Eng Ru
Отправить письмо

Характеристики, типы и принцип работы автомобильных генераторов. Характеристики генератора


Характеристики генератора постоянного тока

Основными величинами, характеризующими работу генераторов постоянного тока, являются: вырабатываемая мощность Р, напряжение на выводахU, ток возбужденияIв,ток якоряIяили ток нагрузкиI, частота вращенияn.

Основными характеристиками, определяющими свойства генераторов, являются:

характеристика холостого хода — зависимость ЭДС генератора от тока возбуждения при постоянной частоте вращения:E =f(Iв) приI= 0 иn=nном=const;

внешняя характеристика — зависимость напряжения на выводах генератора от тока нагрузки при постоянном сопротивлении цепи возбуждения и постоянной частоте вращения:U=f(I) приRв=constиn=const;

регулировочная характеристика— зависимость тока возбужденияIвот тока нагрузкиI:Iв =f(I) при условии поддержания постоянного напряжения на выводах генератора (U=const) иn=nном=const.

Свойства и характеристики генератора постоянного тока зависят главным образом от схемы включения обмотки главных полюсов. По этому признаку генераторы делятся на генераторы независимого, параллельного, последовательного и смешанного возбуждения (рис. 3, а,б,в,гсоответственно). Последние три типа генераторов относятся к генераторам с самовозбуждением.

Рассмотрим процесс самовозбуждения при отключенной нагрузке генератора.

Магнитная цепь машины имеет небольшой остаточный магнитный поток Фост (примерно 2-3 % от номинального). При вращении якоря в поле остаточного магнитного потока в нем наводится небольшая ЭДС, вызывающая некоторый токIвв обмотке возбуждения, а следовательно, возникает некоторая магнитодвижущая сила возбуждения. По отношению к магнитному потокуФостона может быть направлена согласно или встречно. При согласном направлении происходит увеличение остаточного магнитного потока, вследствие чего ЭДС в якоре возрастает, и процесс развивается лавинообразно до тех пор, пока не будет ограничен насыщением магнитной цепи. Если магнитодвижущая сила и магнитный поток будут направлены встречно, то самовозбуждения не будет происходить. Тогда для изменения направления токаIввобмотке возбуждения следует переключить концы, подсоединяющие ее к якорю.

Однако процесс самовозбуждения генератора может развиваться, что происходит при определенных условиях. Этими условиями являются:

1) наличие остаточного магнитного потока;

2) совпадение направления остаточного магнитного поля и поля, создаваемого обмоткой возбуждения;

3) значение сопротивления цепи возбуждения меньше критического, т.е. когда ток возбуждения способен достигнуть значения, обеспечивающего на характеристике холостого хода заданное значение ЭДС.

а) б)

в)г)

Рис. 3

Изучение характеристик одного и того же генератора при различных схемах включения его обмоток возбуждения показало, что у генераторов независимого возбуждения можно в широких пределах регулировать напряжение. Поэтому они нашли более широкое практическое применение.

Генераторами независимого возбуждения называют генераторы постоянного тока, обмотка возбуждения которых питается током от постороннего источника электрической энергии.

Далее более подробно рассмотрим основные характеристики генератора постоянного тока с независимым возбуждением.

Характеристика холостого хода (рис. 4) снимается при плавном увеличении тока возбуждения, а затем при плавном его уменьшении при n=nном=сonst. Вторая ветвь характеристики идет несколько выше первой, и при токеIв = 0 в машине есть некоторая ЭДСЕ0, называемая остаточной.

Вид характеристики холостого хода объясняется тем, что приn=const,Е=с1nФпропорциональна магнитному потокуФ, а последний — индукцииВ, а ток пропорционален напряженности магнитного поля Н, т.е. ее форма такая же, как у кривой гистерезиса. За расчетную принимают характеристику, проходящую между ветвями экспериментальной кривой (штриховая кривая на рис. 4). Остаточная ЭДСЕ0 создается за счет индукции, остающейся в магнитной цепи статора после отключения тока возбуждения. Машина рассчитывается таким образом, чтобы в номинальном режиме рабочая точка (Iв,ном,Еном) находилась на "колене" характеристики холостого хода (рис. 4), этим обеспечивается получение достаточной ЭДС при относительно небольшом токе возбуждения.

Внешняя характеристика генератора с независимым возбуждением

U=f(I) приIв=constиn=nном%=const(рис. 5,а) характеризует влияние тока нагрузки генератора на напряжение на его выводах. НапряжениеU=E‑IRяпри увеличении нагрузки от нуля до номинальной плавно уменьшается на 5-15 % по двум причинам: из-за падения напряжения на сопротивлении якоряIRяи уменьшении ЭДСЕиз-за размагничивающего влияния реакции якоря. При перегрузке машины ток в якоре становится недопустимо большим и напряжение сильно падает. При коротком замыкании ток в якореIяпримерно в 10 раз больше номинального и, если генератор быстро не отключить, то его коллектор и обмотка выйдут из строя.

Регулировочная характеристика Iв=f(I) приU =constиn =nном=constизображена на рис. 5,б. Начинают снимать ее с холостого хода, когдаI = 0 и Iв=Iв,0.

Эта характеристика показывает, как надо изменять ток возбуждения для того, чтобы при изменениях нагрузки поддерживать постоянным напряжение между выводами генератора. Для поддержания постоянства напряжения на выводах якоря в цепь возбуждения включен регулировочный реостат.

а)б)

Рис. 5

studfiles.net

рабочие характеристики генератора переменного тока

1.16. Электрические характеристики генератора

Свойства автомобильных генераторов переменного тока определяются рядом характеристик, которые представляют собой зависимость между какими-либо двумя величинами при неизменных остальных.

Рис. 1.9. Характеристика зависимости ЭДС генератора

а) Скоростная характеристика - зависимость ЭДС генератора от частоты вращения его ротора (рис. 1.9).

Как видно из уравнения Eг = CФn , ЭДС генератора изменяется пропорционально частоте вращения ротора; С - конструктивная постоянная; Ф - магнитный поток; n - частота вращения ротора. Напряжение генератора Uг = Eг - Iг z , где Iг - нагрузки генераторa, z - полное сопротивление генератора.

б) Характеристика холостого хода (рис. 1.10) представляет собой зависимость ЭДС генератора от тока возбуждения: Е = f(Iв) при n = const и Iн = 0.

П

Риc. 1.10. Характеристика холостого хода

о характеристике холостого хода определяется начальная частота вращения ротора генератора, при которой напряжение генератора достигает расчетного значения.

в) Скоростная регулировочная характеристика - это зависимость тока возбуждения Iв от частоты вращения ротора Iв = f(n) при U = const и Iн = const (рис. 1.11)

Поскольку автомобильные генераторы приводятся во вращение двигателем внутреннего сгорания, то их ч

Рис. 1.11. Скоростные регулировочные характеристики

астота вращения изменяется в широком диапазоне. Скоростная регулировочная характеристика показывает,

как надо изменять ток возбуждения генератора, чтобы напряжение генератора оставалось неизменным при

изменении частоты вращения ротора генератора.

г

Рис. 1.12. Внешняя характеристика генератора переменного тока

) Внешняя характеристика (рис. 1.12) представляет собой зависимость напряжения генератора от тока нагрузки U = f(In) при постоянной частоте вращения n = const и определенном значении том возбуждения Iг . Снижение напряжения при уве­личении нагрузки генератора происходит из-за падения на­пряжения в активном и индуктивном сопротивлениях обмоток статора, размагничиваю­щего действия реакции якоря, а также из-за падения напряжения в цепи выпрямителя Uг = Eг - I г z - Uв где Eг - ЭДС генератора; Iг - ток генератора; z - полное сопротивление якоря; Uв - падение напряжения на выпрямителе.

д) Токоскоростная характеристика (рис. 1.13) - зависимость тока нагрузки генератора Iн от частоты вращения его ротора: Iн = f(n) при U = const.

Г

Рис. 1.13. Токоcкороcтные характеристики: 1 - генератор ~; 2 - генератор =

енераторы переменного тока обладают свойством самоограничения максимальной силы тока нагрузки , что предотвращает нагрев обмотки статора и диодов и поэтому исключает нeo6xoдимость установки ограничителя тока.

С увеличением силы тока нагрузки возрастает магнитный поток статора, а так как он противодействует магнитному потоку ротора (возбуждения), то результирующий магнитный поток уменьшается, что приводит к снижению индуцируемой ЭДС. Кроме того, увеличение частоты вращения ротора сопровождается повышением частоты тока в катушках обмотки статора, что способствует увеличению индуктивного сопротивления обмотки ( xL= 2fL) .

Ток генератора переменного тока

Iг = E / Z , откуда

,

где Z - полное сопротивление; Rг - активное сопротивление генератора; RН - сопротивление нагрузки; xL - индуктивное сопротивление,

xL = 2πfL= 2πPnL / 60 = C x n,

f -частота тока; Р - количество пар полюсов; L - индуктивность; n - частота вращения ротора. Тогда

При малой частоте вращения индуктивная составляющая сопротив-ления (Сx n )2 мала по сравнению с активной составляющей (Rн +Rг )2 и ею можно пренебречь. При этом ток будет возрастать пропорционально частоте вращения:

I = CEФn/ ( Rг + Rн ) = Cn

С увеличением частоты вращения индуктивная составляющая сопротивления возрастает и становится значительно больше активной составляющей, следовательно, последней можно пренебречь. При этом ток не зависит от частоты вращения:

I = CEФ / Cx = const (при Ф = const )

Таким образом, c повышением частоты вращения ротора ограничивается максимальная сила тока генератора.

В связи с большим передаточным числом привода между двигателем и генератором, а также увеличением числа витков обмотки статора генератор переменного тока способен воспринимать нагрузку при гораздо меньшей частоте вращения, чем генератор постоянного тока. Это значительно улучшает зарядку аккумуляторной батареи при движении по городу с частыми остановками и низкой средней скоростью. В генераторе постоянного тока такая возможность отсутствует, поскольку пропорционально числу витков увеличивается и индуктивная энергия, накопленная в обмотках, что при малых частотах вращения вызывает сильное искрение под щетками, а при больших - выпрямление тока коллектором становится ненадежным.

studfiles.net

Генераторы независимого возбуждения

Свойства генераторов анализируются с помощью характеристик, которые устанавливают зависимости между основными величинами, определяющими работу генераторов. Такими основными величинами являются: 1) напряжение на зажимах U, 2) ток возбуждения iв, 3) ток якоря Iа или ток нагрузки I, 4) скорость вращения n.

Обычно генераторы работают при n = const. Поэтому основные характеристики генераторов определяются при n = nн = const.

Существуют пять основных характеристик генераторов: 1) холостого хода, 2) короткого замыкания, 3) внешняя, 4) регулировочная, 5) нагрузочная.

Все характеристики могут быть определены как экспериментальным, так и расчетным  путем.

Рассмотрим основные характеристики генератора независимого возбуждения.

Характеристика холостого хода

Характеристика холостого хода (х. х. х.) U = f (iв) при I = 0 и n = const определяет зависимость напряжения или электродвижущей силы (э. д. с.) якоря Eа от тока возбуждения при холостом ходе (I = 0, P2 = 0). Характеристика снимается экспериментально по схеме рисунка 1, а при отключенном рубильнике.

Схемы генераторов и двигателей независимого, параллельного, последовательного и смешанного возбуждения

Рисунок 1. Схемы генераторов и двигателей независимого (а), параллельного (б), последовательного (в), смешанного (г) возбуждения (сплошные стрелки – направления токов в режиме генератора, штриховые – в режиме двигателя)

Характеристика холостого хода генератора независимого возбуждения
Рисунок 2. Характеристика холостого хода генератора независимого возбуждения

Снятие характеристики целесообразно начинать с максимального значения тока возбуждения и максимального напряжения U = (1,15 – 1,25) Uн (точка а кривой на рисунке 2). При уменьшении iв напряжение уменьшается по нисходящей ветви аб характеристики сначала медленно ввиду насыщения магнитной цепи, а затем быстрее. При iв = 0 генератор развивает некоторое напряжение U00 = Об (рисунок 2), обычно равное 2 – 3% от Uн, вследствие остаточной намагниченности полюсов и ярма индуктора. Если затем изменить полярность возбуждения и увеличить iв в обратном направлении, начиная с iв = 0, то при некотором iв < 0 напряжение упадет до нуля (точка в, рисунок 2), а затем U изменит знак и будет возрастать по абсолютной величине по ветви вг х. х. х. Когда ток iв и напряжение U достигнут в точке г такого же абсолютного значения, как и в точке а, ток iв уменьшаем до нуля (точка д), меняем его полярность и снова увеличиваем, начиная с iв = 0. При этом U меняется по ветви деа х. х. х. В итоге вернемся в точку а характеристики. Х. х. х. имеет вид неширокой гистерезисной петли вследствие явления гистерезиса в магнитной цепи индуктора.

При снятии х. х. х. ток iв необходимо менять только в направлении, указанном на рисунке 2 стрелками, так как в противном случае точки не будут ложиться на данную гистерезисную петлю, а будут рассеиваться.

Средняя штриховая х. х. х. на рисунке 2 представляет собой расчетную х. х. х., которая в определенном масштабе повторяет магнитную характеристику генератора, и по ней можно определить коэффициент насыщения машины kμ.

Характеристика холостого хода позволяет судить о насыщении магнитной цепи машины при номинальном напряжении, проверять соответствие расчетных данных экспериментальным и составляет основу для исследования эксплуатационных свойств машины.

Характеристика короткого замыкания

Характеристика короткого замыкания генератора независимого возбуждения
Рисунок 3. Характеристика короткого замыкания генератора независимого возбуждения

Характеристика короткого замыкания (х. к. з.) I = f (iв) при U = 0 и n = const снимается при замыкании выходных зажимов цепи якоря генератора накоротко. Так как U = 0, то, согласно выражению

(уравнение напряжения U на зажимах генератора), Eа = Iа × Rа и поскольку Rа мало, то в условиях опыта э. д. с.  Eа также должна быть мала. Поэтому необходимо проявлять осторожность и начать снятие х. к. з. с минимальных значений iв, чтобы ток якоря не получил недопустимо большого значения. Обычно снимают х. к. з. до I = (1,25 – 1,5) Iн. Так как при снятии х. к. з. электродвижущая сила мала и поэтому поток мал и машина не насыщена, то зависимость I = f (iв) практически прямолинейна (рисунок 3). При iв = 0 из-за наличия остаточного магнитного потока ток I не равен 0 и в крупных машинах близок к номинальному и даже больше его. Поэтому перед снятием х. к. з. такую машину целесообразно размагнитить, питая на холостом ходу обмотку возбуждения таким током возбуждения обратного направления, при котором будет U = 0. В размагниченной машине х. к. з. начинается с нуля (штриховая линия на рисунке 3) Если х. к. з. снята без предварительного размагничивания машины (сплошная линия на рисунке 3), то ее также целесообразно перенести параллельно самой себе в начало координат (штриховая линия на рисунке 3).

Характеристический (реактивный) треугольник

Характеристический (реактивный) треугольник определяет реакцию якоря и падение напряжение в цепи якоря. Он строится для нахождения реакции якоря по экспериментальным данным и используется также для построения некоторых характеристик машины, если они не могут быть сняты экспериментально. Характеристический треугольник можно построить по экспериментальным данным с помощью х. х. х. и любой другой основной характеристики машины, а также по расчетным данным. Рассмотрим здесь его построение с помощью х. х. х. и х. к. з., для чего обратимся к рисунку 4, где изображены х. к. з. I = f (iв) (прямая 1) и начальная, прямолинейная часть х. х. х. U = f (iв) (прямая 2), проходящие через начало координат.

Построим характеристический треугольник для номинального тока машины Iа = I = Iн, которому на х. к. з. соответствует точка а и на оси абсцисс точка б (рисунок 4, а). Построим на прямой аб отрезок бв, равный в масштабе прямой 2 падению напряжения в цепи якоря Iн × Rа, и соединим точку в горизонтальной прямой с точкой г на х. х. х. Тогда треугольник бвг и будет характеристическим треугольником. Горизонтальный катет вг этого треугольника представляет собой намагничивающую силу реакции якоря в масштабе тока возбуждения, что можно доказать следующим образом.

Характеристический треугольник
Рисунок 4. Построение характеристического треугольника в случае размагничивающей (а) и намагничивающей (б) реакции якоря

Отрезок 0б на рисунке 4, а равен току iв, необходимому для получения при коротком замыкании тока I = Iн. В якоре при этом должна индуктироваться э. д. с. Eа = Iн × Rа, равная отрезку гд, для чего при холостом ходе требуется ток возбуждения 0д = iве. Таким образом, разность 0б – 0д = дб = iва между действительным током iв = 0б при коротком замыкании и током iве = 0д при холостом ходе может быть обусловлена только влиянием тока в якоре и должна поэтому выражать собой намагничивающую силу реакции якоря в масштабе тока возбуждения iв.

Рисунок 4, а соответствует случаю размагничивающей реакции якоря (iва больше 0), а рисунок 4, б – случаю намагничивающей реакции якоря (iва меньше 0). В последнем случае х. к. з., естественно, должна подниматься круче. Для других значений токов якоря (I ≠ Iн) катеты треугольника бвг изменяются практически пропорционально току якоря, так как нелинейность сопротивления щеточного контакта оказывает малое влияние.

Поскольку в условиях снятия х. к. з. магнитная цепь машины не насыщена, то построенный таким образом характеристический треугольник учитывает только продольную реакцию якоря, вызванную случайным или сознательным сдвигом щеток с геометрической нейтрали и отклонением коммутации от прямолинейной. При установке щеток на геометрической нейтрали катет треугольника iва = дб равен намагничивающей силе коммутационной реакции якоря (в масштабе iв) и характеризует качество коммутации (на рисунке 4, а – замедленная коммутация и на рисунке 4, б – ускоренная). Когда щетки стоят на нейтрали и коммутация прямолинейна, iва = дб = 0 и треугольник бвг вырождается в вертикальную прямую.

Для построения характеристического треугольника с учетом влияния поперечной реакции якоря можно воспользоваться х. х. х. и внешней, регулировочной или нагрузочной характеристикой. Обычно пользуются нагрузочной характеристикой.

Внешняя характеристика генератора

Внешняя характеристика генератора независимого возбуждения U = f (I) при iв = const и n = const (рисунок 5) определяет зависимость напряжения генератора от его нагрузки в естественных условиях, когда ток возбуждения не регулируется.При увеличении I напряжение U несколько падает по двум причинам: вследствие падения напряжения в цепи якоря I × Rа и уменьшения э. д. с. Eа ввиду уменьшения потока под воздействием поперечной реакции якоря (при щетках на геометрической нейтрали). При дальнейшем увеличении I напряжение начнет падать быстрее, так как под воздействием реакции якоря поток уменьшается и рабочая точка смещается на более круто падающий участок кривой намагничивания машины.

Внешняя характеристика генератора независимого возбуждения
Рисунок 5. Внешняя характеристика генератора независимого возбуждения

Внешнюю характеристику рекомендуется снимать при таком возбуждении (iв = iвн), когда при I = Iн также U = Uн (номинальный режим). При переходе к холостому ходу (I = 0) в этом случае напряжение возрастает на вполне определенную величину ΔUн (рисунок 5), которая называется номинальным изменением напряжения генератора. В генераторах независимого возбуждения

Внешнюю характеристику (в левом квадранте рисунка 6) можно построить также с помощью х. х. х. (в правом квадранте рисунка 6) и характеристического треугольника. Для этого проведем на рисунке 6 вертикальную прямую аб, соответствующую заданному току iв = const. Тогда аб =0в представляет собой U при I = 0 и определяет начальную точку внешней характеристики.

Разместим затем на рисунке 6 характеристический треугольник где, построенный в соответствующих масштабах для I = Iн, таким образом, чтобы его вершина г лежала на х. х. х., а катет де – на прямой аб. Тогда отрезок ае = жз будет равен U при I = Iн, что можно доказать следующим образом. Если U = ае, то Eа = U + Iн × Rа = ае + ед = ад = иг и для создания такой э. д. с. при холостом ходе требуется ток возбуждения iве = 0и. При нагрузке ток возбуждения нужно увеличить на величину iва = гд = иа для компенсации размагничивающей реакции якоря. Необходимый полный ток возбуждения при этом iв = iве + iва = 0и + иа = 0а как раз соответствует заданному, что и требовалось доказать.

Если принять, что катеты, а следовательно, и гипотенуза характеристического треугольника изменяются пропорционально I, то для получения других точек внешней характеристики достаточно провести на рисунке 6 между х. х. х. и прямой аб наклонные отрезки прямых (гипотенузы новых характеристических треугольников), параллельные гипотенузе ге. Тогда нижние точки этих отрезков (на прямой аб) будут определять значение U при токах

и так далее.

Перенеся эти точки по горизонтали в левый квадрант рисунка 6 для соответствующих значений I и соединив их плавной кривой, получим искомую внешнюю характеристику U = f (I).

Построение внешней характеристики генератора независимого возбуждения
Рисунок 6. Построение внешней характеристики генератора независимого возбуждения с помощью характеристики холостого хода и характеристического треугольника

В действительности горизонтальный катет характеристического треугольника при уменьшении U растет не пропорционально I. Поэтому реальная внешняя характеристика отклоняется от построенной несколько в сторону, как показано в левом квадранте рисунка 6 штриховой линией.

Точка внешней характеристики с U = 0 определяет значение тока короткого замыкания машины при полном возбуждении. Так как Rа мало, то этот ток в 5 – 15 раз превышает Iн. Такое короткое замыкание весьма опасно, так как возникают круговой огонь, а также большие механические усилия и моменты вращения. Поэтому в условиях эксплуатации генераторы и двигатели средней и большой мощности защищаются быстродействующими автоматическими выключателями в цепи якоря, которые ограничивают длительность короткого замыкания и отключают машину от сети в течение 0,01 – 0,05 с после начала внезапного короткого замыкания. Однако эти выключатели не защищают машину при коротком замыкании внутри машины.

Если имеются опытные х. х. х. и внешняя характеристика и если известно Rа, то произведя построение на рисунке 6 в обратной последовательности, можно получить характеристические треугольники с учетом реальных условий насыщения для любых значений U и Eа.

Регулировочная характеристика

Регулировочная характеристика iв = f (I) при U = const и n = const показывает, как нужно регулировать ток возбуждения, чтобы при изменении нагрузки напряжение генератора не менялось (рисунок 7). С увеличением I ток iв необходимо несколько увеличивать, чтобы скомпенсировать влияние падения напряжения Iа × Rа и реакции якоря.

Регулировочная характеристика генератора независимого возбуждения
Рисунок 7. Регулировочная характеристика генератора независимого возбуждения

При переходе от холостого хода с U = Uн к номинальной нагрузке I = Iн увеличение тока возбуждения составляет 15 – 25%.

Построение регулировочной характеристики (нижний квадрант рисунка 8) по х. х. х. (верхний квадрант рисунка 8) и характеристическому треугольнику производится следующим образом. Для заданного U = 0а = вб = const значение iв при I = 0 определяется точкой в. Характеристический треугольник где для номинального тока расположим так, чтобы его вершины г и е находились соответственно на х. х. х. и прямой абе. Тогда отрезок 0ж = ае определяет значение iв при I = Iн, что можно доказать аналогично тому, как это делалось в случае построения внешней характеристики. Для получения других точек характеристики достаточно провести между кривой х. х. х. и прямой абе на рисунке 8 отрезки прямых, параллельные гипотенузе ге. Тогда нижние концы (точки) этих отрезков будут соответствовать значениям iв для значений I, определяемых отношениями длин этих отрезков к гипотенузе ге, как и в предыдущем случае. Снеся эти точки вертикально вниз, в нижний квадрант рисунка 8, на уровень соответствующих значений I, получим точки регулировочной характеристики. С учетом изменяющихся условий насыщения реальная опытная регулировочная характеристика будет иметь вид, показанный в нижнем квадранте рисунка 8 штриховой линией.

Построение регулировочной характеристики генератора независимого возбуждения
Рисунок 8. Построение регулировочной характеристики генератора независимого возбуждения с помощью характеристики холостого хода и характеристического треугольника

Обратным построением, если даны х. х. х. и регулировочная характеристика, можно получить характеристический треугольник.

Нагрузочная характеристика

Нагрузочная характеристика U = f (iв) при I = const и n = const (кривая 2 на рисунке 9) по виду схожа с х. х. х. (кривая 1 на рисунке 9) и проходит несколько ниже х. х. х. вследствие падения напряжения в цепи якоря и влияния реакции якоря. Х. х. х. представляет собой предельный случай нагрузочной характеристики, когда I = 0. Обычно нагрузочную характеристику снимают при I = Iн.

Поясним, как с помощью характеристик 1 и 2 рисунка 9 можно построить характеристический треугольник. Пусть 0а соответствует значению U, для которого желательно построить треугольник (например, U = Uн). Тогда проведем горизонтальную линию аб и от точки б на нагрузочной характеристике отложим вверх отрезок бв = I × Rа, где I – ток, при котором снята нагрузочная характеристика. Проведя из точки в горизонтальный отрезок прямой до пересечения в точке г с х. х. х., получим горизонтальный катет гв искомого треугольника гвб. Доказательство справедливости такого построения можно развивать по аналогии с доказательством построения внешней характеристики (смотрите рисунок 6).

Нагрузочная характеристика генератора независимого возбуждения
Рисунок 9. Нагрузочная характеристика генератора независимого возбуждения

Если построенный таким или другим способом характеристический треугольник передвигать на рисунке 9 параллельно самому себе так, чтобы его вершина г скользила по х. х. х., то его вершина б очертит нагрузочную характеристику (штриховая кривая на рисунке 9). Эта характеристика несколько разойдется с опытной характеристикой 2, так как размер катета гв будет меняться вследствие изменений условий насыщения.

Точка д на рисунке 9 соответствует короткому замыканию генератора.

Все характеристики генераторов можно изобразить как в абсолютных величинах, так и в относительных единицах. В последнем случае характеристики однотипных машин, хотя бы и разной мощности, построенные в относительных единицах, мало отличаются друг от друга.

Влияние сдвига щеток

Cдвиг щеток с геометрической нейтрали сказывается в том, что возникает продольная реакция якоря, изменяющая поток полюсов. Поток добавочных полюсов будет индуктировать э. д. с. не в коммутируемых секциях, а в рабочих секциях параллельных ветвей якоря. При повороте щеток против направления вращения якоря (рисунок 10) это вызовет увеличение э. д. с. якоря, а при сдвиге по направлению вращения – уменьшение э. д. с. В первом случае внешняя характеристика (смотрите рисунок 5) с увеличением I будет падать более круто. При наличии добавочных полюсов в обоих случаях возникает расстройство коммутации.

Влияние сдвига щеток на другие характеристики нетрудно анализировать подобным же образом.

Источник: Вольдек А. И., "Электрические машины. Учебник для технических учебных заведений" – 3-е издание, переработанное – Ленинград: Энергия, 1978 – 832с.

www.electromechanics.ru

Характеристики автомобильных генераторов

Способность генераторной установки обеспечивать потребителей электроэнергией на различных режимах работы двигателя определяется его токоскоростной характеристикой (ТСХ) - зависимостью наибольшей силы тока, отдаваемого генератором, от частоты вращения ротора при постоянной величине напряжения на силовых выводах. На рис. 5.4 представлена токоскоростная характеристика генератора.

Рисунок 5.11 Токоскоростная характеристика генераторных установок.

На графике имеются следующие характерные точки:

  • n0- начальная частота вращения ротора без нагрузки, при которой генератор начинает отдавать ток;

  • Iхд- ток отдачи генератора при частоте вращения, соответствующей минимальным устойчивым оборотам холостого хода двигателя. На современных генератоpax ток, отдаваемый в этом режиме, составляет 40-50% от номинального;

  • частота вращения npни сила тока Idнв расчетном режиме. (Точка расчетного режима определяется в месте касания ТСХ касательной, проведенной из начала координат. Приблизительно расчетное значение силы тока может быть определено как 0,67 IdmРасчетному режиму соответствуют максимальный механический момент генератора и в области этого режима наблюдается наибольший нагрев узлов, так как с ростом частоты вращения растет ток генератора и, следовательно, нагрев его узлов, но одновременно возрастает и интенсивность охлаждения генератора вентилятором, расположенным на его валу;

  • Idm- максимальный (номинальный) ток отдачи при частоте вращения ротора 5000 мин-1(6000 мин-1для современных генераторов).

В технической документации на генераторы часто указывается не вся ТСХ, а лишь ее отдельные характерные точки (см. рис. 5.4).

На новые модели отечественных двигателей устанавливаются генераторы компактной конструкции (94.3701 и др.). Безщеточные (индукторные) генераторы (955.3701 для ВАЗов, Г700А для УАЗов) отличаются от традиционной конструкции тем, что у них на роторе расположены постоянные магниты, а обмотки возбуждения - на статоре (смешанное возбуждение). Это позволило обойтись без щеточного узла (уязвимая часть генератора) и контактных колец. Однако эти генераторы имеют несколько большую массу и более высокий уровень шума.

Другой характеристикой, по которой можно представить энергетические способности генератора, является величина его коэффициента полезного действия (КПД), определяемого в режимах соответствующих точкам токоскоростной характеристики (рис. 5.5). Величина КПД по рис. 5.5 приведена для ориентировки, т.к. она зависит от конструкции генератора - толщины пластин, из которых набран статор, диаметра контактных колец, подшипников, сопротивления обмоток и т. п., но, главным образом, от мощности генератора. Чем генератор мощнее, тем его КПД выше.

Рисунок 5.12 Выходные характеристики автомобильных генераторов: 1 - токоскоростная характеристика, 2 - КПД по точкам токоскоростной характеристики.

Наконец, генераторную установку характеризует диапазон ее выходного напряжения, при изменении в определенных пределах частоты вращения, силы тока нагрузки и температуры. Обычно в проспектах фирм указывается напряжение между силовым выводом "+" и "массой" генераторной установки в контрольной точке или напряжение настройки регулятора при холодном состоянии генераторной установки частоте вращения 6000 мин-1, нагрузке силой тока 5 А и работе в комплекте с аккумуляторной батареей, а также термокомпенсация- изменение регулируемого напряжения в зависимости от температуры окружающей среды. Термокомпенсация указывается в виде коэффициента, характеризующего изменение напряжения при изменении температуры окружающей среды на ~1°С. Как было показано выше, с ростом температуры напряжение генераторной установки уменьшается.

studfiles.net

Характеристики, типы и принцип работы автомобильных генераторов

Ищем двух авторов для нашего сайта, которые ОЧЕНЬ хорошо разбираются в устройстве современных автомобилей.Обращаться на почту [email protected].

Поскольку для работы двигателя необходимо электричество, а запаса аккумулятора хватает лишь на его запуск, его постоянной выработкой занимается генератор автомобиля на холостом ходу и больших оборотах. Кроме подачи напряжения всем потребителям бортовой сети, электроэнергия расходуется на подзарядку АКБ и самовозбуждение якоря генератора.

Рис. 1 Генератор авто

Рис. 1 Генератор авто

Назначение автомобильного генератора

Кроме питания бортовой сети генератор автомобиля обеспечивает восполнение запаса электроэнергии, которую потратил аккумулятор при запуске ДВС. Первоначальное возбуждение обмотки так же производится за счет постоянного тока аккумулятора. Затем генератор начинает вырабатывать электричество самостоятельно при передаче вращения ремнем на шкив с коленвала двигателя.

Другими словами – без генератора машина заведется стартером от аккумулятора, но проедет недалеко, и не заведется в следующий раз, так как АКБ не получит подзарядки. На эксплуатационный ресурс генератора влияют факторы:

  • емкость и апмераж аккумулятора;
  • стиль и режим вождения;
  • количество потребителей бортовой сети;
  • сезонность эксплуатации транспортного средства;
  • качество изготовления и сборки узлов генератора.

Простая конструкция позволяет диагностировать и устранить самостоятельно большинство поломок.

Особенности конструкции

Основан принцип работы генератора автомобиля на эффекте индукции электромагнитной, позволяющем получать электроток при наведении, а затем изменении магнитного поля вокруг проводника. Для этого в генераторе имеются необходимые детали:

  • ротор – катушка внутри двух пар разнонаправленных магнитов, получающая вращение через шкив, и постоянный ток на обмотки возбуждения через щетки и коллекторные кольца
  • статор – обмотки внутри магнитопровода, в которых наводится переменный электрический ток
  • диодный мост – выпрямляет переменный ток в постоянный
  • реле напряжения – регулирует эту характеристику в пределах 13,8 – 14,8 В
Рис. 2 Конструкция генератора

Рис. 2 Конструкция генератора

При неработающем двигателе в момент его запуска ток возбуждения подается на якорь с аккумулятора. Затем генератор начинает выработку электричества самостоятельно, переходит на самовозбуждение, полностью восстанавливает заряд аккумулятора при движении машины.

На холостых оборотах подзарядки не происходит, но бортовая сеть и все ее потребители (фары, музыка, кондиционер) обеспечиваются в полном объеме.

Статор

В генераторе самым сложным является устройство статора:

  • из трансформаторного железа 0,8 – 1 мм толщины вырубаются штампом пластины;
  • из них набирают пакеты (сварка или крепление заклепками), 36 пазов по периметру изолируются эпоксидной смолой или полимерной пленкой;
  • затем в пакеты укладываются 3 обмотки, фиксируемые в пазах специальными клиньями.
Рис. 3 Статор генератора

Рис. 3 Статор генератора

Именно в статоре вырабатывается переменное напряжение, которое позже автомобильный генератор выпрямляет в постоянный ток для бортовой сети и АКБ.

Ротор

При использовании подшипников качения цапфа закаливается, а сам вал создается из легированной стали. На вал намотана катушка, залитая специальным диэлектрическим лаком. Сверху на нее надеты и закреплены на валу магнитные полюсные половинки:

  • имеют вид короны;
  • содержат по 6 лепестков;
  • изготавливаются штамповкой или литьем.
Рис. 4 Ротор генератора

Рис. 4 Ротор генератора

Шкив фиксируется на валу шпонкой либо гайкой с головой под шестигранный ключ. Зависит мощность генератора от толщины провода катушки возбуждения и качества изоляции лаком обмоток.

При подаче напряжения на обмотки возбуждения вокруг них возникает магнитное поле, взаимодействующее с аналогичным полем постоянных полюсных половинок магнитов. Именно вращение ротора обеспечивает выработку электротока в обмотках статора.

Токосъемный узел

В щеточном генераторе устройство токосъемного узла следующее:

  • щетки скользят по коллекторным кольцам;
  • по ним передается постоянный ток на обмотку возбуждения.

Электрографитные щетки изнашиваются меньше меднографитных модификаций, но на коллекторных полукольцах наблюдается падение напряжения. Для снижения электрохимического окисления колец их могут изготавливать из нержавейки и латуни.

Рис. 5 Токосъемный узел генератора

Рис. 5 Токосъемный узел генератора

Поскольку работа токосъемного узла сопровождается интенсивным трением, щетки и кольца коллекторные изнашиваются чаще прочих деталей, считаются расходниками. Поэтому к ним обеспечивается быстрый доступ для периодической замены.

Выпрямитель

Поскольку в статоре электроприбора вырабатывается переменное напряжение, а для бортовой сети нужен постоянный ток, в конструкцию добавлен выпрямитель, к которому и подключаются обмотки статора. В зависимости от характеристики генератора выпрямительный узел имеет различную конструкцию:

  • диодный мостик распаян или впрессован в подковообразные пластины-теплоотводы;
  • выпрямитель собран на плате, теплоотводы с мощным оребрением припаиваются к диодам.
Рис. 6 Выпрямитель генератора

Рис. 6 Выпрямитель генератора

Рис. 7 Вариант диодного мостика с независимыми радиаторами

Рис. 7 Вариант диодного мостика с независимыми радиаторами

Основной выпрямитель может дублироваться дополнительным диодным мостиком:

  • герметичный компактный блок;
  • диды-горошины или цилиндрической формы;
  • включение в общую схему небольшими шинами.

Выпрямитель является «слабым звеном» генератора, так как любое инородное тело, проводящее ток, попавшее случайно между теплоотводами диодов, автоматически приводит к короткому замыканию.

Регулятор напряжения

После того, как переменная амплитуда преобразована выпрямителем в постоянный ток, электроэнергия генератора подается на реле регулятора напряжения по следующим причинам:

  • коленвал ДВС вращается с разной скоростью в зависимости от типа вождения, дальностью поездки и циклом движения авто;
  • поэтому автомобильный генератор по умолчанию не способен вырабатывать одинаковое напряжение в разные промежутки времени физически;
  • устройство реле регулятора и отвечает за термокомпенсацию – отслеживает значение температуры воздуха, при его снижении повышает напряжение подзарядки и наоборот.

Стандартной величиной термокомпенсации принято значение 0,01 В/1градус. В некоторых генераторах имеются переключатели ручные лето/зима, выносимые в салон или пространство под капотом авто.

Рис. 8 Регулятор напряжения

Рис. 8 Регулятор напряжения

Существуют реле регуляторов напряжения, в которых бортовая сеть подключается к обмотке возбуждения генератора «–» проводом или «+» кабелем. Эти конструкции являются не взаимозаменяемыми, путать их нельзя, чаще всего в легковых машинах установлены «минусовые» регуляторы напряжения.

Подшипники

Передним считается подшипник со стороны шкива, его корпус впрессовывается в крышку, а на валу используется скользящая посадка. Задний подшипник расположен возле коллекторных колец, его, наоборот, сажают на вал с натягом, в корпусе использована скользящая посадка.

В последнем случае могут применяться подшипники роликовые, передний подшипник всегда радиальный шариковый с одноразовой смазкой, закладываемой на заводе, которой хватает на весь эксплуатационный ресурс.

Рис. 9 Комплект подшипников генератора

Рис. 9 Комплект подшипников генератора

Чем выше мощность генератора, тем большие нагрузки испытывает обойма подшипника, чаще требуется замена обоих расходных деталей.

Крыльчатка

Детали трения внутри генератора охлаждаются принудительным воздушным способом. Для этого на вал надевается одна или две крыльчатки, засасывающих воздух через специальные щели/отверстия в корпусе изделия.

Рис. 10 Крыльчатка генератора

Рис. 10 Крыльчатка генератора

Существует три типа воздушного охлаждения автомобильных генераторов:

  • при наличии узла щетки/коллекторные кольца и вынесения выпрямителя, регулятора напряжения из корпуса наружу эти узлы защищаются кожухом, поэтому воздухозаборные отверстия создаются в нем (позиция а) нижней схемы;
  • если компоновка механизмов под капотом плотная, а окружающий их воздух слишком нагрет, чтобы нормально охладить внутреннее пространство генератора, используется защитный кожух специальной конструкции (позиция б) нижнего рисунка;
  • в генераторах малогабаритных щели для забора воздуха создаются в обеих крышках корпуса (позиция в) на нижнем рисунке).
Рис. 11 Варианты схем воздушного охлаждения генератора

Рис. 11 Варианты схем воздушного охлаждения генератора

Перегрев обмоток и подшипников резко снижает характеристики генератора, и может привести к заклиниванию, короткому замыканию и, даже пожару.

Корпус

Традиционно для большинства электроприборов корпус генератора имеет защитную функцию для всех расположенных внутри него узлов. В отличие от стартера машины, генератор не имеет натяжного устройства, провисание ремня передачи регулируется за счет смещения корпуса самого генератора. Для этого кроме монтажных лапок на корпусе имеется регулировочная проушина.

Корпус изготавливается из алюминиевого сплава, состоит из двух крышек:

  • внутри передней крышки спрятан статор и якорь;
  • внутри задней крышки размещен выпрямитель и реле регулятора напряжения.
Рис. 12 Корпус генератора состоит из двух крышек

Рис. 12 Корпус генератора состоит из двух крышек

От этой детали зависит корректная работа генератора, так как внутрь одной крышки впрессован подшипник ротора, а ремень натягивается в проушине корпуса.

Режимы работы

При эксплуатации генератора машины существует 2 режима:

  • запуск ДВС – в этот момент стартер авто и катушка ротора генератора являются единственными потребителями, расходуется энергия аккумулятора, пусковые токи значительно выше рабочих, поэтому от качества подзарядки аккумулятора зависит, заведется машина, или нет;
  • рабочий режим – стартер в этот момент отключен, обмотка ротора генератора переходит в режим самовозбуждения, зато появляются прочие потребители (кондиционер, обогреватели стекол, зеркал, фары, автозвук), необходимо восстановить зарядку АКБ.

Внимание: При резком повышении суммарной нагрузки (аудиосистема с усилителем, сабвуфер) ток генератора становится недостаточным для удовлетворения потребностей бортовой системы, начинается расходоваться заряд АКБ.

Поэтому для снижения просадок напряжения владельцы автозвука часто ставят второй аккумулятор, увеличивают мощность генератора или дублируют его еще одним устройством.

Рис. 13 Два генератора на одном авто

Рис. 13 Два генератора на одном авто

Привод генератора

Обороты для выработки электричества генератор переменного тока получает клиноременной передачей от коленчатого вала двигателя. Поэтому натяжение ремня должно контролироваться регулярно, желательно перед каждой поездкой. Основными нюансами привода генератора являются:

  • проверка натяжения производится усилием 3 – 4 кг, прогиб в этом случае не может превышать 12 мм;
  • диагностика осуществляется линейкой, усилие к одному краю которой обеспечивается бытовым безменом;
  • проскальзывать ремень может при попадании на него масла из-за негерметичности прокладок и сальников в соседних узлах под капотом;
  • чересчур жесткий ремень вызывает повышенный износ подшипников;
  • отсутствии соосности шкивов коленвала и генератора приводит к возникновению свиста и неравномерной выработке ремня в поперечном разрезе.
Рис. 14 Привод генератора

Рис. 14 Привод генератора

Средний ресурс шкивов 150 – 200 тысяч километров пробега авто. У ремня эта характеристика слишком отличается у разных производителей, модели авто и стиля вождения владельца.

Электрическая схема

Производители учитывают конкретное количество потребителей в модели авто, поэтому в каждом случае применяется индивидуальная электрическая схема генератора. Наиболее востребованы 8 схем «мобильных электроустановок» под капотом машины с одинаковым обозначением элементов:

  1. генераторный блок;
  2. обмотка ротора;
  3. магнитопровод статора;
  4. мост диодный;
  5. переключатель;
  6. реле лампы;
  7. реле регулятора;
  8. лампа;
  9. конденсатор;
  10. блок трансформатора и выпрямителя;
  11. АКБ;
  12. стабилитрон;
  13. сопротивление.
Рис. 15 Схема 1

Рис. 15 Схема 1

В схемах 1 и 2 возбуждающая обмотка получает напряжение через замок зажигания, чтобы АКБ не разряжалась на стоянке. Недостатком является коммутация 5 А тока, снижающего эксплуатационный срок.

Рис. 16 Схема 2

Рис. 16 Схема 2

Поэтому на схеме 3 контакты разгружены промежуточным реле, а потребление тока снижено до десятых долей ампера. Минусом в этом варианте является сложный монтаж генератора, понижение надежности конструкции, возрастает частота переключения транзистора. Фары могут моргать, а стрелки приборов подрагивать.

Рис. 17 Схема 3

Рис. 17 Схема 3

В схеме 5 из трех диодов изготовлен дополнительный выпрямитель на пути к обмотке возбуждения. Однако при длительной парковке рекомендуется снимать «+» с клеммы аккумулятора, так как возможен разряд батареи. Зато при первичном возбуждении обмотки в момент запуска ДВС расход тока АКБ минимальный. Опасное для электроники машины повышение напряжения гаси стабилитрон.

Рис. 18 Схема 5

Рис. 18 Схема 5

Для дизельных моторов применяются генераторы, использующие 6 схему. Они рассчитаны на напряжение 28 В, возбуждающая обмотка получает вдвое меньший заряд за счет подключения в «нулевую» точку статора.

Рис 19 Схема 6

Рис 19 Схема 6

На схеме 7 ликвидирован разряд АКБ при длительной парковке за счет снижения разницы потенциалов на «Д» и «+» клеммах. Из стабилитронов создано дополнительное крыло диодного мостика выпрямителя для ликвидации всплесков напряжения.

Рис. 20 Схема 7

Рис. 20 Схема 7

Схема 8 обычно применяется в генераторах производителя Бош. Здесь усложнен регулятор напряжения, зато упрощена схема самого генератора.

Рис. 21 Схема 8

Рис. 21 Схема 8

Маркировка клемм на корпусе

При самостоятельной диагностике мультиметром для владельца актуальна информация, как маркируются клеммы, выведенные на корпус генератора. Единого обозначения не существует, но общие принципы соблюдаются всеми производителями:

  • с выпрямителя выходит «плюс», маркирующийся «+», 30, В, В+ и ВАТ, «минус», обозначенный «–», 31, D-, B-, E, M или GRD;
  • от возбуждающей обмотки отходит клемма 67, Ш, F, DF, E, EXC, FLD;
  • «плюсовой» провод от дополнительного выпрямителя на контрольную лампу обозначен D+, D, WL, L, 61, IND;
  • фазу можно узнать по волнистой линии, буквам R, W или STA;
  • нулевая точка статорной обмотки обозначена «0» или МР;
  • клемма реле регулятора для подключения к «плюсу» бортовой сети (обычно АКБ) обозначена 15, Б либо S;
  • кабель от замка зажигания должен подключаться к клемме регулятора напряжения, маркированной IG;
  • бортовой компьютер подсоединяется к выводу реле регулятора с обозначением F или FR.
Рис. 22 Расположение клемм на корпусе генератора

Рис. 22 Расположение клемм на корпусе генератора

Других обозначений не существует, а вышеуказанные присутствуют на корпусе генератора не в полном объеме, поскольку встречаются на всех существующих модификациях электроприборов.

Основные неисправности

Поломки «бортовой электростанции» вызваны неправильной эксплуатацией транспортного средства, выработкой ресурса деталей трения либо выходом из строя электрики. Вначале производится визуальная диагностика и выявление посторонних звуков, затем проверяется электрическая часть мультиметром (тестером). Основные неисправности сведены в таблицу:

ПоломкаПричинаРемонт
свист, потеря мощности на высоких оборотахнедостаточная натяжка ремня, поломка подшипника/втулкирегулировка натяжения, замена втулки/подшипника
недозаряднеисправно реле регуляторазамена реле
перезарядканеисправно реле регуляторазамена реле
люфт валаотказ подшипника или выработка втулкизамена расходника
утечка тока, снижение напряженияпробой диодазамена диодов выпрямителя
отказ генератораподгорание или износ коллектора, обрыв обмотки возбуждения, зависание щеток, заклинивание ротора в статоре, обрыв ведущего от АКБ проводаустранить указанные поломки

При диагностике тестером измеряется напряжение генератора на разных оборотах двигателя – в режиме холостого хода, под нагрузкой. Проверяется целостность обмоток и соединительных проводов, диодного мостика и регулятора напряжения.

Выбор генератора для легкового авто

За счет разного диаметра шкивов клиноременной передачи генератору придается большая угловая скорость в сравнении с оборотами коленвала. Частота вращения ротора достигает 12 – 14 тысяч оборотов ежеминутно. Поэтому ресурс генератора минимум вдвое меньше, чем у ДВС авто.

Генератором машина комплектуется на заводе, поэтому при замене подбирается модификация с аналогичными характеристиками и крепежными отверстиями. Однако при тюнинге авто мощность генератора может не устроить владельца. Например, после увеличения количества потребителей (подогрев сидений, зеркал, стекол), установки сабвуфера, аудиосистемы с усилителем требуется именно выбор нового, более мощного генератора или монтаж второго электроприбора в комплекте с дополнительным аккумулятором.

В первом случае следует выбрать мощность, достаточную для подзарядки аккумулятора с 15% запасом. При установке второго генератора начальный и эксплуатационный бюджет резко увеличиваются:

  • для дополнительного генератора придется установить дополнительный шкив на коленвал;
  • найти место для крепления корпуса электроприбора таким образом, чтобы его шкив размещался в одной плоскости со шкивом коленвала;
  • обслуживать и менять расходники сразу двух «мобильных электростанций».

С возникновением бесщеточных моделей генератора некоторые владельцы производят замену штатного прибора этим девайсом.

Бесщеточные модификации

Основным достоинством бесщеточного генератора является сверхдолгий эксплуатационный ресурс. Несмотря на сложную конструкцию и цену, ломаться здесь в принципе нечему, а окупаемость, все равно, выше за счет отсутствия расходников щетки/коллекторные кольца.

Компактные размеры и отсутствие коротких замыканий при попадании воды на залитые лаком или композитным составом обмотки позволяет монтировать его практически на любые транспортные средства.

На малых оборотах работа генератора обеспечивает электричеством только бортовую сеть, зарядка АКБ начинается при увеличении оборотов от 3000 ежеминутно.

Генераторы постоянного тока исчезли с легкового транспорта в 70-е годы прошлого столетья, так как имели сложную схему и более крупные размеры.

Таким образом, работа автомобильного генератора обеспечивает электроэнергией всех потребителей, подзаряжает АКБ и создает искру в камерах сгорания. Своевременное обслуживание и диагностика позволяет сократить эксплуатационные расходы и повысить ресурс электрического устройства.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

swapmotor.ru

Характеристики генераторов переменного тока

 

Основными характеристиками генераторов переменного тока яв­ляются: 1) внешняя; 2) скоростная регулировочная; 3) токоскоростная.

Внешняя характеристика - это зависимость напряжения гене­ратора от тока (Ur(Ir) при п = const. Она может определяться при самовозбуждении и при независимом возбуждении.

При увеличении нагрузки (а значит, и силы тока) происходит снижение выходного напряжения генератора (рис. 1.9). Причинами этого являются: 1) падение напряжения в активном и индуктивном сопротивлениях обмоток статора; 2) размагничивающее действие реакции якоря, уменьшающей магнитный поток в воздушном за­зоре, 3) падение напряжения к цепи выпрямителя; 4) в случае са­мовозбуждения — падение напряжения на обмотке возбуждения. Из семейства внешних характеристик определяется максимальный ток, который обеспечивается при заданном или регулируемом значении напряжения.

 

Рис. 1.9 Внешняя характеристика генератора переменного тока с независимым возбуждением.

Рис. 1.10. Характеристики генератора переменного тока при Ur=const;

а — скоростная регулировочная характеристика;

б - токоскоростная характеристика

Скоростная регулировочная характеристика Iв(n) (рис.1.10,а) обычно определяется при нескольких значениях тока нагрузки. Минимальное значение тока возбуждения определяется при токе на­грузки генератора, равном нулю, и максимальной частоте вращения. Скоростные регулировочные характеристики позволяют определить диапазон изменения тока возбуждения с изменением нагрузки при повышенном напряжении.

Токоскоростная характеристика Iг(n) (см. рис. 1.10,б) имеет важное значение при разработке и выборе генератора.

Все современные автомобильные генераторы обладают свойством самоограничения максимального тока. Это связано с тем, что с увели­чением частоты вращения ротора генератора, а следовательно, и час­тоты индуцированного в обмотке статора переменного тока увеличива­ется индуктивное сопротивление обмотки статора генератора. При большой частоте вращения генератора полное сопротивление цепи Zц, в которую включен генератор, становится практически равным индук­тивному сопротивлению X обмотки статора, так как в этом случае X >>RH(RH- сопротивление нагрузки). ЭДС генератора и индук­тивное сопротивление Х обмотки статора изменяются, как известно, пропорционально частоте вращения генератора п. Поэтому при изме­нении частоты вращения генератора в диапазоне больших частот сила тока генератора остается неизменной:

 

I (n) = = = = const

 

Похожие статьи:

poznayka.org

Характеристики генераторов независимого возбуждения

Характеристика холостого хода. Определяет зависимость напряжения U0 от тока возбуждения при Iа=0 и n=const.  Для снятия этой характеристики собирается схема, показанная на рис. 1. Выключатель «Р» отключен, генератор разгоняется до номинальной частоты вращения, снятие характеристики начинают с Iв=0. При этом, ввиду наличия магнитного потока остаточного намагничивания, в проводниках обмотки якоря индуктируется ЭДС Еост, величина которой обычно составляет (2…3)% от Uн генератора.

При увеличении тока в обмотке возбуждения от нуля до максимального значения, напряжение генератора возрастает по кривой 1.

Схема для снятия характеристики холостого хода и Характеристика холостого хода генератора независимого возбуждения

 Обычно ток возбуждения увеличивают до тех пор, пока напряжение на зажимах генератора не достигнет значения (1,1…1,25) Uн. Затем ток возбуждения уменьшают до нуля, изменяют его направление на обратное и вновь увеличивают до Iв= — Iвmax..  Напряжение при этом изменяется от +Umax до -Umax по кривой 2, которая называется нисходящей ветвью. Кривая 2 проходит выше кривой I, что объясняется процессами перемагничивания магнитной цепи. Далее изменяют ток возбуждения от -Iвmaxдо +Iвmax, при этом напряжение меняется от -Umax до +Umaxпо кривой 3, так называемой восходящей ветвью характеристики холостого хода. Кривые 2 и 3 образуют петлю гистерезиса, которая определяет свойства стали магнитной цепи машины. Проведя между ними среднюю линию 4, получают так называемую расчетную характеристику холостого хода, которой пользуются на практике.

Следует отметить, что при снятии характеристики холостого хода изменять ток возбуждения нужно только в одном направлении, чтобы точки принадлежали одной ветви.

Анализ характеристики холостого хода показывает, что начальная часть кривой представляет собой практически прямую линию, так как при малых токах Iвпочти вся МДС идет на преодоление магнитного сопротивления воздушного зазора. По мере увеличения тока Iви возрастания потока Ф сталь магнитопровода насыщается и зависимость U0= f (Iв) становится нелинейной.

Точка, соответствующая напряжению Uн, лежит обычно на перегибе характеристики холостого хода. Это связано с тем, что при работе на прямолинейном участке характеристики напряжение генератора неустойчиво, а в насыщенной части кривой ограничены возможности регулирования напряжения генератора. Таким образом характеристика холостого хода имеет важное значение для оценки свойств генератора.

Нагрузочные характеристики генератора независимого возбуждения

Рис.3 — Нагрузочные характеристики генератора независимого возбуждения

Нагрузочные характеристики. Определяют зависимости напряжения от тока возбуждения при Iа=const и n=const. Схема для снятия этих характеристик та же, что и для снятия характеристики холостого хода, но в этом случае к генератору подключена нагрузка и по цепи якоря проводит постоянный по величине ток, а напряжение генератора меньше ЭДС вследствие 2-х причин — падения напряжения в цепи якоря   IaΣr и размагничивающего действия реакции якоря. Поэтому все нагрузочные характеристики расположены ниже расчетной характеристики холостого хода (рисунок 2.4). Можно считать, что характеристика холостого хода есть частный случай нагрузочной характеристики при I = 0. Обычно нагрузочную характеристику снимают при Iа = Iн.

Внешняя характеристика. Определяет зависимость напряжения генератора U от тока нагрузки I, т.е. U=f (I) при n=const и Iв=const, что при  независимом возбуждении равносильно условию rв=const .

Внешняя характеристика генератора снимается по схеме рис. 4.

Сначала доводят скорость генератора до номинальной частоты вращения, и возбудив генератор, нагружают его до номинальной нагрузки. При этом устанавливают такой ток возбуждения Iв=Iвн, чтобы при токе нагрузки I=Iн напряжение на генераторе было равно номинальному Uн. Затем постепенно уменьшают нагрузку до нуля и снимают показания приборов. По мере уменьшения нагрузки напряжение на генераторе будет возрастать по двум причинам — из-за уменьшения падения напряжения в цепи обмотки якоря Iа∑r и уменьшения размагничивающего действия реакции якоря. При переходе к холостому ходу (I=0) напряжение возрастает на величину DUн (рис. 5), которая называется номинальным изменением напряжения генератора и определяется по формуле:

Номинальным изменением напряжения генератора

Схема для снятия внешней характеристики и Внешние характеристики генератора

ГОСТ регламентирует величину изменения напряжения генератора (у генераторов независимого возбуждения

DUн =(5...10)% ).При коротком замыкании генератора, т.е. уменьшении сопротивления нагрузки до нуля, напряжение на его зажимах падает до нуля (U=0), а ток короткого замыкания во много раз превосходит номинальный Iкз=(6…15) Iн. Поэтому режим короткого замыкания для генераторов независимого возбуждения является очень опасным, особенно для коллектора и щеточного аппарата из-за возможности возникновения сильного искрения или кругового огня.

Регулировочная характеристика. Определяет зависимость тока возбуждения Iв от тока нагрузки I, т.е. Iв=f (I) при n=const и U=const (рис. 6).

Регулировочная характеристика генератора

Рис. 6 — Регулировочная характеристика генератора

Регулировочная характеристика показывает, как надо изменять ток возбуждения, чтобы при изменении нагрузки напряжение на генераторе оставалось неизменным по величине.

 

С увеличением нагрузки ток возбуждения необходимо увеличивать чтобы скомпенсировать увеличение падения напряжения на обмотке якоря Ia∑r и размагничивающее действие реакции якоря. При переходе от холостого хода к номинальной нагрузке увеличение тока возбуждения составляет (10…15)%.

Характеристика короткого замыкания. Определяет зависимость тока цепи якоря I от тока возбуждения I=f (Iв) при U=0 и n=const Для снятия этой характеристики зажимы генератора замыкают накоротко, разгоняют генератор до номинальной частоты вращения и увеличивая ток возбуждения от нуля доводят ток якоря до Iкз=(1,25...1,5)Iн.

Характеристика короткого замыкания

Рис. 7 — Характеристика короткого замыкания.

По полученным данным строят характеристику короткого замыкания (рис.7). Эта характеристика носит вспомогательный характер и при испытании генератора обычно не снимается.

www.radioingener.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта