Eng Ru
Отправить письмо

Трёхфазные трансформаторы Магнитные системы трёхфазных трансформаторов. Трехфазный трансформатор схема


Всё про трехфазный трансформатор

Трёхфазный трансформатор используется для преобразования напряжения. Применяется устройство в сфере электрификации промышленного хозяйства и бытовых нужд. Кроме того, такие устройства незаменимы на судах, так как с их помощью осуществляется питание приборов различного номинала.

Расчёт трёхфазного трансформатора производится в соответствии со специальной документацией. На основе полученных данных выбирается нужная комплектация. Используется устройство не только для промышленных нужд, но и в бытовых приборах при производстве электронных схем управления.

Трёхфазный трансформатор может быть понижающим или повышающим, коэффициент преобразуемых величин зависит от числа витков обеих обмоток. Устройство может быть собрано из трёх однофазных аналогов или выполняется на общем сердечнике, сумма магнитных потоков каждой фазы в таком приборе будет равна нулю.

трёхфазный трансформаторДля промышленных трансформаторов проводится ряд испытаний на соответствие заданным параметрам. Комплекс мероприятий по проверке характеристик устройства включает замеры сопротивления каждой обмотки, проверку изоляции относительно земли и между фазами. Специальным прибором подаётся напряжение на обмотки и проверяется пробивная способность изоляции. Далее на первичную обмотку подаётся напряжение и замеряется величина на выходе. С помощью этого опыта высчитывается коэффициент трансформации.

Результаты замеров должны соответствовать величинам, отражённым в сопутствующей документации, в противном случае трёхфазный трансформатор бракуется. Очень важно понимать, что обвязка и монтаж оборудования для распределительных устройств 110 кВ и выше не допускаются без надзора специалиста с завода, где производилось изготовление. При этом испытания должны проводиться согласно принятым правилам в присутствии компетентного лица.

расчёт трехфазного трансформатораТрансформатор трёхфазный соединяется по схеме «Звезда» или по схеме «Треугольник». Соединение звездой реализуется общим узлом начал всех фаз. Схема в виде треугольника осуществляется последовательным соединением фаз в кольцо: конец первой фазы соединяется с началом второй, конец второй с началом третьей и конец третьей с началом первой.

Если трехфазный трансформатор соединён по схеме «Звезда», то элементы могут выполняться с глухозаземлённой или изолированной нейтралью (так называется узел, соединяющий концы фаз). Для высоковольтных РУ используется специальный зонт, который позволяет заземлять и разземлять нейтраль. Однако в распределительных устройствах для безопасности по 0,4 кВ используется заземлённый ноль.

Для защиты линий электропередач используются трансформаторы напряжения, с помощью которых контролируется питание. Они помогают сориентировать защиту по углам и величинам при наладке дифференциала срабатывания устройств. Чаще всего используются три трансформатора на каждую фазу.

трансформатор трёхфазныйУ каждого из них есть не менее двух кернов: один соединяется в разомкнутый треугольник, другой - в звезду. Звезда служит для замера напряжения на линиях, а разомкнутый треугольник необходим как защита от замыкания.

Сегодня выпускаются трансформаторы напряжения с третьим керном под учёт. С его помощью осуществляется подключение счётчиков. Как правило, третий керн тоже соединяется по схеме звезды. Такое отделение цепей контроля от цепей учёта помогает получить более точные показания, так как класс точности керна для счётчика выше.

fb.ru

Трёхфазные трансформаторы Магнитные системы трёхфазных трансформаторов

Основные типы магнитных систем трёхфазных трансформаторов, в зависимости от конструктивного устройства магнитопровода:

  • Стержневая магнитная система;

  • Броневая магнитная система;

  • Бронестержневая магнитная система.

Также (в зависимости от взаимосвязи потоков различных фаз) магнитные системы разделяют как:

Покажем наиболее распространённые типы трёхфазных трансформаторов.

    1. Независимая магнитная система.

Трёхфазная трансформаторная группа.

Данный тип представлен на рис. 2.28. Трёхфазная трансформаторная группа получается из трёх однофазных трансформаторов, обмотки которых соединены

Рис. 2.28. Трёхфазная трансформаторная группа

определённым образом. Схема соединения обмоток на рисунке – звезда/звезда (/).

Применяют только при очень больших мощностях (более 10 МВА в фазе). Данный тип имеет некоторые преимущества при транспортировке и монтаже. Так, при выходе из строя одного однофазного трансформатора, ремонту или замене подлежит только один однофазный трансформатор.

К недостаткам можно отнести громоздкость всей конструкции, повышенные габариты и вес, отсюда повышенная стоимость.

Применяются, например, в металлургии для обеспечения работы мощных электродуговых печей.

    1. Трёхфазный броневой трансформатор.

Трёхфазный броневой трансформатор можно рассматривать как три однофазных броневых трансформатора, поставленных друг на друга. Трёхфазный броневой трансформатор представлен на рис. 2.29.

Рис. 2.29. Трёхфазный броневой трансформатор

Средняя фаза имеет обратное включение по сравнению с крайними фазами, для того, чтобы потоки в ярмах суммировались. Векторная диаграмма потоков в ярме приведена на рис. 2.30. Применяются достаточно редко из-за относительной сложности конструкции.

    1. Бронестержневой трансформатор.

С целью уменьшения высоты конструкции магнитопровода выполняются трансформаторы бронестержневого типа (рис. 2.31).

Рис. 2.30. Векторная диаграмма потоков

Рис. 2.31. Бронестержневой трансформатор

Трехстержневой трансформатор

Если на первичную обмотку подаётся симметричная система трёхфазных напряжений, то по обмоткам протекают симметричные системы токов, следовательно, потоки трёх фаз также образуют симметричную систему, тогда

. (2.98)

Тогда этот объединенный стержень можно убрать (рис. 2.32, б). Полученный таким образом трансформатор можно сделать более компактным, поместив все три стержня в одну плоскость (рис. 2.32, в). Получившийся трансформатор называют трёхфазным стержневым трансформатором, или трёхстержневым. Вследствие уменьшения длины магнитной цепи, по которой замыкается поток фазы В, возникает некоторая магнитная несимметрия фаз, которая обычно невелика и будет сказываться только на режиме холостого хода, в частности, на токе холостого хода, который будет меньше в средней фазе, чем в крайних. Однако, как было показано ранее (разделы 2.4, 2.5), при нагрузке ток холостого хода оказывает малое влияние на величины токов первичной и вторичной обмоток. Таким образом, можно считать, что при симметричном питающем напряжении и нагрузке все фазы трёхфазного трансформатора находятся в одинаковых условиях. Поэтому для каждой фазы справедливы комплексные уравнения, векторные диаграммы и схемы замещения, выведенные ранее. Исключение составляет только режим холостого хода, на котором сказывается схема соединения обмоток. Конструктивное устройство трёхфазного стержневого трансформатора представлено на рис. 2.33.

Рис. 2.32. Образование трёхстержневого трёхфазного трансформатора

Рис. 2.33. Конструкция трёхстержневого трёхфазного трансформатора

Схемы соединения обмоток

Первичная и вторичная обмотки трансформаторов могут быть соединены в звезду (Y), в треугольник (). В схеме соединения – звезда может быть выведена нулевая точка (Y0). Кроме того, есть такая схема соединения, как зигзаг (Z), которая применяется редко /1/. Покажем схемы соединения и векторные диаграммы напряжений.

  1. Схема соединения – звезда (Y) (рис. 2.34).

studfiles.net

Трехфазные трансформаторы

Трехфазные сети широко распространены в энергетике и используются для производства и передачи электрической энергии. Трехфазные системы были разработаны русским электриком М.О.Доливо-Добровольским (1862 – 1919 гг.) и представляют собой систему из трёх источников переменного тока, ЭДС которых сдвинуты друг относительно друга на угол 120°.

Это трёхпроводная и четырёхпроводная линии. Напряжение каждого генератора – фазное напряжение, а напряжение между фазами - линейное напряжение.

На рисунке изображены временные зависимости для фазных и линейных ЭДС трехфазной системы напряжений.

Трансформирование трехфазного тока можно осуществить тремя однофазными трансформаторами, соединенными в трансформаторную группу (так называемый групповой трансформатор) или трёхфазным трансформатором. Обмотки первичной и вторичной цепей соединяются одним из способов: ”звезда” - Y, “треугольник” - ∆ , “зигзаг” - Z.

Обмотки трехфазных трансформаторов принято соединять по следующим схемам: звезда; звезда с нулевым выводом; треугольник; зигзаг с нулевым выводом. Схемы соединения обмоток трансформатора обозначают дробью, в числителе которой указана схема соединения обмоток ВН (высшего напряжения), а в знаменателе — обмоток НН (низшего напряжения). Например, Y/Δ означает, что обмотки ВН соединены в звезду, а обмотки НН — в треугольник.

Соединение в зигзаг применяют только в трансформаторах специального назначения, например для выпрямителей. При соединении в зигзаг каждую фазу обмотки НН делят на две части, располагая их на разных стержнях. Указанные части обмоток соединяют так, чтобы конец одной части фазной обмотки был присоединен к концу другой части этой же обмотки, расположенной на другом стержне. Зигзаг называют равноплечным, если части обмоток, располагаемые на разных стержнях и соединяемые последовательно, одинаковы, и неравноплечными, если эти части неодинаковы. При соединении в зигзаг ЭДС отдельных частей обмоток геометрически вычитаются.

Выводы обмоток трансформаторов принято обозначать следующим образом: обмотки ВН — начало обмоток А, В, С, соответствующие концы X, Y, Z; обмотки НН — начала обмоток а, b, с, соответствующие концы х, у, z.

При соединении обмоток звездой линейное напряжение больше фазного в раз, а при соединении обмоток треугольником линейное напряжение равно фазному (Uл = Uф ).

Отношение линейных напряжений трехфазного трансформатора определяется следующим образом:

Схема соединения обмоток

Y/Y

Δ/Y

Δ/Δ

Y/Δ

Отношение линейных напряжений

w1/w2

w1/(w2)

w1/w2

w1/w2

Видно, что отношение линейных напряжений в трехфазном трансформаторе определяется не только отношением чисел витков фазных обмоток, но и схемой их соединения.

Рассмотрим способ соединения “звезда”.

На рисунке изображена векторная диаграмма напряжений и условное обозначение схемы соединения обмоток трансформатора.

Точка на схеме трансформатора обозначает конец вектора ЭДС или начало обмотки.

При соединении звездой линейные (Iл) и фазные токи (Iф) одинаковы, потому что для тока, проходящего через фазную обмотку, нет иного пути, кроме линейного провода. Линейные напряжения (Uл) больше фазных (Uф) в раза.

Соединение в звезду выполняется с нулевым выводом или без него, что является достоинством схемы соединения

Соединение в “треугольник”:

При соединении треугольником Uл = Uф,потому что каждыедва линейных провода присоединены к началу и концу одной из фазных обмоток, а все фазные обмотки одинаковы. Линейные токи Iл = Iф.

Мощность трёхфазной системы не зависит от схемы соединения (звездой или треугольником) иопределяется выражениями:

Полная

активная [Вт]

реактивная [ВАР]

где j - угол сдвига фаз между напряжением и током.

Группы соединения обмоток трехфазного трансформатора

При определении группы соединения обмоток трансформатора пользуются циферблатом часов. Линейный вектор обмотки высшего напряжения (ВН) соответствует минутной стрелке циферблата часов и устанавливается на цифру 12, часовая стрелка соответствует линейному вектору ЭДС обмотки низкого напряжения (НН) и ее поворот по отношению к обмотке ВН определяет номер группы и угол поворота = n*300, где n – группа.

Определим группу соединения обмоток трансформатора соединения “звезда-звезда”. Для построения диаграммы условно объединяют одноименные выводы обмоток первичной (С) и вторичной (с) цепей трансформатора. Из построения видно, что номер группы соединения равен

n = 180°/30° = 6 .

Определим группу соединения обмоток трансформатора для соединения “звезда-треугольник”. Для построения диаграммы условно объединяем одноименные выводы обмоток первичной (а) и вторичной (А) цепей трансформатора. Из построения видно, что номер группы соединения равен n = j/30° =30°/30° = 1 .

Соединение вторичных обмоток трансформатора в зигзаг

Соединение зигзагом применяют для того, чтобы нагрузку вторичных обмоток распределить более равномерно между фазами первичной сети, а также для расщепления фаз при создании многопульсных выпрямителей и в других случаях.

Для соединения зигзагом вторичная обмотка каждой фазы составляется из двух половин: одна половина расположена на одном стержне, другая – на другом. При таком соединении э.д.с. обмоток, расположенных на разных стержнях сдвинуты на угол 1200. .

Угол поворота  вектора ЭДС вторичной цепи по отношению к первичной зависит от соотношения витков W21/W22.

Влияние схемы соединения обмоток на работу трехфазных трансформаторов в режиме холостого хода

Из уравнений токов третьей гармоники в трехфазной системе

iA3=I3maxsin3ωt

iB3=I3maxsin(3ωt-1200)

iC3=I3maxsin(3ωt+1200)

видно, что эти токи в любой момент времени совпадают по фазе, т. е. имеют одинаковое направление. Этот же вывод распространя­ется на все высшие гармоники тока, кратные трем, — 3, 9, 15 и т.д. Это обстоятельство оказывает существенное влияние на про­цессы, сопровождающие намагничивание сердечников при трансформировании трехфазного тока.

Рассмотрим особенности режима холостого хода трехфазных трансформаторов для некоторых схем соединении обмоток.

Соединение Y/Yo. Если напряжение подводится со стороны об­моток, соединенных звездой без нулевого вывода, то то­ки третьей гармоники (и кратные трем — 9, 15 и т. д.), совпадая по фазе во всех трех фазах, будут равны нулю. Объясняется это отсутст­вием нулевого провода, а следовательно, отсутствием выхода из ну­левой точки. В итоге токи третьей и гармоник кратных трём будут взаимно компенсировать­ся и намагничивающий ток трансформатора ока­жется синусоидальным, но магнитный поток в магнитопроводе окажется не­синусоидальным (упло­щенным) с явно выра­женным потоком третьей гармоники Ф3 .

Потоки третьей гармоники не могут замкнуться в трехстержневом магнитопроводе, так как они совпадают по фазе. Эти потоки замыкаются через воздух (масло) и металлические стенки бака. Большое магнитное сопротив­ление потоку Ф3 ослабляет его величину, поэтому наводимые потока­ми Ф3 в фазных обмотках ЭДС третьей гармоники невелики и обычно их амплитуда не превышает 5…7% от амплитуды основной гармони­ки. На практике поток Ф3 учитывают лишь с точки зрения потерь от вихревых токов, индуцируемых этим потоком в стенках бака. Напри­мер, при индукции в стержне магнитопровода порядка 1,4 Тл потери от вихревых токов в баке составляют около 10% от потерь в магнитопроводе, а при индукции 1,6 Тл эти потери возрастают до 50 …65%.

В случае трансформаторной группы, состоящей из трех однофазных трансформаторов, магнитопроводы отдельных фаз магнитно не связаны, поэтому магнитные потоки третьей гармоники всех трех фаз беспрепятственно замыкаются (поток каждой фазы замыкается в своем магнитопроводе). При этом значение потока Ф3 может достигать 15 … 20% от Ф1.

Несинусоидальный магнитный поток Ф, содержащий кроме основной гармоники Ф1 еще и третью Ф3, наводит в фазных обмотках несинусоидальную ЭДС.

Повышенная частота 3ω магнитного потока Ф3 приводит к появлению значительной ЭДС е3, резко увеличивающей ампли­тудное значение фазной ЭДС обмотки при том же ее действующем значении, что создает неблагоприятные усло­вия для электрической изоляции обмоток.

Амплитуда ЭДС третьей гармоники в трансформаторной группе может дости­гать 45—65% от амплитуды основной гар­моники. Однако следует отметить, что ли­нейные ЭДС (напряжения) остаются синусоидальными и не содержат третьей гармоники, так как при соединении обмо­ток звездой фазные ЭДС e3A, e3B и е3С, сов­падая по фазе, не создают линейной ЭДС. Объясняется это тем, что линейная ЭДС при соединении обмоток звездой определяется разностью фазных ЭДС. Так, для основной гармоники линейная ЭДС.

Если первичная обмотка трансформатора является обмот­кой НН и ее нулевой вывод при­соединен к нулевому выводу гене­ратора, то намагничивающие токи фаз содержат третьи гармоники. Эти токи совпадают по фазе, а поэтому все они направлены либо от трансформатора к генера­тору, либо наоборот. В нулевом проводе будет протекать ток, рав­ный 3i3. При этом магнитный поток трансформатора, а следова­тельно, и ЭДС в фазах будут синусоидальны.

Соединения, при которых обмотки какой-либо стороны трансформатора (НН или ВН) соединены в треугольник. Эти схемы соединения наиболее желательны, так как они лишены не­достатков, рассмотренных ранее схем.

Допустим, что в треугольник соединены первичные обмотки трансформатора. Тогда ток третьей гармоники беспрепятственно замыкается в замкнутом контуре фазных обмоток, соединенных в треугольник. Но если намагничивающий ток со­держит третью гармонику, то магнитные потоки в стержнях, а следовательно, и ЭДС в фазах практически синусоидальны.

Если же вторичные обмотки трансформатора соединены в треугольник, а первичные — в звезду, то ЭДС третьей гармоники, наведенные во вторичных обмотках, создают в замкнутом контуре треугольника ток третьей гармоники. Этот ток создает в магнитопроводе магнитные потоки третьей гармоники Ф23, направленные встречно потокам третьей гармоники от намагничивающего тока Ф13 (по правилу Ленца). В итоге результирующий поток третьей гармоники Фрез3=Ф13+Ф23 значительно ослабляется и практиче­ски не влияет на свойства трансформаторов.

studfiles.net

Московский государственный технический университет

16

ГРАЖДАНСКОЙ АВИАЦИИ

ИРКУТСКИЙ ФИЛИАЛ

КАФЕДРА АВИАЦИОННЫХ ЭЛЕКТРОСИСТЕМ

И ПИЛОТАЖНО-НАВИГАЦИОННЫХ КОМПЛЕКСОВ

ЛЕКЦИЯ №2

по дисциплине

Электрические машины

для студентов специальности 160903

ТЕМА №2

Трехфазный трансформатор

Иркутск, 2011 г.

Иркутский филиал МГТУ ГА

Кафедра Авиационных электросистем и пилотажно-

навигационных комплексов

Лекция №2

по дисциплине: Электрические машины

Тема лекции: Трехфазный трансформатор

СОДЕРЖАНИЕ

  1. Устройство трехфазных трансформаторов.

  2. МДС, группы соединений трехфазных трансформаторов.

ЛИТЕРАТУРА

  1. Копылов Б.В. Электрические машины. М., 1988 г.

НАГЛЯДНЫЕ ПОСОБИЯ, ПРИЛОЖЕНИЯ, ТСО

  1. Мультимедийная установка

Тема 2. Трехфазные трансформаторы

2.1 Устройство трехфазных трансформаторов

Энергию трехфазного переменного тока можно преобразовать тремя однофазными трансформаторами, соединенными в трансформаторную группу (групповой трехфазный трансформатор), или одним трехфазным трансформатором.

Групповой трехфазный трансформатор представляет собой три однофазных трансформатора (рис. 1.11). Однако относительная громоздкость, большой вес и повышенная стоимость – существенные недостатки группового трехфазного трансформатора, поэтому в авиационном оборудовании применяются только трехфазные трансформаторы.

Трехфазный трехстержневой трансформатор (рис. 1.12) имеет три стержня, на которых расположены три первичные и три вторичные обмотки. У трехстержневого трансформатора меньше размеры и масса по сравнению с групповым. Недостатком трехстержневого трансформатора является то, что магнитное сопротивление для мдс крайних фаз больше, чем для средней фазы, поэтому намагничивающие токи образуют несимметричную систему.

При холостом ходе, несмотря на симметричное питающее напряжение, токи в фазах не будут одинаковыми: в крайних фазах они будут больше, чем в средней фазе. За ток холостого хода в трехфазном трансформаторе следует принимать среднее арифметическое значение токов трех фаз. Однако несимметрия токов холостого хода не имеет большого значения, так как даже при незначительной нагрузке она сглаживается.

а b c

Рис. 1.11. Схема группового трехфазного трансформатора

Выводы обмоток трансформатора принято обозначать буквами:

• первичной обмотки: начала – А, В, С; концы – X,Y,Z;

• вторичной обмотки: начала – а, b, с; концы – x, y, z.

Рис. 1.12. Схема трехстержневого трехфазного трансформатора

2.2 Мдс и группы соединений трехфазных трансформаторов

Первичную и вторичную обмотки трехфазного трансформатора соединяют в звезду, треугольник или зигзаг (рис. 1.13).

а)

б)

в)

Рис. 1.13. Соединения обмоток трехфазного трансформатора в звезду (а), в треугольник (б) и зигзаг (в)

Примечание. Соединение в зигзаг применяют только в трансформаторах специального назначения, например, в трансформаторах для выпрямительных устройств.

Соединение обмотки в звезду обозначается значком Υ. Соединение в треугольник обозначается соответственно значком Δ. Соединение в зигзаг – значком Z. При соединении в зигзаг обмотка, как правило, делится на две одинаковые части, расположенные на соседних стержнях. Это способствует уменьшению асимметрии напряжений при несимметричной нагрузке фаз.

При соединении звездой линейное напряжение больше фазного: , а при соединении обмоток треугольником линейное напряжение равно фазному:UЛ=UФ. Следовательно, отношение линейных напряжений в трехфазном трансформаторе зависит не только от соотношения чисел витков фазных обмоток, но и от схемы соединения обмоток. Так, например, при соединении обмоток Υ/Υ или Δ/Δ отношение линейных напряжений обмоток равно , при соединении, а при соединении обмоток.

Первичную и вторичную обмотки трехфазного трансформатора можно соединять в различные схемы: Y/Y; Y/Δ; Δ/Y и Δ/Δ. В числителе указывается схема соединения первичной обмотки, а в знаменателе – вторичной. Если при соединении звездой выводится нулевая точка, то применяется знак Yо.

Примечание. В авиационных трансформаторах, как правило, первичная обмотка является обмоткой высшего напряжения (ВН), а вторичная – обмоткой низшего напряжения (НН).

Способы соединения первичной и вторичной обмоток, порядок соединения обмоток при образовании звезды и треугольника, соответствующая маркировка начала и концов фаз приводят к различной разности фаз соответствующих линейных напряжений первичной и вторичной обмоток. Эта разность фаз имеет большое практическое значение, особенно при параллельной работе. Так как возможный угол разности фаз всегда кратен 30о, то принято различать 12 групп соединений (в пределах 360о). Для определения номера группы используют циферблат часов. Вектор первичной линейной эдс направляют на цифру 12 циферблата, а номер группы определяется часом, на который попадает при этом вектор соответствующей вторичной линейной эдс.

Рис. 1.14. Схема включения обмоток и их соединение:

а) для группы Υ/Υ – 0; б) для группы Υ/Υ – 6

Примечание. Совпадение по фазе векторов первичной и вторичной ЭДС, эквивалентное совпадению стрелок часов на циферблате, обозначается группой 0, а не 12.

На рис. 1.14 показано, что при соединении первичной и вторичной обмоток по схеме Y/Y можно получить группы 6 и 0. Приведенное на рис. 1.15. соединение по схеме Υ/Δ дает группы 11 и 5.

Стандартизированы две группы соединения обмоток трехфазных трансформаторов – 0 и 11:

а) «звезда – звезда» с выведенной нулевой точкой ;

б) «звезда – треугольник» ;

в) «звезда» с выведенной нулевой точкой – «треугольник» ;

г) «звезда – зигзаг» с выведенной нулевой точкой;

д) «треугольник – звезда» с выведенной нулевой точкой (Δ/ΥО – 11).

На самолетах при выполнении трехпроводной сети обычно применяются трехфазные трансформаторы группы .

А

В

а

b

a

0

150

studfiles.net

§ 1.8. Трансформирование трехфазного тока и схемы соединения обмоток трехфазных трансформаторов

Рис. 1.20. Трансформаторная группа (а) и трехфазный трансформатор (б)

Трансформирование трехфазной системы напряжений можно осуществить тремя однофазными трансформаторами, соединенными в трансформаторную группу (рис. 1.20, а). Однако относительная громоздкость, большой вес и повышенная стоимость — недостаток трансформаторной группы, поэтому она применяется только в установках большой мощности с целью уменьшения веса и габаритов единицы оборудования, что важно при монтаже и транспортировке трансформаторов.

Рис. 1.21. Трехстержневой магнитопровод и векторные диаграммы

В установках мощностью примерно до 60000 кВ-А обычно применяют трехфазные трансформаторы (рис. 1.20, б), у которых обмотки расположены на трех стержнях, объединенных в общий магнитопровод двумя ярмами (см. рис. 1.2). Но полученный таким образом магнитопровод является несимметричным: магнитное сопротивление потоку средней фазы ФВ меньше магнитного сопротивления потокам крайних фаз ФА и Фс (рис. 1.21, а).

Так как к первичным обмоткам трехфазного трансформатора подводится симметричная система напряжений и то в магнитопроводе трансформатора возникают магнитные потоки и , образующие также симметричную систему (рис. 1.21, 6). Однако вследствие магнитной несимметрии магнитопровода намагничивающие токи отдельных фазовых обмоток не равны: намагничивающие токи обмоток крайних фаз ( и ) больше намагничивающего тока обмотки средней фазы . Кроме того, токи и оказываются сдвинутыми по фазе относительно соответствующих потоков и на угол α. Таким образом, при симметричной системе трехфазного напряжения, подведенного к трансформатору, токи х.х. образуют несимметричную систему (рис. 1.21, в).

Для уменьшения магнитной несимметрии трехстержневого магнитопровода, т.е. уменьшения магнитного сопротивления потокам крайних фаз, сечение ярм делают на 10—15% больше сечения стержней, что уменьшает их магнитное сопротивление. Несимметрия токов х.х. трехстержневого трансформатора практически не отражается на работе трансформатора, так как даже при небольшой нагрузке различие в значениях токов , и становится незаметным.

Таким образом, при симметричном питающем напряжении и равномерной трехфазной нагрузке все фазы трехфазного трансформатора, выполненного на трехстержневом магнитопроводе, практически находятся в одинаковых условиях. Поэтому рассмотренные выше уравнения напряжений, МДС и токов, а также схема замещения и векторные диаграммы могут быть использованы для исследования работы каждой фазы трехфазного трансформатора.

Обмотки трехфазных трансформаторов принято соединять по следующим схемам: звезда; звезда с нулевым выводом; треугольник; зигзаг с нулевым выводом. Схемы соединения обмоток трансформатора обозначают дробью, в числителе которой указана схема соединения обмоток ВН, а в знаменателе — обмоток НН. Например, Y/A означает, что обмотки ВН соединены в звезду, а обмотки НН — в треугольник.

Рис. 1.22. Соединение обмоток в зигзаг

Соединение в зигзаг применяют только в трансформаторах специального назначения, например в трансформаторах для выпрямителей (см. § 5.2). Для выполнения соединения каждую фазу обмотки НН делят на две части, располагая их на разных стерж­нях. Указанные части обмоток соединяют так, чтобы конец одной части фазной обмотки был присоединен к концу другой части этой же обмотки, расположенной на другом стержне (рис. 1.22, а). Зигзаг называют равноплечным, если части обмоток, располагаемые на разных стержнях и соединяемые последовательно, одинаковы, и неравноплечными, если эти части неодинаковы. При соединении в зигзаг ЭДС отдельных частей обмоток геометрически вычитаются (рис. 1.22, б).

Выводы обмоток трансформаторов принято обозначать следующим образом: обмотки ВН — начало обмоток А, В, С, соответствующие концы X, Y, Z; обмотки НН — начала обмоток а, Ь, с, соответствующие концы х, у, z.

При соединении обмоток звездой линейное напряжение больше фазного (), а при соединении обмоток треугольником линейное напряжение равно фазному (Uл = Uф ).

Отношение линейных напряжений трехфазного трансформатора определяется следующим образом:

Схема соединения обмоток

Y/Y

∆/Y

∆/∆

Y/∆

Отношение линейных напряжений

Таким образом, отношение линейных напряжений в трехфазном трансформаторе определяется не только отношением чисел витков фазных обмоток, но и схемой их соединений.

Пример 1.3. Трехфазный трансформатор номинальной мощностью Sном =100 кВ-А включен по схеме Y/∆. При этом номинальные линейные напряжения на входе и выходе трансформатора соответственно равны: U1ном = 3,0 кВ, U2ном = 0,4 кВ. Определить соотношение витков wllw2 и номинальные значения фазных токов в первичной I1ф и вторичной I2ф обмотках.

Решение. Фазные напряжения первичных и вторичных обмоток

Требуемое соотношение витков в трансформаторе w1/w2 = U1ф/U2ф= 1,73/0,4 = 4,32.

Номинальный фазный ток в первичной обмотке (соединенной в звезду)

I1Ф = I1ном=SHOM/(√3U1ном) = 100/(√3·3,0) = 19,3 А.

Номинальный фазный ток во вторичной обмотке (соединенной в треугольник)

I2Ф = I2ном /√З = SHOM /(3 U2ном) = 100/(З • 0,4) = 8,33 А.

Таким образом, соотношение фазных токов I2Ф/ I1Ф =83,3/19,3 = 4,32 равно соотношению витков в обмотках трансформатора.

studfiles.net

Трансформатор трехфазный и его три основных типа :: SYL.ru

Трансформатор – простейший прибор для преобразования напряжения или тока. Он настолько распространен в промышленной и бытовой технике, что, казалось бы, объяснять, как он устроен и работает, ни к чему, все и так знают. Однако и столь простое устройство во многих случаях вызывает вопросы. Например, чем трансформатор трехфазный отличается от однофазного? Зачем он нужен? Каким он вообще может быть?

Виды трансформаторов

Эти устройства бывают разными, от огромных на подстанциях до буквально микроскопических в сложных электронных приборах и радиотехнике. Различаются они по частоте напряжения питания, коэффициенту трансформации и общему назначению. Самые большие служат для передачи электроэнергии на большие расстояния. С их помощью напряжение сначала повышается (на входе линии), а затем понижается (в пункте подключения потребительских сетей). В общем, основных типов всего три:

- силовые;

- измерительные;

- специальные.

Трансформатор трехфазный может относиться к любому из этих типов, если он предназначен для работы в трехфазной сети, изобретенной великим русским электротехником Доливо-Добровольским, доказавшим ее целесообразность. Его отличие от однофазного собрата состоит в том, что он представляет собой его тройное повторение. Он имеет как минимум три входные и три выходные обмотки. Конструктивно каждая пара может быть смонтирована на собственном магнитопроводе или иметь общий, это принципиального значения не имеет. Каждая обмотка трехфазного трансформатора рассчитывается на определенный ток нагрузки, в зависимости от него выбирается сечение провода и размеры магнитопровода, изготовляемого из ферромагнитного материала. Все три вида заслуживают отдельного, пусть и не очень подробного рассмотрения.

Силовые

Самый распространенный тип служит для повышения или понижения напряжения. Внутри каждой подстанции - районной, домовой, городской, сельской или поселковой, находится трансформатор трехфазный, обеспечивающий электропитанием какую-то часть населения, живущую иногда на нескольких улицах, или предприятие. Состоит он из шести обмоток, трех первичных (с большим количеством витков) и трех вторичных (с меньшим). На первичные обмотки подается высокое напряжение, измеряемое в киловольтах, а со вторичных снимается потребительское (промышленное 380 В, называемое также линейным или межфазным, или фазное 220 В между нейтралью и фазой). Подключение трехфазного трансформатора может производиться двумя способами ("треугольником" или "звездой").

Устанавливаются подстанции из экономических соображений, для снижения потерь при транспортировке энергии. Дело в том, что чем меньше ток, тем меньше нагрев проводов линий электропередач, причем зависимость квадратичная. Увеличив напряжение в пять раз, например при одинаковой передаваемой мощности, можно уменьшить ток в такое же количество раз, а потери при этом снизятся в 25 раз.

Измерительные

Измерение параметров электрической цепи – важнейшая задача энергетики. Если необходимо определять токи относительно небольших величин, то особых сложностей нет, изобретены многие простые и надежные приборы - как магнитоэлектрические, так и цифровые. Другое дело, если ток достигает десятков ампер, или даже сотен. Тут уже требуется трехфазный трансформатор тока, на вторичных обмотках которого можно получить кратно уменьшенные величины, измеряемые обычными стандартными амперметрами. Теоретически, конечно, можно изготовить прибор, выдерживающий огромный ток и обладающий сверхмалым сопротивлением, но в этом случае рамка и весь механизм будут циклопических размеров. Да и стоимость такого амперметра окажется сравнимой с ценой всего остального оборудования подстанции, вместе взятого.

Специальные

По своему принципиальному устройству они ничем не отличаются от силовых, более того, по назначению тоже, они нужны для обеспечения электропитания. Другое дело, что характер нагрузки у них специфический. Обычно требуемая мощность очень большая и к тому же неравномерно распределена во времени. Например, сварочный трансформатор трехфазный предназначен для длительной работы в режиме почти короткого замыкания, при очень низком сопротивлении, подключенным к выходным обмоткам. При этом нагрузка носит импульсный и несимметричный характер. Примерно в таком же, мало приемлемом для обычного трансформатора режиме, работает устройство, изготовленное для питания низкоомных и очень мощных электропечей или индукторов закалки токами высокой частоты.

www.syl.ru

Лекция 16 Трехфазные трансформаторы

План лекции

16.1. Устройство трехфазных трансформаторов.

16.2. Группы соединения обмоток.

16.3. Параллельная работа трансформаторов.

16.4. Регулирование напряжения трансформаторов.

16.1. Устройство трехфазных трансформаторов

Преобразование (трансформирование) трехфазного напряжения можно осуществить:

– тремя однофазными трансформаторами, соединенными в одну трансформаторную группу (рис. 16.1), но она имеет недостатки: большую массу, высокую стоимость, но при больших мощностях S>60000 кВА идут на использование группы, так как облегчается транспортировка по частям;

– трехфазными трансформаторами – обмотки на трех стержнях, их объединяют два ярма (рис. 16.2).

Рис. 16.1. Трехфазная трансформаторная группа

Рис. 16.2. Трехфазный трансформатор: 1 – стержень; 2 – ярмо; – средние длины участков

Магнитное сопротивление у трехфазного трансформатора:

при ,.

Такой магнитопровод является несимметричным.

При симметричной схеме трехфазного напряжения, подведенного к трансформатору, токи холостого хода образуют несимметричную систему.

Сечение ярма делают на 1015 % больше чем сечение стержня, что уменьшает его магнитное сопротивление.

Уравнения эдс и мдс, диаграммы, схемы замещения однофазных трансформаторов могут быть использованы для исследования работы каждой фазы трехфазного трансформатора.

16.2. Группы соединения обмоток

Ранее принималось, что исовпадают по фазе (в схемах замещения, на векторных диаграммах). Но это не всегда выполняется, так как на угол сдвига влияют:

– направление намотки катушек;

– маркировка выводов.

Пример.

В однофазном трансформаторе угол сдвига между первичной и вторичнойэдс может принимать всего 2 значения:= 0,= 180.

В трехфазном трансформаторе угол сдвига между эдс или напряжениями высокой и низкой сторонами может принимать значения от 0до 360через 30. Поэтому сдвиг фаз между одноименными линейными эдс принято выражать группой соединений, для чего принимается ряд чисел от 0 до 11 (рис. 16.3).

Рис. 16.3. К понятию о группах трансформаторов

Из 12 групп соединений обмоток трехфазных трансформаторов в России стандартизированы только две:

– группа 11 со сдвигом фаз 330Y/– 11,Y0/– 11;Y0/Z– 11;

– группа 0 со сдвигом фаз 0(360)Y/Y0– 0.

В качестве примера определения группы соединения на рис. 16.4 приведено соединение “звезда – звезда”, а на рис. 16.5 соединение “звезда – треугольник”.

Рис. 16.4. Группа соединения обмоток – 0

Рис. 16.5. Группа соединения обмоток – 11

16.3. Параллельная работа трансформаторов

Параллельная работа трансформаторов осуществляется при включении первичных обмоток на общую первичную сеть, а вторичных – на общую вторичную сеть.

Параллельная работа трансформаторов необходима для того, чтобы при увеличении нагрузки включать добавочные трансформаторы, при снижении нагрузки – выключать, менять при ремонте и т.д.

Трансформаторы могут быть включены на параллельную работу только при соблюдении следующих условий.

1. Трансформаторы должны иметь одинаковые коэффициенты трансформации , что дает одинаковые вторичные напряжения.

Если не выполнять это условие, то даже в режиме холостого хода потечет уравнительный ток

, (16.1)

где и– внутренние сопротивления трансформаторов.

Под нагрузкой, если иравны, то трансформатор с меньшим коэффициентом трансформацииоказывается перегруженным, а другой – недогруженным.

Так как перегрузка трансформаторов недопустима, то придется снижать общую нагрузку.

Государственные стандарты допускают разницу коэффициентов трансформации, не превышающую 0,5%, т.е.

, (16.2)

где – среднее геометрическое значение коэффициента трансформации.

2. Трансформаторы должны принадлежать к одной группе соединений.

Несоблюдение этого условия ведет к тому, что вторичные эдс окажутся сдвинутыми по фазе, появится разностная эдс и также потечет уравнительный ток.

3. Трансформаторы должны иметь одинаковые напряжения короткого замыкания .

Если при выполнении прочих условий два (или более) транс­фор­ма­тора с разными включены на параллельную работу, то нагрузкиираспределятся между ними обратно пропорционально

, (16.3)

где и– мощности, на которые рассчитаны трансформаторы.

Трансформатор с меньшим перегружается, значит надо снижать общую нагрузку, следовательно, один трансформатор также будет недогружен.

Государственные стандарты допускают разницу на10 % от их среднеарифметического значения.

4. Перед подключением необходимо проверить чередование фаз.

studfiles.net


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта