Eng Ru
Отправить письмо

Реферат: по Физике на тему: гидроэлектростанции. Гэс сообщение


Гидроэнергетика, история гидроэнергетики в России, Российские гидроэлектростанции - Экономическая география

Гидроэнергетика, история гидроэнергетики в России, Российские гидроэлектростанции

ГИДРОЭЛЕКТРОСТАНЦИИ

По количеству вырабатываемой энергии на втором месте посте теплоэлектростанций находятся гидроэлектростанции (ГЭС). Электроэнергия ГЭС наиболее дешева среди других видов, но строительство гидроэлектростанции дорого. Современные ГЭС позволяют производить до 7 млн. кВт энергии, что вдвое превышает показатели действующих в настоящее время ТЭС и, пока, АЭС, однако размещение ГЭС в Европе затруднено по причине дороговизны земли и невозможности затопления больших территорий в данных регионах. В России этой проблемы нет. Важным недостатком ГЭС является сезонность работы, столь неудобная для промышленности.ГЭС можно разделить на две основные группы: ГЭС на крупных равнинных реках и ГЭС на горных реках. В России большая часть ГЭС сооружалась на равнинных реках. Сооружение ГЭС на равнинных реках менее рентабельно, чем на горных, но иногда это необходимо, например, для создания нормального судоходства и орошения. Во всех странах мира стараются отказаться от использования ГЭС на равнинных реках, переходя на быстрые горные реки или АЭС.Гидроэлектростанции используют для выработки электроэнергии гидроэнергетические ресурсы, то есть силу падающей воды. Существует три основных вида ГЭС.Гидроэлектрические станции. Технологическая схема их работы довольна проста. Естественные водные ресурсы реки преобразуются в гидроэнергетические ресурсы с помощью строительства гидротехнических сооружений. Гидроэнергетические ресурсы используются в турбине и превращаются в механическую энергию, механическая энергия используется в генераторе и превращается в электрическую энергию.Приливные станции. Природа сама создает условия для получения напора, под которым может быть использована вода морей. В результате приливов и отливов уровень воды меняется на северных морях – Охотском, Беринговом, волна достигает 13 метров. Между уровнем бассейна и моря создается разница и таким образом создается напор. Так как приливная волна периодически изменяется, то в соответствии с ней меняется напор и мощность станций. Пока еще использование приливной энергии ведется в скромных масштабах. Главным недостатком таких станций является вынужденный режим. Приливные станции (ПЭС) дают свою мощность не тогда, когда этого требует потребитель, а в зависимости от приливов и отливов воды. Велика также стоимость сооружений таких станций.Гидроаккумулирующие электростанции. Их действие основано на цикличном перемещении одного и того же объема воды между двумя бассейнами: верхним и нижним. В ночные часы, когда потребность электроэнергии мала, вода перекачивается из нижнего водохранилища в верхний бассейн, потребляя при этом излишки энергии, производимой электростанциями ночью. Днем, когда резко возрастает потребление электричества, вода сбрасывается из верхнего бассейна вниз через турбины, вырабатывая при этом энергию. Это выгодно, так как остановки ТЭС в ночное время невозможны. Таким образом, ГАЭС позволяет решать проблемы пиковых нагрузок. В России, особенно в европейской части, остро стоит проблема создания маневренных электростанций, в том числе ГАЭС.В настоящее время появился новый тип гидроэлектростанций – бесплотинная мини-электростанция. Её устройство несложно, а показатели мощности довольно неплохи. Это мобильная электростанция, что удобно в некоторых труднодостижимых местах. Рукавная электростанция – также относится с микро гидроэлектростанциям.

ИСТОРИЯ ГИДРОЭНЕРГЕТИКИ В РОССИИ

Долгое время считалось, что серьезная гидроэнергетика в нашей стране начиналась в 20-х годах прошлого века. В царской России в 1913 г. было выработано тогдашними 74 гидростанциями всего 5 млн. кВт, то есть столько, сколько вырабатывает Красноярская ГЭС менее чем за час.Именно с малых гидроэлектростанций выросла гидроэнергетика нынешней России. Так вспомним же где и кем были построены эти предтечи нынешних гигантов. К 1916 г. Министерство земледелия России зарегистрировало 24 гидроэлектростанции, мощностью от 150 кВт и более, построенных на мелких речках, дающих электроэнергию фабрикам, курортам, монастырям, поместьям и рудникам. Чаще всего использовалась такая схема. В горных районах, где быстрые реки позволяли не затапливать окрестности, в верховьях возводилась небольшая плотина. Уровень воды повышался на несколько метров. Затем по склону прорывался канал или укладывались трубы, куда отводилась часть потока. Остальная вода, переливаясь через гребень плотины, продолжала свое течение по руслу. У подошвы склона сооружалась гидроэлектростанция, турбина крутила не очень мощный электрогенератор. Первенцем гидроэнергетики в России следует считать станцию на Рудном Алтае, построенную в 1892 г. Эта четырехтурбинная ГЭС была создана под руководством инженера Кокшарова для шахтного водоотлива Зыряновского рудника. Здесь издавна были гидросливные установки, где с помощью воды вращались механизмы. Пристроив к ним турбины с генератором тока, можно было без дополнительных затрат получить электроэнергию. Кроме того, у рудника были именитые хозяева - русские цари. Следующие по "возрасту" были ГЭС, построенные на Урале, в Восточной Сибири и под Петербургом. На Урале первые гидроэлектростанции появились там, где добывалась железная руда, в частности на Алапаевском месторождении бурых железняков. Мощность Алапаевской ГЭС, построенной в 1904 г., по тем временам была велика - 560 кВт. В европейской части России первая промышленная гидроэлектростанция мощностью в 260 кВт была построена уже в 1896 г. на реке Охте, близ Петербурга. Она снабжала электроэнергией Охтинский пороховой завод. В ее создании участвовали инженеры В. Н. Чиколев и Р. Э. Классон. 18 октября 1898 г. стало знаменательной датой для Ленских золотых приисков: в этот день заработала ГЭС, на которой впервые в России были установлены генераторы трехфазного (переменного) тока. Трансформатор напряжением 10 кВ позволил передать ток на расстояние в 20 км. Для этого была специально сооружена высоковольтная линия. Через пару лет на Ленских приисках начали строить еще ряд ГЭС, так что их число к началу 1917 г. достигло шести, общая мощность - 2,5 тыс. кВт. В Средней Азии ГЭС появились значительно позднее, чем в Сибири, но зато сюда, на реку Мургаб, была доставлена самая крупная в то время гидравлическая турбина, изготовленная в Риге. С ее помощью стала работать с 1910 г. гидроэлектростанция, поставлявшая электроэнергию для орошения земель, где выращивали фрукты для царского двора. Как это ни парадоксально, проводниками технического прогресса часто оказывались монастыри и курорты. Так, еще в 1902 г. под монастырем "Новый Афон", была построена Сухумская (или Псырцхская) ГЭС мощностью в 350 кВт.И еще об одной гидростанции стоит рассказать - это ГЭС "Белый уголь", в создании которой принимал участие известный инженер М. А. Шателен. Построенная в 1903 г. на реке Подкумок .Ни одна из гидроэлектростанций не была столь популярна. Впервые о ней писал в 1902 г. журнал "Электрический вестник". Возможно, что популярность станции стала причиной досадной ошибки: в некоторых изданиях ее называют первой ГЭС страны. Более 110 лет минуло с тех пор, как наши соотечественники заставили воду работать для электроэнергетики. Пришла пора, наверное, считать первые ГЭС памятниками национальной технической культуры.

ГИДРОЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ РОССИИ

Водные ресурсы — это воды рек, озер и подземные воды, они служат основным источником водоснабжения страны. Вода нужна и коммунальному хозяйству, и промышленным предприятиям, и сельскому хозяйству для орошения. В целом страна хорошо обеспечена водными ресурсами, но по ее территории они распределены неравномерно. Хорошо обеспечены северные районы, Сибирь (80% пресных вод сосредоточено в озере Байкал), однако все наиболее освоенные части страны испытывают недостаток воды, особенно это касается южной половины европейской части страны.Главная проблема водоснабжения — нехватка чистой воды, загрязнение вод рек и озер бытовыми и промышленными стоками, стоками животноводческих комплексов. Нужно шире внедрять системы оборотного водоснабжения, очистки сточных вод и их использования.Водные ресурсы России значительны и разнообразны. Запасы пресной воды содержатся не только в реках, озерах, водохранилищах, но также и в подземных водоемах, ледниках, многолетней мерзлоте и болотах. По водообеспеченности Россия значительно опережает любую соседнюю республику нового зарубежья. Но распределение водных ресурсов крайне неравномерно. Значение этой диспропорции еще более усиливается, если учесть, что наименее обеспеченные водой районы являются главными потребителями воды.Россия обладает огромными гидроэнергетическими ресурсами. Но они используются менее чем на 20%. Большая часть гидроэнергетических ресурсов приходится на Сибирь и Дальний Восток (80%). Особенно велики они в бассейнах рек Енисея, Лены, Оби, Ангары, Иртыша, Амура. Богаты гидроэнергоресурсами реки Северного Кавказа. Строительство ГЭС не только выгодно, но имеет и отрицательные последствия: затопление земель, изменение уровня грунтовых вод, микроклимата, ухудшаются условия для размножения многих ценных видов рыб.Велико значение рек для развития межрайонных и внутрихозяйственных связей. В России — самая разветвленная речная сеть в мире; протяженность судоходных речных путей по России — свыше 400 тыс. км.РОССИЙСКИЕ ГИДРОЭЛЕКТРОСТАНЦИИ

Новосибирская ГЭС, построена на р. Оби, вблизи г. Новосибирска (ныне - в черте города). Проектная мощность станции 400 МВт, среднегодовая выработка электроэнергии 1687 млн. кВт/ч. В состав гидроузла входят водосливная бетонная плотина высотой 33 м, длиной по гребню 198,5 м, земляная намывная плотина длиной 4382 м, здание ГЭС длиной 283,6 м, в котором установлено 7 гидроагрегатов мощностью по 57,2 МВт, и трёхкамерный однониточный шлюз. Плотина образует Новосибирское водохранилище. Строительство станции начато в 1950, 1-й агрегат пущен в 1957, в 1959 введена в эксплуатацию на полную мощность. Энергия, вырабатываемая ГЭС, поступает в объединённую энергосистему Сибири.Верхнесвирская ГЭС, на р. Свирь в Ленинградской области. Сооружение ГЭС начато в 1935, в 1941 (в связи с войной) строительство прервано, возобновлено в 1947, пущена в 1952. Установленная мощность 160 Мвт (160 тыс. кВт). Среднегодовая выработка электроэнергии 620 млн. кВт/ч. В состав гидроузла входят: трёхпролётная бетонная водосливная плотина (длина 111 м), совмещенная ГЭС (длина 117,8 м), земляная намывная плотина (длина 312,8 м, наибольшая высота 31 м) и однокамерный судоходный шлюз. Общая длина напорного фронта 620 м. В машинном зале установлены 4 гидротурбины поворотно-лопастного типа. Электроэнергия по высоковольтным линиям электропередачи напряжением 220 кв передаётся в Объединённую энергосистему Северо-Запада.Красноярская ГЭС, крупнейшая ГЭС мира (1972). Расположена на р. Енисей, выше г. Красноярска, в месте пересечения Енисеем отрогов Восточного Саяна у г. Дивногорска. Установленная мощность 6000 Мвт (6 млн. квт), среднемноголетняя выработка электроэнергии - 20,4 млрд. кВт/ч в год. В состав сооружений входят: русловая бетонная плотина высота 124 м, здание ГЭС длина 430 м, судоподъёмник, открытые распределительные устройства напряжением 220 и 500 кв. Длина напорного фронта гидроузла 1175 м, максимальный напор 101 м, расход воды через плотину 12000 м3/сек. Плотина образует Красноярское водохранилище. В станционной части плотины размещены 24 водозаборных отверстия, а в водосбросной 7 водосливных пролётов шириной по 25 м. В здании ГЭС установлены 12 гидроагрегатов с турбинами радиально-осевого типа мощностью по 508 Мвт. Управление, регулирование и контроль работы электромеханического оборудования ГЭС осуществляются автоматически, с использованием средств телемеханики ближнего действия. Судоподъёмник продольно-наклонного типа с поворотным устройством расположен на левом берегу. Перемещение судов из одного бьефа в другой производится в самоходной судовозной камере.Волховская ГЭС, первая районная ГЭС , построенная по плану ГОЭЛРО на р. Волхов. Сооружение станции начато в 1918, но из-за Гражданской войны и военной интервенции строительные работы развернулись только в 1921. Первоначальная мощность ГЭС 58 Мвт (58 тыс. квт). В начале Великой Отечественной войны станция была демонтирована и оборудование вывезено. В 1942 частично восстановлена и по подводному кабелю, проложенному по дну Ладожского озера, снабжала электроэнергией осаждённый Ленинград. В октябре 1944 полностью восстановлена. Мощность станции увеличена до 66 Мвт. Среднегодовая выработка электроэнергии - 375 млн. кВт/ч. В состав гидроузла входят: бетонная водосливная плотина длиной 213,3 м, здание ГЭС длиной 140,5 м, водоспуск, однокамерный шлюз и рыбоход. В машинном зале ГЭС установлены 8 гидроагрегатов мощностью по 8 Мвт и 2 малых гидроагрегата по 1 Мвт. Водонапорные сооружения создают Волховское водохранилище.Саяно-Шушенская ГЭС, Саянская, одна из крупнейших ГЭС, строящаяся в долине р. Енисей, вблизи поселка Майна Хакасской АО Красноярского края. Установленная мощность 6400 Мвт. Среднегодовая выработка электроэнергии составит 23,8 млрд. кВт/ч. В состав гидроузла входят: арочно-гравитационная плотина максимальной высотой 242 м и длина по гребню 1066 м; здание ГЭС приплотинного типа с 10 агрегатами по 640 Мвт; расчётный напор 194 м; эксплуатационный водосброс с водобойным колодцем; предусмотрена возможность устройства судоподъёмника. Плотина образует водохранилище сезонного регулирования полным объёмом 31,3 км3 и полезным объёмом 15,3 км3. Работы подготовительного периода начаты в 1964. Электроэнергия, вырабатываемая ГЭС, будет передаваться по высоковольтным линиям напряжением 500 кв в объединённую энергосистему Сибири. Саратовская ГЭС, одна из ГЭС Волжского каскада. Расположена у г. Балаково Саратовской области. Установленная мощность 1,36 Гвт, среднегодовая выработка электроэнергии 5,4 млрд. кВт/ч. строительство начато в 1956, введена на полную мощность в 1970. В состав гидроузла входят: русловая земляная намывная плотина длиной по гребню 1260 м и высотой 40м, двухниточный однокамерный шлюз, верховой и низовой каналы, левобережная дамба, рыбоподъёмник и здание ГЭС совмещенного типа с сопрягающими устройствами. В машинном зале длиной 1100 м установлено 24 агрегата (21 по 60 Мвт, 2 по 45 Мвт и один - 10 Мвт для обеспечения собственных нужд ГЭС). Плотина образует Саратовское водохранилище. Электроэнергия по линиям электропередачи 500 и 220 кв передаётся в энергосистему средней Волги, а через неё - в Единую энергетическую систему.Усть-Хантайская ГЭС, одна из самых северных ГЭС мира. Расположена на р. Хантайка (правый приток Енисея). Максимальный напор 56,5 м. В состав гидроузла входят русловая каменно-набросная плотина длина по гребню 420 м, водоприёмник длина 140 м, береговой водосброс, рассчитанный на пропуск 3300 м3 воды в секунду, и береговые дамбы длина 4,5 км. Здание ГЭС подземного типа длина 139 м, с расстояниями между осями агрегата 17 м. Гидроузел образует Усть-Хантайское водохранилище. Строительство ГЭС начато в 1963, закончено в 1972. ГЭС снабжает электроэнергией Норильский горно-металлургический комбинат и районы Крайнего Севера.Братская ГЭС, одна из крупнейших в мире. Сооружена на р. Ангаре в Падунском сужении вблизи г. Братска Иркутской области РСФСР. Строительство начато в 1955, в 1961 пущены первые 4 гидроагрегата. Проектная мощность ГЭС 4500 Мвт. Средняя годовая выработка электроэнергии 22,7 млрд. кВт/ч. К 1967 мощность станции достигла 4100 Мвт. В здании ГЭС установлено 16 гидроагрегатов с мощностью по 225 Мвт и 2 гидроагрегата по 250 Мвт. Турбины вертикальные радиально-осевые на напор 100 м и частоту вращения 125 об /м. В состав гидроузла входят: русловая бетонная плотина гравитационного типа длиной 924 м и максимальной строительной высотой 124,5 м, состоящая из станционной части (длиной 515 м, в которой расположены 20 водоприёмных отверстий и напорные трубопроводы), водосливной (длиной 242 м с 10 водосбросными отверстиями) и глухих частей общей длиной. 167 м; здание ГЭС длиной 516 м, расположенное у низовой грани станционной части плотины и примыкающее к левому берегу; береговые бетонные плотины общей длиной 506 м; правобережная земляная плотина длиной 2987 м и левобережная длиной 723 м; открытые распределительные устройства на напряжение 220 и 500 кв., расположенные на левом берегу р. Ангары. По гребню плотины проходит магистральная железная дорога Тайшет - Лена, а ниже - шоссейная дорога. Напорные сооружения общей длиной 5140 м образуют Братское водохранилище. Судоходные сооружения - объекты 2-й очереди.Воткинская ГЭС, гидроэлектростанция Камского каскада у г. Чайковского Пермской области, в 30 км от г. Воткинска. Установленная мощность 1000 Мвт (1 млн. квт). Среднегодовая выработка электроэнергии 2320 млн. квтЇч. Сооружение гидроузла начато в 1955, в 1961 пущен 1-й агрегат, в 1963 станция введена на полную мощность. В состав гидроузла входят: 8-пролётная водосливная плотина длиной 191 м и высотой 44,5 м; земляные намывные плотины общей длиной 4,79 км и наибольшей высотой 35 м; здание ГЭС длиной 308 м и 2-ниточный однокамерный шлюз. Напорные сооружения общей длиной 5,4 км образуют Воткинское водохранилище. В машинном зале ГЭС установлены 10 гидроагрегатов по 100 Мвт. Электроэнергия, вырабатываемая ГЭС, передаётся по высоковольтным линиям электропередачи напряжением 500, 220 и 110 кв. В. ГЭС - одна из опорных электростанций объединённой энергосистемы Урала.Волжская ГЭС, одна из крупнейших ГЭС мира, в нижнем течении р. Волги, севернее г. Волгограда. Установленная мощность 2,54 Гвт (2,54 млн. квт), среднегодовая выработка электроэнергии 11,1 млрд. квтЇч. Строительство начато в 1951, в 1958 пущены первые 3 гидроагрегата, в 1962 - последний (22-й агрегат). В состав гидроузла входят: бетонная водосливная плотина распластанного профиля с максимальным напором 27 м, длиной 725 м, имеющая 27 водосливных пролётов; земляная намывная плотина длиной 3375 м; здание ГЭС совмещенного типа длиной 664 м с сороудерживающим сооружением; двухниточный двухступенчатый шлюз с аванпортом в верхнем бьефе и низовым подходным каналом длиной 5,6 км; Волго-Ахтубинский канал; рыбопропускное сооружение. По сооружениям гидроузла устроены железнодорожный и шоссейный переходы через р. Волгу. Напорные сооружения образуют Волгоградское водохранилище. В здании ГЭС установлены 22 вертикальных гидроагрегата мощностью по 115 Мвт (115 тыс. квт). Малый гидроагрегат мощностью 11 Мвт установлен на рыбоподъёмнике.

ПЛАН ГОЭЛРО

Становление электроэнергетики России связано с планом ГОЭЛРО (1920 г.). Рассчитанный на 10—15 лет план предусматривал строительство 10 гидроэлектростанций и 20 паровых электростанций суммарной мощностью 1,5 млн кВт. Фактически план был реализован за 10 лет — к 1931 году, а к концу 1935 г. вместо 30 электростанций были построены 40 районных электростанций, в том числе Свирская и Волховская гидроэлектростанции, Шатурская на торфе и Каширская на подмосковных углях государственные районные электростанции (ГРЭС).Основу плана составили следующие направления:• широкое использование на электростанциях местных топливных ресурсов;• создание высоковольтных электрических сетей, объединяющих мощные станции;• экономическое использование топлива, достигаемое параллельной работой тепловых электростанций (ТЭС) и ГЭС;• сооружение ГЭС в первую очередь в районах, бедных органическим топливом.План ГОЭЛРО создал базу индустриализации России. В 1920-е годы наша страна занимала одно из последних мест в мире по выработке энергии, а уже в конце 1940-х годов она заняла первое место в Европе и второе в мире.

ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ ГИДРОЭНЕРГЕТИКИ

Одно из важнейших воздействий гидроэнергетики связано с отчуждением значительных площадей плодородных (пойменных) земель под водохранилища. В России, где за счет использования гидроресурсов производится не более 20% электрической энергии, при строительстве ГЭС затоплено не менее 6 млн. га земель. На их месте уничтожены естественные экосистемы.Со строительством водохранилищ связано резкое нарушение гидрологического режима рек, свойственных им экосистем и видового состава гидробионтов. Так, Волга практически на всем протяжении (от истоков до Волгограда) превращена в непрерывную систему водохранилищ.Ухудшение качества воды в водохранилищах происходит по различным причинам. В них резко увеличивается количество органических веществ как за счет ушедших под воду экосистем (древесина, другие растительные остатки, гумус почв и т. п.), так и вследствие их накопления в результате замедленного водообмена. Это своего рода отстойники и аккумуляторы веществ, поступающих с водосборов.В конечном счете, перекрытые водохранилищами речные системы из транзитных превращаются в транзитно-аккумулятивные. Кроме биогенных веществ, здесь аккумулируются тяжелые металлы, радиоактивные элементы и многие ядохимикаты с длительным периодом жизни. Продукты аккумуляции делают проблематичным возможность использования территорий, занимаемых водохранилищами, после их ликвидации. Имеются данные, что в результате заиления равнинные водохранилища теряют свою ценность как энергетические объекты через 50-100 лет после их строительства. Считается, что в перспективе мировое производство энергии на ГЭС не будет превышать 5% от общей.

ПЕРСПЕКТИВЫ ГИДРОЭНЕРГЕТИКИ

Сейчас Россия занимает второе место в мире по гидроэнергетическим ресурсам. Но потенциал еще больше. Новое строительство в основном планируется в Сибири и на Дальнем Востоке. Гидропотенциал этих регионов в настоящее время используется на 20 и 4% соответственно. Программой перспективного развития гидроэнергетики предусмотрено строительство следующих ГЭС: Катунская, Чемальсткая, Мокская, Тельмамская, Шилкинская, Нижнеангарская, Выдумская, Стрелковская, а также Ивановской ГЭС.К 2020 г. планируется ввести в эксплуатацию восемь строящихся сейчас гидростанций: каскад Нижне-Черекских ГЭС, Зарамагские ГЭС, Ирганайскую ГЭС, Богучанскую ГЭС, Бурейскую ГЭС, Усть-Среднеканскую ГЭС и Вилюйскую ГЭС. Их сооружение началось еще до 1990 г.Однако, нынешнее техническое состояние уже эксплуатирующихся гидроэлектростанций оставляет желать лучшего, поэтому акцент также делается на модернизацию существующих ГЭС.Весьма перспективным является строительство гидроаккумулирующих электростанций, которые позволяют решать проблему пиковых нагрузок. Построена Загорская ГАЭС (1,2 млн КВт), строится Центральная ГАЭС (2,6 млн КВт).Энергетика России в последние годы ясно показала, что при недофинансировании, при недоинвестировании энергетических активов энергетика может стать препятствием для экономического роста в регионах. Когда есть запрос на развитие промышленности, есть запрос на подключение потребителя, а энергетика не может обеспечить этот запрос.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Экономическая география России: Учеб. Пособие для вузов / Под ред. Т. Г. Морозовой. – 2-е изд., перераб. и доп. – М.: ЮНИТИ-ДАНА, 2001. – 147с.2. Региональная экономика: Учеб. Пособие для вузов/ Т. Г. Морозова, М. П. Победина, Г. Б. Поляк и др.; Под ред. проф. Т. Г. Морозовой. – М.: Банки и биржи, ЮНИТИ, 1995. – 304 с.3. География России. Население и хозяйство. 9 кл.: Атлас. – 9-е изд., испр. – М.: Дрофа; Издательство ДИК, 2005. – 48с.: ил., карт.

Ключевые слова страницы: как, скачать, бесплатно, без, регистрации, смс, реферат, диплом, курсовая, сочинение, ЕГЭ, ГИА, ГДЗ

referatzone.com

Виды гидроэлектростанций — доклад

Гидроэлектроста́нция (ГЭС) — электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища. Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонобразные виды рельефа.

Особенности :

  1. Себестоимость электроэнергии на российских ГЭС более чем в два раза ниже, чем на тепловых электростанциях.
  2. Турбины ГЭС допускают работу во всех режимах от нулевой до максимальной мощности и позволяют быстро изменять мощность при необходимости, выступая в качестве регулятора выработки электроэнергии.
  3. Сток реки является возобновляемым источником энергии.
  4. Строительство ГЭС обычно более капиталоёмкое, чем тепловых станций.
  5. Часто эффективные ГЭС более удалены от потребителей, чем тепловые станции.
  6. Водохранилища часто занимают значительные территории, но примерно с 1963 г. начали использоваться защитные сооружения (Киевская ГЭС), которые ограничивали площадь водохранилища, и, как следствие, ограничивали площадь затопляемой поверхности (поля, луга, поселки).
  7. Плотины зачастую изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам, однако часто благоприятствуют увеличению запасов рыбы в самом водохранилище и осуществлению рыбоводства.
  8. Водохранилища ГЭС, с одной стороны, улучшают судоходство, но с другой — требуют применения шлюзов для перевода судов с одного бьефа на другой.
  9. Водохранилища делают климат более умеренным.

Принцип работы гидроэлектростанции:

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей  на лопасти гидротурбины, которая  приводит в действие генераторы, вырабатывающие электроэнергию.

Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией — естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

Непосредственно в самом здании гидроэлектростанции располагается  все энергетическое оборудование. В  зависимости от назначения, оно имеет  свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно  преобразующие энергию тока воды в электрическую энергию. Есть еще  всевозможное дополнительное оборудование, устройства управления и контроля над  работой ГЭС, трансформаторная станция, распределительные устройства и  многое другое.

  1. Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:
  • мощные — вырабатывают от 25 МВт и выше;
  • средние — до 25 МВт;
  • малые гидроэлектростанции — до 5 МВт.
  1. Мощность ГЭС зависит от напора и расхода воды, а также от КПД используемых турбин и генераторов. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

Гидроэлектростанции также делятся  в зависимости от максимального  использования напора воды:

  • высоконапорные — более 60 м;
  • средненапорные — от 25 м;
  • низконапорные — от 3 до 25 м.

В зависимости от напора воды, в  гидроэлектростанциях применяются  различные видытурбин. Для высоконапорных — ковшовые и радиально-осевые турбины с металлическими спиральными камерами. На средненапорных ГЭС устанавливаются поворотнолопастные и радиально-осевые турбины, на низконапорных — поворотнолопастные турбины в железобетонных камерах. Принцип работы всех видов турбин схож — вода, находящаяся под давлением (напор воды) поступает на лопасти турбины, которые начинают вращаться. Механическая энергия, таким образом, передается на гидрогенератор, который и вырабатывает электроэнергию. Турбины отличаются некоторыми техническими характеристиками, а также камерами — стальными или железобетонными, и рассчитаны на различный напор воды.

  1. Гидроэлектрические станции также разделяются в зависимости от принципа использования природных ресурсов, и, соответственно, образующейся концентрации воды. Здесь можно выделить следующие ГЭС:
  • русловые и плотинные ГЭС. Это наиболее распространенные виды гидроэлектрических станций. Напор воды в них создается посредством установки плотины, полностью перегораживающей реку, или поднимающей уровень воды в ней на необходимую отметку. Такие гидроэлектростанции строят на многоводных равнинных реках, а также на горных реках, в местах, где русло реки более узкое, сжатое.
  • приплотинные ГЭС. Строятся при более высоких напорах воды. В этом случае река полностью перегораживается плотиной, а само здание ГЭС располагается за плотиной, в нижней её части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели, а не непосредственно, как в русловых ГЭС.
  • деривационные гидроэлектростанции. Такие электростанции строят в тех местах, где велик уклон реки. Необходимая концентрация воды в ГЭС такого типа создается посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние — спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида — безнапорные или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создается более высокая плотина, и создается водохранилище — такая схема еще называется смешанной деривацией, так как используются оба метода создания необходимой концентрации воды.
  • гидроаккумулирующие электростанции. Такие ГАЭС способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные периоды (не пиковой нагрузки), агрегаты ГАЭС работают как насосы от внешних источников энергии и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и приводит в действие турбины.

В состав гидроэлектрических станций, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы или  судоподъемники, способствующие навигации  по водоему, рыбопропускные, водозаборные сооружения, используемые для ирригации  и многое другое.

Ценность гидроэлектрической станции  состоит в том, что для производства электрической энергии, они используют возобновляемые природные ресурсы. Ввиду того, что потребности в  дополнительном топливе для ГЭС  нет, конечная стоимость получаемой электроэнергии значительно ниже, чем  при использовании других видов  электростанций. 

Гидроэнергетика в мире:

На 2006 год гидроэнергетика обеспечивает производство до 88 % возобновляемой и до 20 % всей электроэнергии в мире, установленная гидроэнергетическая мощность достигает 777 ГВт.

Абсолютным лидером по выработке  гидроэнергии на душу населения является Исландия. Кроме неё этот показатель наиболее высок в Норвегии (доля ГЭС в суммарной выработке — 98 %), Канаде и Швеции. В Парагвае 100 % производимой энергии вырабатывается на гидроэлектростанциях.

Наиболее активное гидростроительство на начало 2000-х ведёт Китай, для которого гидроэнергия является основным потенциальным источником энергии. В этой стране размещено до половины малых гидроэлектростанций мира, а также крупнейшая ГЭС мира «Три ущелья» на реке Янцзы и строящийся крупнейший по мощности каскад ГЭС. Ещё более крупная ГЭС «Гранд Инга» мощностью 39ГВт планируется к сооружению международным консорциумом на реке Конго в Демократической Республике Конго (бывший Заир).

На 2008 год крупнейшими производителями гидроэнергии (включая переработку на ГАЭС) в абсолютных значениях являются следующие страны:

Страна

Потребление гидроэнергии в ТВт·ч

1. Китай

585

2. Канада

369

3. Бразилия

364

4. США

251

5. Россия

167

6. Норвегия

140

7. Индия

116

8. Венесуэла

87

9. Япония

69

10. Швеция

66

11. Франция

63

   
   

 

Крупнейшие  ГЭС в мир

Наименование

 

Мощность, ГВт

Среднегодовая выработка, млрд кВт·ч

Собственник

География

Три ущелья

22,40

100,00

 

р. Янцзы, г. Сандоупин, Китай

Итайпу

14,00

100,00

Итайпу-Бинасионал

р. Парана, г. Фос-ду-Игуасу,Бразилия/Парагвай

Гури

10,30

40,00

 

р. Карони, Венесуэла

Черчилл-Фолс

5,43

35,00

Newfoundland and Labrador Hydro

р. Черчилл, Канада

Тукуруи

8,30

21,00

Eletrobrás

р. Токантинс, Бразилия

         

 

По состоянию на 2009 год в России имеется 15 гидроэлектростанций свыше 1000 МВт (действующих, достраиваемых  или находящихся в замороженном строительстве), и более сотни  гидроэлектростанций меньшей мощности.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Работа по физике

на тему: «Гидроэлектростанции»

ученика 11г класса

ПСШ№8

Кузнецова Василия.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22.12.2011

student.zoomru.ru

Реферат - по Физике на тему: гидроэлектростанции

реферат

по Физике

на тему:

гидроэлектростанции

Дережинский Сергей (a) кл

Гидроэлектрическая станция, гидроэлектростанции (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения, которая, в свою очередь, преобразуется в электрическую энергию

Напор ГЭС создаётся концентрацией падения реки на используемом участке (аб ) плотиной, либо деривацией, либо плотиной и деривацией совместно. Основное энергетическое оборудование ГЭС размещается в здании ГЭС: в машинном зале электростанции — гидроагрегаты, вспомогательное оборудование, устройства автоматического управления и контроля; в центральном посту управления — пульт оператора-диспетчера или автооператор гидроэлектростанции Повышающая трансформаторная подстанция размещается как внутри здания ГЭС, так и в отдельных зданиях или на открытых площадках. Распределительные устройства зачастую располагаются на открытой площадке. Здание ГЭС может быть разделено на секции с одним или несколькими агрегатами и вспомогательным оборудованием, отделённые от смежных частей здания. При здании ГЭС или внутри него создаётся монтажная площадка для сборки и ремонта различного оборудования и для вспомогательных операций по обслуживанию ГЭС.

По установленной мощности (в Мвт ) различают ГЭС мощные (свыше 250), средние (до 25) и малые (до 5). Мощность ГЭС зависит от напора Нб (разности уровней верхнего и нижнего бьефа), расхода воды Q (м3 /сек ), используемого в гидротурбинах, и кпд гидроагрегата hг. По ряду причин (вследствие, например, сезонных изменений уровня воды в водоёмах, непостоянства нагрузки энергосистемы, ремонта гидроагрегатов или гидротехнических сооружений и т.п.) напор и расход воды непрерывно меняются, а кроме того, меняется расход при регулировании мощности ГЭС. Различают годичный, недельный и суточный циклы режима работы ГЭС.

По максимально используемому напору ГЭС делятся на высоконапорные (более 60 м ), средненапорные (от 25 до 60 м ) и низконапорные (от 3 до 25 м ). На равнинных реках напоры редко превышают 100 м, в горных условиях посредством плотины можно создавать напоры до 300 м и более, а с помощью деривации — до 1500 м. Классификация по напору приблизительно соответствует типам применяемого энергетического оборудования: на высоконапорных ГЭС применяют ковшовые и радиально-осевые турбины с металлическими спиральными камерами; на средненапорных — поворотнолопастные и радиально-осевые турбины с железобетонными и металлическими спиральными камерами, на низконапорных — поворотнолопастные турбины в железобетонных спиральных камерах, иногда горизонтальные турбины в капсулах или в открытых камерах. Подразделение ГЭС по используемому напору имеет приблизительный, условный характер.

По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые, приплотинные, деривационные с напорной и безнапорной деривацией, смешанные, гидроаккумулирующие и приливные. В русловых и приплотинных ГЭС напор воды создаётся плотиной, перегораживающей реку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно некоторое затопление долины реки. В случае сооружения двух плотин на том же участке реки площадь затопления уменьшается. На равнинных реках наибольшая экономически допустимая площадь затопления ограничивает высоту плотины. Русловые и приплотинные ГЭС строят и на равнинных многоводных реках и на горных реках, в узких сжатых долинах.

В состав сооружений русловой ГЭС, кроме плотины, входят здание ГЭС и водосбросные сооружения Состав гидротехнических сооружений зависит от высоты напора и установленной мощности. У русловой ГЭС здание с размещенными в нём гидроагрегатами служит продолжением плотины и вместе с ней создаёт напорный фронт. При этом с одной стороны к зданию ГЭС примыкает верхний бьеф, а с другой — нижний бьеф. Подводящие спиральные камеры гидротурбин своими входными сечениями закладываются под уровнем верхнего бьефа, выходные же сечения отсасывающих труб погружены под уровнем нижнего бьефа.

В соответствии с назначением гидроузла в его состав могут входить судоходные шлюзы или судоподъёмник, рыбопропускные сооружения, водозаборные сооружения для ирригации и водоснабжения. В русловых ГЭС иногда единственным сооружением, пропускающим воду, является здание ГЭС. В этих случаях полезно используемая вода последовательно проходит входное сечение с мусорозадерживающими решётками, спиральную камеру, гидротурбину, отсасывающую трубу, а по специальным водоводам между соседними турбинными камерами производится сброс паводковых расходов реки. Для русловых ГЭС характерны напоры до 30-40 м; к простейшим русловым ГЭС относятся также ранее строившиеся сельские ГЭС небольшой мощности. На крупных равнинных реках основное русло перекрывается земляной плотиной, к которой примыкает бетонная водосливная плотина и сооружается здание ГЭС. Такая компоновка типична для многих отечественных ГЭС на больших равнинных реках. Волжская ГЭС им. 22-го съезда КПСС — наиболее крупная среди станций руслового типа.

При более высоких напорах оказывается нецелесообразным передавать на здание ГЭС гидростатическое давление воды. В этом случае применяется тип приплотинной ГЭС, у которой напорный фронт на всём протяжении перекрывается плотиной, а здание ГЭС располагается за плотиной, примыкает к нижнему бьефу. В состав гидравлической трассы между верхним и нижним бьефом ГЭС такого типа входят глубинный водоприёмник с мусорозадерживающей решёткой, турбинный водовод, спиральная камера, гидротурбина, отсасывающая труба. В качестве дополнительных сооружений в состав узла могут входить судоходные сооружения и рыбоходы, а также дополнительный водосброс. Примером подобного типа станций на многоводной реке служит Братская ГЭС на р. Ангара.

Другой вид компоновки приплотинных ГЭС, соответствующий горным условиям, при сравнительно малых расходах реки, характерен для Нурекской ГЭС на р. Вахш (Средняя Азия), проектной мощностью 2700 Мвт. Здание ГЭС открытого типа располагается ниже плотины, вода подводится к турбинам по одному или нескольким напорным туннелям. Иногда здание ГЭС размещают ближе к верхнему бьефу в подземной (подземная ГЭС) выемке. Такая компоновка целесообразна при наличии скальных оснований, особенно при земляных или набросных плотинах, имеющих значительную ширину. Сброс паводковых расходов производится через водосбросные туннели или через открытые береговые водосбросы.

В деривационных ГЭС концентрация падения реки создаётся посредством деривации; вода в начале используемого участка реки отводится из речного русла водоводом, с уклоном, значительно меньшим, чем средний уклон реки на этом участке и со спрямлением изгибов и поворотов русла. Конец деривации подводят к месту расположения здания ГЭС. Отработанная вода либо возвращается в реку, либо подводится к следующей деривационной ГЭС. Деривация выгодна тогда, когда уклон реки велик. Деривационная схема концентрации напора в чистом виде (бесплотинный водозабор или с низкой водозаборной плотиной) на практике приводит к тому, что из реки забирается лишь небольшая часть её стока. В др. случаях в начале деривации на реке сооружается более высокая плотина и создаётся водохранилище: такая схема концентрации падения называется смешанной, т.к. используются оба принципа создания напора. Иногда, в зависимости от местных условий, здание ГЭС выгоднее располагать на некотором расстоянии от конца используемого участка реки вверх по течению; деривация разделяется по отношению к зданию ГЭС на подводящую и отводящую. В ряде случаев с помощью деривации производится переброска стока реки в соседнюю реку, имеющую более низкие отметки русла. Характерным примером является Ингурская ГЭС, где сток р. Ингури перебрасывается туннелем в соседнюю р. Эрисцкали (Кавказ).

Сооружения безнапорных деривационных ГЭС состоят из трёх основных групп: водозаборное сооружение, водоприёмная плотина и собственно деривация (канал, лоток, безнапорный туннель). Дополнительными сооружениями на ГЭС с безнапорной деривацией являются отстойники и бассейны суточного регулирования, напорные бассейны, холостые водосбросы и турбинные водоводы. Крупнейшая ГЭС с безнапорной подводящей деривацией — ГЭС Роберт-Мозес (США) мощностью 1950 Мвт, а с безнапорной отводящей деривацией — Ингурская ГЭС (СССР) мощностью 1300 Мвт .

На ГЭС с напорной деривацией водовод (туннель, металлическая, деревянная или железобетонная труба) прокладывается с несколькими большим продольным уклоном, чем при безнапорной деривации. Применение напорной подводящей деривации обусловливается изменяемостью горизонта воды в верхнем бьефе, из-за чего в процессе эксплуатации изменяется и внутренний напор деривации. В состав сооружений ГЭС этого типа входят: плотина, водозаборный узел, деривация с напорным водоводом, станционный узел ГЭС с уравнительным резервуаром и турбинными водоводами, отводящая деривация в виде канала или туннеля (при подземной ГЭС). Крупнейшая ГЭС с напорной подводящей деривацией — Нечако-Кемано (Канада) проектной мощностью 1792 Мвт .

ГЭС с напорной отводящей деривацией применяется в условиях значительных изменений уровня воды в реке в месте выхода отводящей деривации или по экономическим соображениям. В этом случае необходимо сооружение уравнительного резервуара (в начале отводящей деривации) для выравнивания неустановившегося потока воды в реке. Наиболее мощная ГЭС (350 Мвт ) этого типа — ГЭС Харспронгет (Швеция).

Особое место среди ГЭС занимают гидроаккумулирующие электростанции (ГАЭС) и приливные электростанции (ПЭС). Сооружение ГАЭС обусловлено ростом потребности в пиковой мощности в крупных энергетических системах, что и определяет генераторную мощность, требующуюся для покрытия пиковых нагрузок. Способность ГАЭС аккумулировать энергию основана на том, что свободная в энергосистеме в некоторый период времени (провала графика потребности) электрическая энергия используется агрегатами ГАЭС, которые, работая в режиме насоса, нагнетают воду из водохранилища в верхний аккумулирующий бассейн. В период пиков нагрузки аккумулированная т. о. энергия возвращается в энергосистему (вода из верхнего бассейна поступает в напорный трубопровод и вращает гидроагрегаты, работающие в режиме генератора тока). Мощность отдельных ГАЭС с такими обратимыми гидроагрегатами достигает 1620 Мвт (Корнуол, США).

ПЭС преобразуют энергию морских приливов в электрическую. Электроэнергия приливных ГЭС в силу некоторых особенностей, связанных с периодическим характером приливов и отливов, может быть использована в энергосистемах лишь совместно с энергией регулирующих электростанций, которые восполняют провалы мощности приливных электростанций в течение суток или месяцев. В 1967 во Франции было завершено строительство крупной ПЭС на р. Ранс (24 агрегата общей мощностью 240 Мвт ). В СССР в 1968 в Кислой Губе (Кольский полуостров) вступила в строй первая опытная ПЭС мощностью 0,4 Мвт, на которой ныне проводятся экспериментальные работы для будущего строительства ПЭС.

По характеру использования воды и условиям работы различают ГЭС на бытовом стоке без регулирования, с суточным, недельным, сезонным (годовым) и многолетним регулированием. Отдельные ГЭС или каскады ГЭС, как правило, работают в системе совместно с конденсационными электростанциями (КЭС), теплоэлектроцентралями (ТЭЦ), атомными электростанциями (АЭС), газотурбинными установками (ГТУ), причём в зависимости от характера участия в покрытии графика нагрузки энергосистемы ГЭС могут быть базисными, полупиковыми и пиковыми .

Важнейшая особенность гидроэнергетических ресурсов по сравнению с топливно-энергетическими ресурсами — их непрерывная возобновляемость. Отсутствие потребности в топливе для ГЭС определяет низкую себестоимость вырабатываемой на ГЭС электроэнергии. Поэтому сооружению ГЭС, несмотря на значительные удельные капиталовложения на 1 квт установленной мощности и продолжительные сроки строительства, придавалось и придаётся большое значение, особенно когда это связано с размещением электроёмких производств .

Одни из первых гидроэлектрических установок мощностью всего в несколько сотен вт были сооружены в 1876-81 в Штангассе и Лауфене (Германия) и в Грейсайде (Англия). Развитие ГЭС и их промышленное использование тесно связано с проблемой передачи электроэнергии на расстояние: как правило, места, наиболее удобные для сооружения ГЭС, удалены от основных потребителей электроэнергии. Протяжённость существовавших в то время линий электропередач не превышала 5-10 км; самая длинная линия 57 км. Сооружение линии электропередачи (170 км ) от Лауфенской ГЭС до Франкфурта-на-Майне (Германия) для снабжения электроэнергией Международная электротехническая выставки (1891) открыла широкие возможности для развития ГЭС. В 1892 промышленный ток дала ГЭС, построенная на водопаде в Бюлахе (Швейцария), почти одновременно в 1893 были построены ГЭС в Гельшене (Швеция), на р. Изар (Германия) и в Калифорнии (США). В 1896 вступила в строй Ниагарская ГЭС (США) постоянного тока; в 1898 дала ток ГЭС Рейнфельд (Германия), а в 1901 стали под нагрузку гидрогенераторы ГЭС Жонат (Франция).

В России существовали, но так и не были реализованы детально разработанные проекты ГЭС русских учёных Ф. А. Пироцкого, И. А. Тиме, Г. О. Графтио, И. Г. Александрова и др., предусматривавших, в частности, использование порожистых участков рр. Днепр, Волхов, Западная Двина, Вуокса и др. Так, например, уже в 1892-95 русским инженером В. Ф. Добротворским были составлены проекты сооружения ГЭС мощностью 23,8 Мвт на р. Нарова и 36,8 Мвт на водопаде Б. Иматра. Реализации этих проектов препятствовали как косность царской бюрократии, так и интересы частных капиталистических групп, связанных с топливной промышленностью. Первая промышленная ГЭС в России мощностью около 0,3 Мвт (300 квт ) была построена в 1895-96 под руководством русских инженеров В. Н. Чиколева и Р. Э. Классона для электроснабжения Охтинского порохового завода в Петербурге. В 1909 закончилось строительство крупнейшей в дореволюционной России Гиндукушской ГЭС мощностью 1,35 Мвт (1350 квт ) на р. Мургаб (Туркмения). В период 1905-17 вступили в строй Саткинская, Алавердинская, Каракультукская, Тургусунская, Сестрорецкая и др. ГЭС небольшой мощности. Сооружались также частные фабрично-заводские гидроэлектрические установки с использованием оборудования иностранных фирм.

1-я мировая война 1914-18 и связанный с ней интенсивный рост промышленности некоторых западных стран повлекли за собой развитие действовавших и строительство новых энергопромышленных центров, в том числе на базе ГЭС. В результате мощность ГЭС во всём мире к 1920 достигла 17 тыс. Мвт, а мощность отдельных ГЭС, например Масл-Шолс (США), Иль-Малинь (Канада), превысила 400 Мвт (400 тыс. квт ).

Общая мощность ГЭС России к 1917 составляла всего около 16 Мвт; самой крупной была Гиндукушская ГЭС. Строительство мощных ГЭС началось по существу только после Великой Октябрьской социалистической революции. В восстановительный период (20-е гг.) в соответствии с планом ГОЭЛРО были построены первые крупные ГЭС — Волховская (ныне Волховская ГЭС им. В. И. Ленина) и Земо-Авчальская ГЭС им. В. И. Ленина. В годы первых пятилеток (1929-40) вступили в строй ГЭС — Днепровская, Нижнесвирская, Рионская и др.

К началу Великой Отечественной войны 1941-45 было введено в эксплуатацию 37 ГЭС общей мощностью более 1500 Мвт. Во время войны было приостановлено начатое строительство ряда ГЭС общей мощностью около 1000 Мвт (1 млн. квт ). Значительная часть ГЭС общей мощностью около 1000 Мвт оказалась разрушенной или демонтированной. Началось сооружение новых ГЭС малой и средней мощности на Урале (Широковская, Верхотурская, Алапаевская, Белоярская и др.), в Средней Азии (Аккавакские, Фархадская, Саларская, Нижнебуэсуйские и др.), на Северном Кавказе (Майкопская, Орджоникидзевская, Краснополянская), в Азербайджане (Мингечаурская ГЭС), в Грузии (Читахевская ГЭС) и в Армении (Гюмушская ГЭС). К концу 1945 в Советском Союзе мощность всех ГЭС, вместе с восстановленными, достигла 1250 Мвт, а годовая выработка электроэнергии — 4,8 млрд. квт/ч .

В начале 50-х гг. развернулось строительство крупных гидроэлектростанций на р. Волге у гг. Горького, Куйбышева и Волгограда, Каховской и Кременчугской ГЭС на Днепре, а также Цимлянской ГЭС на Дону. Волжские ГЭС им. В. И. Ленина и им. 22-го съезда КПСС стали первыми из числа наиболее мощных ГЭС в СССР и в мире. Во 2-й половине 50-х гг. началось строительство Братской ГЭС на р. Ангаре и Красноярской ГЭС на р. Енисее. С 1946 по 1958 в СССР были построены и восстановлены 63 ГЭС общей мощностью 9600 Мвт. За семилетие 1959-65 было введено 11400 Мвт новых гидравлических мощностей и суммарная мощность ГЭС достигла 22200 Мвт (табл. 1). К 1970 в СССР продолжалось строительство 35 промышленных ГЭС (суммарной мощностью 32000 Мвм ), в том числе 11 ГЭС единичной мощностью свыше 1000 Мвт: Саяно-Шушенская, Красноярская, Усть-Илимская, Нурекская, Ингурская, Саратовская, Токтогульская, Нижнекамская, Зейская, Чиркейская, Чебоксарская.

Табл. 1. — Развитие ГЭС в СССР за период 1965-80

Показатели ГЭС

1965

1970

1975

1980

(прогноз)

Установленная мощность ГЭС, Мвт

22200

32000

50000

74500

Доля ГЭС в общей мощности электростанций СССР, %

19,3

18,6

20

20,3

Выработка электроэнергии в год, млрд. квт -ч

81,4

121

182

260

Доля ГЭС в выработке электроэнергии в СССР, %

16,1

16

15,6

14,6

Мощность ГАЭС, Мет

-

30

1410

5100

В 60-х гг. наметилась тенденция к снижению доли ГЭС в общем мировом производстве электроэнергии и всё большему использованию ГЭС для покрытия пиковых нагрузок. К 1970 всеми ГЭС мира производилось около 1000 млрд. квт/ч электроэнергии в год, причём начиная с 1960 доля ГЭС в мировом производстве снижалась в среднем за год примерно на 0,7%. Особенно быстро снижается доля ГЭС в общем производстве электроэнергии в ранее традиционно считавшихся «гидроэнергетическими» странах (Швейцария, Австрия, Финляндия, Япония, Канада, отчасти Франция), т.к. их экономический гидроэнергетический потенциал практически исчерпан.

Табл. 2. -Крупнейшие ГЭС мира

Наименование

ГЭС

Мощность ГЭС *,

Мвт

Год начала

эксплуатации

Действующие

Красноярская, СССР....

5000

(6000)

1967

Братская, СССР

4100

(4600)

1961

Волжская им. 22-го съезда КПСС, СССР

2530

1958

Волжская им. В. И. Ленина, СССР

2300

1955

Джон-Дей, США

2160

(2700)

1968

Гранд-Кули, США

1974

(1711)

1941

Роберт-Мозес (Ниагара), США

1950

1961

Св. Лаврентия, Канада-США

1824

1958

Высотная Асуанская, АРЕ

1750

(2100)

1967

Боарнуа, Канада

1639

1948

Строятся

Саяно-Шушенская, СССР

6300

-

Черчилл-Фолс, Канада

4500

-

Усть-Илимская, СССР

4300

-

Илья-Солтейра, Бразилия

3200

-

Нурекская, СССР

2700

-

Портидж-Маунтин, Канада

2300

-

Железные Ворота,

Румыния-Югославия

2100

-

Тарбалла, Пакистан

2000

-

Мика, Канада

2000

-

* Мощность ГЭС приведена по состоянию на 1 января 1969; в скобках указана проектная мощность.

Несмотря на снижение доли ГЭС в общей выработке, абсолютные значения производства электроэнергии и мощности ГЭС непрерывно растут вследствие строительства новых крупных электростанций. В 1969 в мире насчитывалось свыше 50 действующих и строящихся ГЭС единичной мощностью 1000 Мвт и выше, причём 16 из них — в Советском Союзе.

Дальнейшее развитие гидроэнергетического строительства в СССР предусматривает сооружение каскадов ГЭС с комплексным использованием водных ресурсов в целях удовлетворения нужд совместно энергетики, водного транспорта, водоснабжения, ирригации, рыбного хозяйства и пр. Примером могут служить Днепровский, Волжско-Камский, Ангаро-Енисейский, Севанский и др. каскады ГЭС.

Крупнейшим районом гидроэнергостроительства СССР до 50-х гг. 20 в. традиционно была Европейская часть территории Союза, на долю которой приходилось около 65% электроэнергии, вырабатываемой всеми ГЭС СССР. Для современного гидроэнергостроительства характерно: продолжение строительства и совершенствование низко- и средненапорных ГЭС на рр. Волге, Каме, Днепре, Даугаве и др., строительство крупных высоконапорных ГЭС в труднодоступных районах Кавказа, Средней Азии, Восточной Сибири и т.п., строительство средних и крупных деривационных ГЭС на горных реках с большими уклонами и использованием переброски стока в соседние бассейны, но главное — строительство мощных ГЭС на крупных реках Сибири и Дальнего Востока — Енисее, Ангаре, Лене и др. ГЭС, сооружаемые в богатых гидроэнергоресурсами районах Сибири и Дальнего Востока, вместе с тепловыми электростанциями, работающими на местном органическом топливе (природный газ, уголь, нефть), станут основной энергетической базой для снабжения дешёвой электроэнергией развивающейся промышленности Сибири, Средней Азии и Европейской части СССР (см. Единая электроэнергетическая система).

www.ronl.ru

ГЭС - это... Шушенская ГЭС

ГЭС — это объект, возведенный на реке с целью преобразования энергии ее течения в электрическую. Одним из основных сооружений гидроэлектростанций в большинстве случаев является плотина, перекрывающая русло.

Как работает ГЭС

ГЭС — это всегда значимый для экономики государства объект, помимо всего прочего, являющийся еще и символом промышленного прогресса. Но, несмотря на монументальность, подобные масштабные сооружения имеют относительно несложный принцип работы.

Изначально вода на ГЭС поступает на лопасти турбин, установленных в машинном зале. Энергия вращения последних передается на генераторы. Вырабатываемое электричество поступает в систему ЛЭП региона.

Основой характеристикой любой ГЭС является, конечно же, ее мощность. А этот фактор, в свою очередь, зависит от количества проходимой через турбины воды и ее напора. Чем больше последний показатель, тем выше плотина станции.

гэс это

Разновидности станций

Таким образом, ГЭС — это значимый масштабный объект, возводимый на реке. В настоящее время в мире действует всего две основные разновидности гидроэлектростанций:

В последнем случае для выработки электроэнергии используется напор воды в отводном канале или тоннеле. Возводятся деривационные ГЭС обычно на горных не слишком широких реках с сильным течением.

Элементы конструкции обычной ГЭС

Помимо плотины, при строительстве гидроэлектростанции возводятся и такие сооружения, как:

  • здание ГЭС;
  • шлюзы;
  • судоприемники и рыбоходы;
  • водосбросные устройства;
  • распределительное устройство.

В здании ГЭС располагается машинный зал с турбинами и генераторами.

шушенская гэс

Что представляет собой деривационная станция

Такая ГЭС — это особый объект, всегда возводимый на русле с большим уклоном. Вода в таких реках течет под сильным напором естественным образом, поэтому обустраивать плотину в данном случае не нужно. Поток на таких ГЭС попадает непосредственно в основное здание к турбинам. Водохранилище обычно создают, но площадь они в большинстве случаев имеют очень небольшую. Необходимы водохранилища на ГЭС этого типа исключительно для регулировки стока.

Какие ГЭС имеются в РФ?

Гидроэлектростанций в России построено, конечно же, множество. Большинство из них функционирует еще со времен СССР. Самой первой ГЭС, построенной на территории нашей страны, стала Зырянская. Возвели этот объект еще в царской России в 1892 г. Это была небольшая станция, обеспечивавшая электроэнергией шахтный водоотлив местного рудника.

В советский период правительством был принят глобальный план ГОЭРЛО, согласно которому за 10-15 лет в стране предполагалось соорудить ГЭС общей мощностью на 21254 тыс. л/с. На сегодняшний день самыми значимыми гидроэлектростанциями в РФ являются:

  • Саяно-Шушенская (Саяногорск) мощностью в 6.4 Гв;
  • Красноярская (Дивногорск)— 6 Гв;
  • Братская (Братск) — 4.52 Гв;
  • Усть-Ильминская — 3.84 Гв;
  • Богучинская (Кодинск) — 3 Гв;
  • Жигулевская — 2.4 Гв;
  • Бурейская — 2.01 Гв;
  • Чебоксарская (Новочебоксарск) — 1.4 Гв;
  • Саратовская (Балаково) — 1.38 Гв;
  • Зейская (Зея) — 1.33 Гв;

Также достаточно большим объектом является Нижнекамская ГЭС (Набережные Челны). Мощность этой станции составляет 1.25 Гв. Собственником являются ОАО «Генерирующая компания» и «Татэнерго». Построена станция на реке Каме.

строительство гэс

Саяно-Шушенская ГЭС: история

Именно эта гидроэлектростанция, являющаяся частью Енисейского каскада, на сегодняшний день является в стране самой крупной. Ежегодно в среднем она вырабатывает порядка 23.5 млрд кВт/ч электроэнергии. Решение о строительстве Саяно-Шушенской станции было принято правительством СССР в 1961 году. Сами работы по ее возведению начались в 1968 г. В 1978 г. было наполнено Саяно-Шушенское водохранилище. Официально возведение станции было закончено только в 2000 году.

Строительство ГЭС сопровождалось, к сожалению, в том числе и разного рода неприятностями. В процессе строительства несколько раз разрушались водосбросные сооружения, а в плотине образовывались трещины. Однако в конечном итоге, судя по отчетам прошлых лет, все подобные проблемы были успешно решены.

Характеристики станции

Расположена Саяно-Шушенская ГЭС у поселка Черемушки возле г. Саяногорск на реке Енисей. В настоящее время в основном ее здании установлено 10 агрегатов, мощность каждого составляет 640 МВт. В рабочем состоянии при этом, к сожалению, находятся только 8 агрегатов. Турбины на этой станции установлены очень мощные, марки РО-230/833-0-677, функционирующие при расчетном напоре 194 метра. Высота плотины этой ГЭС составляет 245 м. При этом площадь образовавшегося в результате строительства станции водохранилища равна 621 км2.

При строительстве Саяно-Шушенской ГЭС было затоплено в общей сложности 35600 га сельхозугодий. При этом пришлось перенести также 2717 разного рода строений. Вода в водохранилище ГЭС отличается неплохим качеством, поэтому в его нижней части в последующем было организовано несколько хозяйств, специализирующихся на производстве форели. Расположено водохранилище Саяно-Шушенской станции одновременно на территории трех регионов: Хакасии, Тувы и Красноярского края. На его берегах, помимо всего прочего, действует и Саяно-Шушенский биосферный заповедник.

авария на шушенской гэс

Авария на Шушенской ГЭС 2009 года

В начале двадцать первого века на Саяно-Шушенской ГЭС произошла очень серьезная авария, унесшая жизни 75 человек. 17 августа 2009 года в машинном зале основного здания в результате повреждения второго гидроагрегата произошел сильный выброс воды из турбины. Хлынувший поток разрушил несущие колонны здания и повредил установленное в нем оборудование. В результате попадания воды в некоторые гидроагрегаты генераторы вышли из строя, а в другие и вовсе разрушились. Все технологические системы, расположенные ниже отметки 327, были затоплены.

гэс набережные челны

Устранялись последствия аварии первоначально силами работников самой станции. Позднее были привлечены подрядные организации. На закрытие гидрозатворов у специалистов ушло примерно 9 часов 20 минут. Поступление воды в машинный зал было остановлено. В целом в операции по ликвидации последствий аварии приняло участие 2.7 тыс. человек и более 200 единиц техники. Для предотвращения поступления воды в зал пришлось построить заградительные конструкции, общая длина которых составила 9683 метра.

fb.ru

Как работает гидроэлектростанция? Это понятно даже детям!

ДЛЯ ГЭС НУЖЕН НАПОР

«Люди давно научились использовать энергию движущейся воды. Если до половины погрузить в реку колесо с лопастями на ободе, то оно начнет вращаться, потому что вода будет увлекать за собой нижние лопасти колеса. Примерно так работали (и кое-где работают до сих пор) водяные мельницы. Водяное колесо в них насажено на вал жернова. Вращает вода колесо — вращается и жернов, мелет зерно.

Но вот сто с лишним лет назад появился более совершенный водяной двигатель — гидравлическая турбина (сокращенно — гидротурбина). Появились генераторы, превращающие механическую работу в электрическую энергию. И к концу XIX в. началось сооружение гидроэлектрических станций — ГЭС.

Прямо в русле реки, даже с быстрым течением, ставить большие турбины нельзя: у реки не хватает силы проворачивать тяжелую турбину. Другое дело на водопадах: там вода стремительно летит вниз, у нее большой напор.

Но водопадов не так много, да и не очень удобно ставить возле них турбины. Поэтому придуманы искусственные водяные «ступеньки» — плотины.

Напор создается разностью уровней воды. Поэтому говорят, что водяное колесо вращается под напором в столько-то метров.

Если перегородить реку прочной плотиной, а в теле плотины оставить только небольшое отверстие, то вся вода, что есть в реке, должна будет протекать через это отверстие. Значит, перед плотиной река поднимется и разольется, а за плотиной останется на прежнем уровне. Появится разница уровней, возникнет напор воды.

Поставим у отверстия плотины гидротурбину — и она начнет вращаться, используя напор воды. Соединим турбину с генератором— его ротор тоже придет в движение, в обмотке статора появится ток.

Заметьте: напор перед плотиной сохраняется круглый год, потому что вода запасается в водохранилище, искусственном море, и стекает равномерно, хотя зимой и летом река несет меньше воды, а осенью и весной — больше.

Впрочем, есть и гидроэлектростанции без плотин. Например, на горных реках плотины получаются очень высокими и дорогими. В этих случаях воду из реки подводят к электростанциям каналом или тоннелем, называемыми деривационными. В конце деривационного отвода строят здание ГЭС и соединяют трубами канал и гидроэлектростанцию. Теперь часть воды идет по своему руслу, а часть совершает такой маршрут: канал — трубы — турбины ГЭС — русло. Конечно, все это самотеком, потому что канал начинается гораздо выше ГЭС, а впадает обратно в реку ниже».

ЛЮБОЙ ГИДРОУЗЕЛ - СЛОЖНОЕ ПРЕДПРИЯТИЕ

«Принцип работы любой ГЭС прост. Но устройство ее, конечно, не простое. Современная ГЭС — сложное предприятие, насыщенное разнообразными автоматами. Недаром здание машинного зала, плотину, шлюзы, трансформаторные станции, рыбоподъемники называют общим словом гидроузел.

Плотину строят из грунта или бетона. Очень часто грунт и бетон работают рука об руку: там, где надо просто удержать воду, можно применить землю, а для водосливов, турбинных камер и вообще «активных» участков плотины нужен железобетон. В теле плотины на заранее рассчитанной высоте делают окна для пропуска воды во время паводка, иначе вода прорвала бы плотину. В остальное время окна закрыты стальными щитами.

Иногда, если нет надобности строить плотину очень высокой, ее делают ниже уровня максимального подъема воды во время паводка. И тогда каждую весну излишняя вода просто-напросто переливается через водосливный участок гребня плотины.

В подводной части плотины проложены трубы для подвода воды к турбинам. Они прикрыты решетками, улавливающими камни, поленья, ветки. В трубах устроены затворы.

Нажим кнопки — и путь воде закрыт. Это нужно при остановках турбины.

Поток воды под напором входит в трубу и отсюда в спиральную камеру, напоминающую улитку. Двигаясь внутри камеры все ближе и ближе к центру, водяная масса закручивается. А в центре камеры — колесо турбины. Но вода не сразу попадает на колесо, потому что оно обнесено «забором» — крепкими стальными лопатками, направляющими воду (направляющим аппаратом). Каждая лопатка может поворачиваться на своей оси. Повернутся лопатки так, что плотно сомкнутся одна с другой,— и вода в турбину не пройдет. Приоткроются чуть-чуть — воды пойдет немного. А станут по движению воды — она почти беспрепятственно будет проникать в турбину. Это, как говорят энергетики, режим полной нагрузки».

ВОДА ВРАЩАЕТ ТУРБИНУ

«Но вот вода прошла сквозь направляющий аппарат. На ее пути — лопасти рабочего колеса турбины. Понятно, что вода заставит лопасти двигаться, отдаст им свою энергию. А этого нам только и надо. Вода вращает турбину!

Теперь воде нужно уйти. Куда? Опять в трубу, но только в другую — отсасывающую. Очень важно, чтобы вода шла по этой трубе спокойно, без вихрей и препятствий, тогда турбина будет хорошо использовать напор. Поэтому отсасывающие трубы делают гладкими и немного расширяющимися к нижнему концу. Из этого открытого конца вода вытекает в русло реки и уходит по течению.

Не всегда турбины находятся в теле плотины или поблизости от нее. Иногда воду под напором подают из водохранилища к турбинам по длинным трубам или тоннелям. Так, например, сделано на ГЭС при высотной Асуанской плотине на р. Ниле».

С ГЕНЕРАТОРА НА ТРАНСФОРМАТОР И ДАЛЬШЕ ПО ПРОВОДАМ

«Итак, рабочее колесо турбины вращается. С ним вращается и вал, связывающий рабочее колесо с ротором электрической машины — генератора переменного тока.

Генератор вырабатывает переменный ток напряжением от 10 до 18 тыс. вольт.

Но, оказывается, электроэнергию в таком виде невыгодно передавать на большие расстояния. Вот если повысить напряжение в 10 — 15 раз, тогда другое дело: сила тока упадет, и он, проходя по проводам, будет меньше нагревать их. Станет меньше потерь, не понадобятся толстые и тяжелые провода.

Напряжение повышают на электростанции простые приборы — трансформаторы. Это стержни-сердечники, собранные из тонких листов мягкой стали. На каждом — две обмотки: одна с небольшим числом витков толстой медной проволоки, вторая с немногочисленными витками более тонкого провода. Мы подаем напряжение, скажем, в 10 тыс. вольт на первичную обмотку, а со вторичной получаем сразу 100 или 200 тыс. вольт — во столько раз больше, во сколько больше витков на вторичной обмотке. Чтобы трансформаторы не сильно нагревались при работе, их погружают в баки с жидким маслом, хорошо отводящим тепло. Итак, чем выше напряжение (и, значит, меньше сила тока), тем выгоднее передавать энергию».

Источник: «Техника и производство». Том 5 (Детская энциклопедия 1965 г.в.) - Афанасенко Е.И., и др.

www.kp.ru

Значение ГЭС

Значение Саратовской ГЭС в энергосистеме региона

Переустройство Волги и Камы с комплексным решением народнохозяйственных проблем (ирригационной, транспортной и энергетической) началось в 1930-е годы. Проектированием комплексной реконструкции Волги занимались ведущие отечественные проектные организации: «Гидроэнергопроект», «Гидропроект» и ряд других. Инженерная схема Волжско-Камского каскада ГЭС предусматривала наиболее полное использование водно-энергетических ресурсов для получения большого количества дешевой электроэнергии; создание глубоководного пути в пределах основного течения Волги и Камы, а также соединения этих рек с Балтийским, Белым, Азовским и Каспийским морями; развитие сельского хозяйства в прилегающих к Волге районах путем орошения и обводнения больших массивов засушливых плодородных земель.

В результате создания Саратовского водохранилища был зарегулирован водный режим реки Волги, в зоне его влияния созданы условия для стабильного и безопасного судоходства, создания круглогодичных запасов пресной воды, гарантирующих надежное хозяйственно-питьевое, промышленное, мелиоративное водоснабжение.

Фото: служебно-производственный корпус Саратовской ГЭС

По мнению ученых, водохранилища ГЭС, меняя облик ландшафта, приводят к формированию нового экологического баланса за 20-25 лет. И Саратовская ГЭС за десятки лет стабильной эксплуатации уже стала частью экосистемы.

Водохранилища каскада также оказывают трансформирующее влияние на половодье. ГЭС сдерживают неконтролируемый ход паводков. Так, в половодье 1979 г. максимальный уровень Волги, по сравнению с возможным естественным, был снижен в створе Куйбышевского гидроузла — на 1,9 м, в створе Волгоградского гидроузла — на 1,3 м.

Как известно, понижение урожаев, обусловленное недостатком осадков, происходит в Поволжье не менее 6 раз, а резкие недороды хлебов – приблизительно 3 раза в десятилетие. Водохранилища Волжско-Камского каскада позволили орошать в Поволжье и Прикаспийской низменности около 4 млн га и обводнять 10 млн га земель. В настоящее время площадь орошаемых земель в регионе составляет 2,1 млн га (для сравнения: всего в России орошаемые земли занимают около 5,7 млн га).

За счет спрямлений трассы судового хода на водохранилищах возросла ее ширина и сократилась длина. Гарантированная глубина, образовавшаяся в результате подпора и навигационных попусков, на протяжении Камы и Волги от Твери до впадения в Каспий приблизилась к 4 м (до реконструкции в верховья Волги она составляла 0,4—0,5 м, в низовьях — до 2 м). Все это позволило эксплуатировать по Волге суда грузоподъемностью 2—5 тыс. т (до реконструкции 0,6—1,0 тыс. т), значительно увеличить грузооборот (с 1930 по 1990 гг. с 27,4 млн т до 300 млн т) и пассажирские перевозки (с 19 млн до 120 млн человек). За счет этого стоимость одного тонна-километра перевозок снизилась на 70 %.

Фото: Правобережная русловая дамба Саратовской ГЭС

Саратовская ГЭС — градообразующее предприятие, первая из пяти Всесоюзных ударных комсомольских строек в Балаково, которая дала городу невиданный силы импульс. Ежегодно возводилось по 20 и более современных многоэтажек, новых школ, детских садов, магазинов, кафе. Со времени строительства Саратовской ГЭС население города увеличилось почти в 8 раз — с 26 тысяч человек (1957 год) до 200 тысяч. Через плотину Саратовской ГЭС проходит железная дорога, связывающая левый и правый берега Волги.

В течение всего нескольких минут мощность гидроэлектростанции может быть доведена от нуля до максимума и обратно. Поэтому ГЭС способны практически мгновенно принимать и сбрасывать нагрузки, покрывать кратковременные пики нагрузок, регулировать частоту тока в энергосистеме, а также выполнять в ней функции аварийного резерва. Именно гидравлические электростанции выдают необходимый объем регулируемых мощностей в часы максимальных нагрузок на энергосистему. ГЭС служат гарантом надежности функционирования Единой энергетической системы России. Мощность Саратовской ГЭС выдается в энергосистему Центра и Поволжья.

С вводом Саратовской гидростанции Саратовская энергосистема (ранее дефицитная по мощности) стала выдавать мощность и электроэнергию в энергосистему Центра и Поволжья, повышая их надежность. Была повышена энергоотдача крупнейших гидростанций Европы — Жигулевской и Волжской ГЭС.

Саратовская ГЭС является в регионе крупным энергетическим объектом с ежегодной выработкой более 5,4 млрд кВт·ч. Это примерно 13,2% от общей выработки в регионе. Для сравнения: доля Балаковской АЭС в структуре выработки составляет 77,8%, ТЭЦ-4 — 1,7% соответственно.

www.sarges.rushydro.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта