристики незначительно вниз).

Семейство выходных характеристик схемы с ОЭ представляет собой зависимости IК = f(UКЭ) при заданном параметре IБ (Рис 4.13).

Рис.4.13. Семейство выходных характеристик в схеме с ОЭ (рисунок выполнен авторами)

Крутые начальные участки характеристик относятся к режиму насыщения, а участки с малым наклоном - к нормальному активному режиму. Переход от первого режима ко второму, как уже отмечалось, происходит при значениях |UКЭ|, превышающих |UБЭ|. На характеристиках в качестве параметра берется не напряжение UБЭ, а входной ток IБ. Поэтому о включении эмиттерного перехода приходится судить по значению тока IБ, который связан с входной характеристикой на рисунке 4.12. Для увеличения IБ необходимо увеличивать |UБЭ|, следовательно, и граница между режимом насыщения и нормальным активным режимом должна сдвигаться в сторону больших значений.

Если параметр IБ = 0 ("обрыв" базы), то в соответствии с формулой IК = IКЭО = (β + 1 ) IКБО. В схеме с ОЭ можно получить (как и в схеме с ОБ) I = IКБО, если задать отрицательный ток IБ = -IКБО. Выходная характеристика с параметром IБ = -IКБО может быть принята за границу между НАР и режимом отсечки (РО). Однако часто за эту границу условно принимают характеристику с параметром IБ = 0.

Наклон выходных характеристик в нормальном активном режиме в схеме с общим эмиттером во много раз больше, чем в схеме с общей базой (h32Э ≈ β h32Б) Объясняется это различным проявлением эффекта Эрли. В схеме с общим эмиттером увеличение UКЭ, а следовательно и UКБ сопровождается уменьшением тока базы, а он по определению выходной характеристики должен быть неизменным (Биполярные транзисторы). Для восстановления тока базы приходится регулировкой напряжения UБЭ увеличивать ток эмиттера, а это вызывает прирост тока коллектора Δ IК, т.е. увеличение выходной проводимости (в схеме с ОБ ток IЭ при снятии выходной характеристики поддерживается неизменным).

Читайте также:

lektsia.com

ВОЛЬТ-АМПЕРНЫЕ ХАРАКТЕРИСТИКИ ПОЛЕВЫХ ТРАНЗИСТОРОВ

Ток стока ПТ зависит как от значения, так и от полярности напряжений сток - исток и затвор - исток. При постоянном смещении на затворе увеличение напряжения на стоке от нуля вызывает резкое возрастание тока стока, которое продолжается до наступления насыщения тока стока. Затем ток устанавливается и остаётся относительно постоянным. Эта зависимость показана на рис. 3, а для типичного полевого прибора с p-n-переходом. Для сравнения на рис. 3, б приведены коллекторные характеристики биполярного транзистора.

Характеристики транзисторов обоих видов похожи друг на друга, за исключением того, что у биполярного транзистора перегиб характеристик происходит при значительно более низких напряжениях на коллекторе.

На выходной характеристике ПТ можно выделить две характерные области (рис. 4). При малых напряжениях сток - исток (область АВ) сопротивление канала имеет омический характер, и ток может протекать в обоих направлениях. В этом состоит отличие полевых транзисторов от электронных ламп, в которых поток электронов всегда имеет одно направление - от катода к аноду. Рабочая область АВ выходной характеристики ПТ используется в том случае, когда полевой транзистор применяется в схеме в качестве переменного сопротивления, управляемого напряжением (аттенюаторы, регуляторы АРУ).

Выходные характеристики транзисторов

Рис. 3. Выходные характеристики транзисторов, а - ПТ с p-n-переходом; б - биполярного транзистора.

В области насыщения тока (область ВС на рис. 4) часть канала обеднена носителями заряда из-за влияния электрического поля между затвором и каналом, благодаря чему сопротивление канала становится значительным. Дальнейшее увеличение напряжения между стоком и истоком в этой области вызывает относительно небольшое изменение тока стока, который практически будет зависеть только от напряжения на затворе [1].

Выходная характеристика ПТ

Рис. 4. Выходная характеристика ПТ при Uз.и=0

Характерной особенностью полевых транзисторов является то, что напряжение, соответствующее точке B характеристики (точка перегиба характеристики на рис. 4, после которой идёт область насыщения), при напряжении на затворе, равном нулю, численно равно напряжению отсечки и называется напряжением насыщения.

Входные характеристики полевого транзистора существенно отличаются от характеристик биполярного транзистора. Входные характеристики последнего подобны характеристикам открытого полупроводникового диода, в то время как у полевого транзистора они подобны характеристикам запертого диода (смещённого в обратном направлении). Поэтому ток затвора очень мал. Он равен нескольким наноамперам (для ПТ с управляющим p-n-переходом) при температуре 25°С и экспоненциально зависит от температуры.

Проходные характеристики ПТ при различной температуре

Рис. 5. Проходные характеристики ПТ при различной температуре.

Проходная характеристика, показывающая зависимость тока стока от напряжения на затворе, изображена на рис. 5. С достаточной для практических расчётов точностью проходная характеристика полевого транзистора определяется выражением (1), т. е. носит квадратичный характер. Эта особенность проходной характеристики используется в преобразователях частоты для уменьшения перекрёстной модуляции и помех от гармоник гетеродина.

PREV CONTEXT NEXT

zpostbox.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта