Eng Ru
Отправить письмо

электротехника всё всё / электрот / расчет харак-к силовых трансформаторов. Параметры силового трансформатора таблица


Технические характеристики силовых трансформаторов - Таблицы - Справочник

 

Таблица 1. Технические данные масляных двухобмоточных трансформаторов общего назначения класса 6-10 кВ

Тип трансформатора Схема соед. обм. Потери, Вт Uкз, % Iхх, % Сопротивление, мОм
хх кз Хт

Zт(1)

1 2 3 4 5 6 7 8 9 10
ТМ-25/10/0,4 Y-Y-0 130 600 4,5 3,2 154 244 287 3110
           -40 175 880 4,5 3 88 157 180 1944
           -63 240 1280 4,5 2,8 52 102 114 1237
           -100 330 1970 4,5 2,6 31,5 65 72 779
           -160 510 2650 4,5 2,4 16,6 41,7 45 486
           -250 740 3700 4,5 2,3 9,4 27,2 28,7 311
           -400 950 5500 4,5 2,1 5,5 17,1 18 195
           -630 1310 7600 5,5 2 3,1 13,6 14 128
           -1000 2000 12200 6,5 1,4 1,7 8,6 8,8 81
          -1600/6/0,4 2750 18000 6,5 1,3 1,0 5,4 5,5 63,5
ТМ-2500/6/0,4   3850 23500 6,5 1 0,64 3,46 3,52 10,56
Модернизированные
ТМ-400/10/0,4 Y-Y-0 900 5500 4,5 1,5 5,5 17,1 18 81
          -630 1250 7600 5,5 1,25 3,1 13,6 14 63,5
1000 1900 10500 5,5 1,15 1,7 8,6 8,8 26,4

Примечания.

  1. Указанные в таблице значения сопротивлений приведены к напряжению 0,4 кВ.

Для трансформаторов со вторичным напряжением 0,23 кВ данные таблицы следует уменьшить в 3 раза, а 0,69 кВ – увеличить в 3 раза.

  1. В колонках 7, 8, 9 указаны сопротивления прямой последовательности (для расчетов токов КЗ).

Таблица 2. Технические данные масляных и сухих трансформаторов для комплектных трансформаторных подстанций

Тип трансформатора
Схема соед. обм. Потери, Вт Uкз, % Iхх, % Сопротивление, мОм
хх кз

Хт

Zт(1)  
1 2 3 4 5 6 7 8 9 10
ТМЗ-25/10/0,4 Y-Y-0 740 3700 4,5 2,3 9,4 27,2 28,7 311
-400 950 5500 4,5 2,1 5,5 17,1 18 195
ТМЗ (ТНЗ)-630 1310 7600 5,5 1,8 3,1 13,6 14 128
               -1000 1900 10800 5,5 1,2 1,7 8,6 8,8 81
               -1600 2650 16500 6 1 1 5,4 5,5 63,5
              -2500 3750 24000
6
0,8 0,64 3,46 3,52 10,56
    ТСЗ-160 700 2700 5,5 4 16,6 41,7 45 486
           -250 1000 3800 5,5 3,5 9,4 27,2 28,7 311
         -400 1300 5400 5,5 1,8 5,5 17,1 18 195
ТСЗЛ-630 2000 7300 5,5 1,5 3,1 13,6 14 128
           -1000 2500 12000 8 1,1 1,7 8,6 8,8 81
          -1600 3400 16000 5,5 0,7 1 5,4 5,5 63,5
          -2500 4600 20500 6 0,65 0,64 3,46 3,52 10,56

Примечание.

Rт, Xт, Zт – активное, индуктивное и полное сопротивления трансформатора прямой последовательности, предназначены для расчетов токов КЗ.

Zт(1) – сопротивление току однофазного КЗ

 

Таблица 3. Технические данные сухих трансформаторов общего назначения класса 10 кВ

Тип Sн, кВ·А Номинальное на- пряжение обмоток, В Потери, Вт Uкз, % Iхх, %
ВН НН ХХ КЗ
1 2 3 4 5 6 7 8

ТС-10/0,66

ТСЗ-10/0,66

10

380,660

380

230, 400       36,42 75 (90) 280 4,5 7

ТС-16/0,66ТСЗ-16/0,66

16

380, 660220     380

230, 400 230             36, 42

100(125) 400 4,5 5,8
ТС-25/0,66 ТСЗ-25/0,66 25

380, 660220     380

230, 400230                   36, 42

140(180) 560 4,5 4,8
ТС-40/0,66 ТСЗ-40/0,66 40 380, 660220     380

230, 4000230              36, 42

200(250) 800 4,5 4
ТС-63/0,66 ТСЗ-63/0,66 63 380, 660220     230, 4000230   280(350) 1050 4,5 3,3
ТС-100/0,66 ТСЗ-100/0,66 100 380, 660 230, 400 390(490) 1450 4,5 2,7
ТС-1600/0,66 ТСЗ-1600/0,66 160 380, 660 230, 400 560(700) 2000 4,5 2,3

Примечание.

В скобках указаны данные для трансформаторов т. ТСЗ.

 

www.elektrikii.ru

расчет харак-к силовых трансформаторов

Федеральное агентство по образованию

ГОУ ВПО

Уфимский государственный авиационный технический университет

Кафедра ТОЭ

Расчет характеристик силовых трансформаторов

Выполнил:

студент гр. ВТС – 305

Зайцев Д.В.

Проверил:

Ахмадеев Р.В.

Уфа 2009

Вариант №9

Исходные данные:

Тип трансформатора: ТМ – 40/10

Нагрузка: активно-индуктивная

Тип соединения: –

Мощность: SН = 40 кВА

Верхний предел номинального напряжения: U1 = 10103 В, U2 = 400 В

Потери мощности: PО = 240 Вт, PК = 880 Вт

Ток холостого хода: i0% = 4,5%

Напряжение короткого замыкания на номинальной ступени: UК% = 4,5%

cos2 = 0,8

[1] Расчет Т-образной схемы замещения одной фазы

В трансформаторе задаются линейные напряжения. В соединение – линейные и фазные напряжения равны, следовательно

U1ф = U1л = 10103 В

U2ф = U2л = 400 В

Определим фазные токи исходя из соотношения для соединения типа 

А

А

Определим ток

А

Определим эквивалент необратимых потерь

Ом

Определим полное сопротивление потерь

Ом

Определим эквивалент реактивных потерь

Ом

Определим напряжение короткого замыкания

В

Определим активное сопротивление короткого замыкания

Ом

Определим полное сопротивление короткого замыкания

Ом

Определим реактивное сопротивление короткого замыкания

Ом

Определим активное сопротивление первичной и приведенной вторичной обмоток

Ом

Определим индуктивное рассеивание первичной и приведенной вторичной обмоток

Ом

Определим коэффициент трансформации

Определим активное сопротивление вторичной обмотки

Ом

Определим реактивное сопротивление вторичной обмотки

Ом

Изобразим Т-образную схему замещения одной фазы

Рисунок 1 – Т-образная схема замещения одной фазы

[2] Определение и построение зависимости КПД  от коэффициента нагрузки 

Определим максимальный коэффициент трансформации

Определим максимальный КПД по формуле

(1)

Рассчитаем КПД по формуле (1) для коэффициента нагрузки  = 0,05; 0,2; 0,4; 0,8; 1,0; 1,2. Результаты расчета занесем в таблицу 1.

Таблица 1 – Данные для построения графика зависимости КПД  от коэффициента нагрузки 

0,05

0,2

0,4

0,52

0,8

1,0

1,2

0,868

0,959

0,971

0,972

0,969

0,966

0,962

По данным таблицы 1 построим график зависимости КПД  от коэффициента нагрузки  (рисунок 2).

[3] Определение и построение зависимости отклонения напряжения U2 от коэффициента нагрузки 

Определим активную состовляющую напряжения короткого замыкания

Определим реактивную состовляющую напряжения короткого замыкания

Определим значение sin2 из основного тригонометрического тождества

Определим отклонения напряжения U2 для коэффициента нагрузки  = 0,05; 0,2; 0,4; 0,8; 1,0; 1,2, по формуле

Результаты расчета занесем в таблицу 2.

Таблица 2 – Данные для построения графика зависимости отклонения напряжения U2 от коэффициента нагрузки 

0

0,05

0,2

0,4

0,8

1,0

1,2

U2

0

0,82

3,29

6,58

13,16

16,46

19,75

По данным таблицы 2 построим график зависимости отклонения напряжения U2 от коэффициента нагрузки  (рисунок 3).

[4] Определение и построение внешней характеристики U2

Определим внешнюю характеристику U2 для коэффициента нагрузки  = 0,05; 0,2; 0,4; 0,8; 1,0; 1,2, по формуле

Результаты расчета занесем в таблицу 3.

Таблица 3 – Данные для построения внешней характеристики U2

0

0,05

0,2

0,4

0,8

1,0

1,2

U2

400

399,2

396,7

393,4

386,8

383,5

380,3

По данным таблицы 3 построим внешней характеристики U2 (рисунок 4).

studfiles.net

3.2. Силовые трансформаторы и автотрансформаторы

3.2.1. Типы трансформаторов и их параметры

Силовые трансформаторы, установленные на электростанциях и подстанциях, предназначены для преобразования электроэнергии с одного напряжения на другое. Наибольшее распространение получили трехфазные трансформаторы, так как потери в них на 12—15% ниже, а расход активных материалов и стоимость на 20— 25% меньше, чем в группе трех однофазных трансформаторов такой же суммарной мощности.

Прогресс в трансформаторостроении позволил изготовить трех­фазные трансформаторы на напряжение 220 и 500 кВ мощностью до 630 MB∙А, на 330 кВ — 1000 MB∙А и автотрансформаторы 500/110 кВ мощностью в единице 250 MB∙A. Предельная единичная мощность трансформаторов ограничивается условиями транспорти­ровки, массой и размерами.

Однофазные трансформаторы применяются, если невоз­можно изготовление трехфазных трансформаторов необходимой мощности или затруднена их транспортировка. Наибольшая мощ­ность группы однофазных трансформаторов напряжением 500 кВ — 1600 MB∙А; напряжением 750 кВ — 1250 MB∙A.

Силовые трансформаторы и автотрансформаторы вы­пускаются в соответствии с рядом номинальных мощнос­тей, установленным ГОСТ 9680-61 (табл. 1).

Таблица 3-2

Номинальная мощность трехфазного трансформатора равна:

По количеству обмоток различного напряжения на каждую фазу трансформаторы разделяются на двухобмоточные и трехобмоточные (рис. 5, а, б). Кроме того, обмотки одного и того же напряжения, обычно низшего, могут состоять из двух и более параллельных ветвей, изолированных друг от друга, и от заземленных частей. Такие трансформаторы называются транс­форматорами с расщепленными обмотками (рис. 5, в). Обмотки высшего, среднего и низшего напряжения принято сокращенно обозначать соответственно ВН, СН, НН.

Трансформаторы с расщепленными обмотками НН обеспечивают возможность присоединения нескольких генераторов к одному повышающему трансформатору. Такие укрупненные блоки позволяют упростить схему РУ 330—500 кВ. Широкое распространение трансформаторы с расщепленной обмоткой НН получили в схемах питания собственных нужд крупных ТЭС с блоками 200—1200 МВт, а также на понижающих подстанциях с целью ограничения токов к. з.

К основным параметрам трансформатора относятся номинальные мощность, напряжение, ток; напряжение к. з.; ток х. х.; потери х. х. и к. з.

Рис. 3.6. Принципиальные схемы трансформаторов.

а — двухобмоточного; б — трехобмоточного; в — с расщепленными обмотками низкого напряжения.

Номинальной мощностью трансформатора называется указан­ное в заводском паспорте значение полной мощности, на которую непрерывно может быть нагружен трансформатор в номинальных условиях места установки и охлаждающей среды при номинальных частоте и напряжении.

Для трансформаторов общего назначения, установленных на открытом воздухе и -имеющих естественное масляное охлаждение без обдува и с обдувом, за номинальные условия охлаждения принимают естественно меняющуюся температуру наружного воз­духа (среднесуточная не более 30°С, среднегодовая не более 20°С), а для трансформаторов с масляно-водяным охлаждением температу­ра воды у входа в охладитель принимается не более 25°С (ГОСТ 11677-75). Номинальная мощность для двухобмоточного трансформатора — это мощность каждой из его обмоток. Трехобмоточные трансформаторы могут быть выполнены с обмотками как одинаковой, так и разной мощности. В последнем случае за номинальную принимается наибольшая из номинальных мощностей отдельных обмоток трансформатора.

За номинальную мощность автотрансформатора принимается номинальная мощность каждой из сторон» имеющих между собой автотрансформаторную связь («проходная мощность»).

Кроме установки на открытом воздухе трансформаторы устанавливают в закрытых неотапливаемых помещениях с естественной вентиляцией. В этом случае трансформаторы также могут быть непрерывно нагружены на номинальную мощность, но при этом срок службы трансформатора несколько снижается из-за худших условий охлаждения.

Номинальные напряжения обмоток — это напряжения первичной и вторичной обмоток при холостом ходе трансформатора. Для трехфазного трансформатора — это его линейное (междуфазное) напряжение. Для однофазного трансформатора, предназначенного для включения в трехфазную группу, соединенную в звезду, это U/. При работе трансформатора под нагрузкой и подведении к зажимам его первичной обмотки номинального напряжения напряжение на вторичной обмотке меньше номинального на величину потери напряжения в трансформаторе.Коэффициент трансформаций трансформатора п, который является отношением номинальных напряжений обмоток высшего и низшего напряжений:

В трехобмоточных трансформаторах определяется коэффициент трансформации каждой пары обмоток: ВН и НН; ВН и СН; СН и НН.

Номинальными токами трансформатора называются указанные в заводском паспорте значения токов в обмотках, при которых допускается длительная нормальная работа трансформатора.

Номинальный ток любой обмотки трансформатора определяют по ее номинальной мощности и номинальному напряжению.

Напряжение короткого замыкания UK — это напряжение, при подведении которого к одной из обмоток трансформатора при замкнутой накоротко другой обмотке в ней проходит ток, равный номи­нальному.

Напряжение к. з. определяет падение напряжения в трансфор­маторе, оно характеризует полное сопротивление обмоток транс­форматора.

В трехобмоточном трансформаторе напряжение к. з. определяется для любой пары его обмоток при разомкнутой третьей обмотке. Таким образом, трехобмоточный трансформатор имеет три значе­ния ик.

Для всех трансформаторов напряжение к. з., % номинального,

,

где иа — активная составляющая напряжения к. з., зависящая от активного сопротивления трансформатора; ир — реактивная составляющая напряжения к. з., зависящая от реактивного (индук­тивного) сопротивления трансформатора.

Поскольку индуктивное сопротивление обмоток значительно выше активного (у небольших трансформаторов в 2—3 раза, а у крупных в 15—20 раз), то ик в основном зависит от реактивного сопротивления, т. е. взаимного расположения обмоток, ширины канала между ними, высоты обмоток. Величина ик регламентируется ГОСТ в зависимости от напряжения и мощности трансформаторов. Чем больше высшее напряжение и мощность трансформатора, тем больше напряжение короткого замыкания. Так, трансформатор 630 кВ∙А с высшим напряжением 10 кВ имеет ик — 5,5%, с высшим напряжением 35 кВ ик — 6,5%; трансформатор мощностью 80 000 кВ∙А с высшим напряжением 35 кВ имеет ик = 9%, а с высшим напряжением 110 кВ ик = 10,5%.

Увеличивая значение ик, можно уменьшить токи к. з. на вторич­ной стороне трансформатора, но при этом значительно увеличивается потребляемая реактивная мощность и увеличивается стоимость транс­форматоров. Если трансформатор 110 кВ, 25 MB∙А выполнить с ик = 20% вместо 10%, то расчетные затраты на него возрастут на 15,7%, а потребляемая реактивная мощность возрастет вдвое (с 2,5 до 5,0 Мвар).

Ток холостого хода iх характеризует активные и реактивные потери в стали и зависит от магнитных свойств стали, конструкции и качества сборки магнитопровода и от магнитной индукции. Ток холостого хода выражается в процентах номинального тока транс­форматора.

В современных трансформаторах с холоднокатаной сталью токи холостого хода имеют небольшие значения.

Потери холостого хода ∆РХ и короткого замыкания ∆РК опре­деляют экономичность работы трансформатора. Потери холостого хода состоят из потерь в стали на перемагничивание и вихревые токи. Для уменьшения их применяется электротехническая сталь с малым содержанием углерода и специальными присадками, холод­нокатаная сталь толщиной 0,35 мм марки Э330А с жаростойким покрытием. В справочниках и каталогах приводятся значения ∆РХ для уровней А и Б. Уровень А относится к трансформаторам, изготовленным из электротехнической стали с удельными потерями не более 0,9 Вт/кг, уровень Б — с удельными потерями не более 1,1 Вт/кг (при В = 1,5 Тл, f= 50 Гц).

Потери короткого замыкания состоят из потерь в обмотках при протекании по ним токов нагрузки и добавочных потерь в обмотках и конструкциях трансформатора. Добавочные потери вызваны маг­нитными полями рассеяния, создающими вихревые токи в крайних витках обмотки и конструкциях трансформатора (стенки бака, ярмовые балки и др.). Для их снижения обмотки выполняются многожильным транспонированным проводом, а стенки бака экра­нируются магнитными шунтами.

В современных конструкциях трансформаторов потери значи­тельно снижены. Например, в трансформаторе 250 000 кВ∙А, U =110 кВ (∆РХ = 200 кВт, ∆РК = 790 кВт), работающем круг­лый год (Ттах = 6300 ч), потери электроэнергии составят 0,43% электроэнергии, пропущенной через трансформатор. Чем меньше мощность трансформатора, тем больше относительные потери в нем.

В сетях энергосистем установлено большое количество транс­форматоров малой и средней мощности, поэтому общие потери электроэнергии во всех трансформаторах страны значительны.

studfiles.net

Технические данные - Трансформаторы силовые масляные ТМ, ТМФ, ТМЗ

2.1. Трансформаторы выпускаются с поминальным напряже­нием первичной обмотки (обмотки высшего напряжения) до 10 кВ включительно.

Номинальные напряжения вторичных обмоток трансформа­тора (обмоток низшего напряжения), схемы и группы соединения обмоток в соответствии с таблицей 2.1.

2.2. Регулирование напряжения осуществляется переключе­нием без возбуждения (ПБВ).

Для регулирования напряжения трансформаторы снабжаются высоковольтными переключателями, позволяющими регулировать напряжение ступенями по 2,5% на величину ±2x2,5% от номи­нального значения при отключенном от сети трансформаторе со стороны НН и ВН.

Переключатель присоединен к обмотке высшего напряжения.

2.3. Номинальные значения потерь холостого хода и напря­жения короткого замыкания трансформаторов указаны в таб­лице 2.1.

Габаритные размеры и масса приведены в приложениях 15-33.

ПРИМЕЧАНИЕ. Трансформаторы выпускаются по двум уровням потерь холостого хода и тока холостого хода. Для трансформаторов первого уровня значения потерь холостого хода и тока холостого хода должны быть не более указанных в таблице 2.1. Предельные отклонения но ГОСТ 11677-85.

Трансформаторы с наименьшими потерями изготавливаются из стали 3406 толщиной 0,30 мм и других более высококачественных сталей марок 3407, 3408 и др. Для трансформаторов второго уровня устанавливаются зна­чения потерь холостого хода и тока холостого хода более значений, опреде­ляемых по таблице 2.1 (с предельными отклонениями по ГОСТ 11677-85), но не более чем на 10% по потерям и току холостого хода.

Таблица 2.1.

Обозначение типа номинальная мощность, кВА сочетание напряжений, кВ схема и группа соединений обмоток потери холостого хода, Вт потери короткого замыкания, Вт напряжение короткого замыкания, % ток холостого хода, % тепловая постоянная времени, ч
ТМ-25/10 25 6/0,4; 10/0,4 У/Ун-0 115 600 4.5 4.7 2,8 -
Д/Ун-11 690
ТМ-40/10 40 6/0,4; 10/0,4 У/Ун-0 155 880 4.5 4.7 2,6 -
Д/Ун-11

1000

1400

ТМ-63/10 63 6/0,4; 10/0,4 У/Ун-0 230 4,5 3,4 -
Д/Ун-11 1460
ТМ-100/10 100 6/0,4; 10/0,4 У/Ун-0 290 1900 4,5 2,2 -
Д/Ун-11
ТМ-160/10 160 6/0,4; 10/0,4 У/Ун-0 450 2600 4,5 1,9 -
Д/Ун-11 3100
ТМ-250/10 250 6/0,4; 10/0,4 У/Ун-0 700 3700 5 1,9 -
Д/Ун-11 4200
ТМФ-400/10 400 10/0,4 Д/Ун-11 830 5900 4,5 2.0 -
У/Ун-0 5500
ТМ-400/6 6/0.4 Д/Ун-11 5900
У/Ун-0 5500
ТМ-400/10 6/0,4 Д/Ун-11 5900 4,5 2.0 -
10/0,4 У/Ун-0 5500
ТМ-630/10 630 6/0,4 У/Ун-0 1050 7600 5,5 1,8 -
10/0,4 Д/Ун-11 8500
TM3-630/10 630 6/0,4; 6,3/0,4; 10/0,4 У/Ун-0 1050 7600 5,5 1,8 -
6/0,4; 6/0,69; 10/0,4; 10/0,69 Д/Ун-11 8500
ТМ-1000/10 1000 6/0,4; 10/0,4 У/Ун-0 Д/Ун-11 1550 10800 5,5 1,2 -
ТМЗ-1000/10 5000 6/0,4; 6,3/0,4; 10/0.4 У/Ун-0 Д/Ун-11 1550 10800 5,5 1,2 -
6/0.4; 6/0,69; 10/0.4; 10/0.69
ТМЗ-1600/10 1600 6/0,4; 10/0,4 6/0,69; 10/0,69 У/Ун-0 Д/Ун-11 1950 16500 6.0 1.0 -
Д/Ун-11
ТМ-1600/10 1600 6-10/0,4 6-10/0,69-0,4 6-10/3.15-6,3 У/Ун-0 Д/Ун-11 У/Д-11 1950 116 500 6.0 1.0 -
ТМЗ-2500/10 2500 10/0,4 Д/Ун-11 3100 28000 6.0 0,8 -

nomek.ru

Расчет силового трансформатора

Расчет силового трансформатора

Трансформатор – это пассивный преобразователь энергии. Его коэффициент полезного действия (КПД) всегда меньше единицы. Это означает, что мощность потребляемая нагрузкой, которая подключена к вторичной обмотке трансформатора, меньше, чем мощность, потребляемая нагруженным трансформатором от сети. Известно, что мощность равна произведению силы тока на напряжение, следовательно, в повышающих обмотках сила тока меньше, а в понижающих – больше силы тока, потребляемого трансформатором от сети.

Параметры и характеристики трансформатора.

Два разных трансформатора при одинаковом напряжении сети могут быть рассчитаны на получение одинаковых напряжений вторичных обмоток. Но если нагрузка первого трансформатора потребляет больший ток, а второго маленький, значит, первый трансформатор характеризуется по сравнению со вторым большей мощностью. Чем больше сила тока в обмотках трансформатора, тем больше и магнитный поток в его сердечнике, поэтому сердечник должен быть толще. Кроме того, чем больше сила тока в обмотке, тем более толстым проводом она должна быть намотана, а это требует увеличения окна сердечника. Поэтому габариты трансформатора зависят от его мощности. И наоборот, сердечник определенного размера пригоден для изготовления трансформатора только до определенной мощности, которая называется габаритной мощностью трансформатора. Количество витков вторичной обмотки трансформатора определяет напряжение на ее выводах. Но это напряжение зависит также и от количества витков первичной обмотки. При определенном значении напряжения питания первичной обмотки напряжение вторичной зависит от отношения количества витков вторичной обмотки количеству витков первичной. Это отношение и называется коэффициентом трансформации. Если напряжение на вторичной обмотке зависит от коэффициента трансформации нельзя произвольно выбирать количество витков одной из обмоток. Чем меньше габариты сердечника, тем больше должно быть количество витков каждой обмотки. Поэтому размеру сердечника трансформатора соответствует вполне определенное количество витков его обмоток, приходящееся на один вольт напряжения, меньше которого брать нельзя. Эта характеристика называется количеством витков на один вольт..

Как и всякий преобразователь энергии, трансформатор обладает коэффициентом полезного действия – отношением мощности, потребляемой нагрузкой трансформатора, к мощности, которую нагруженный трансформатор потребляет от сети. КПД маломощных трансформаторов, которые обычно применяются для питания бытовой электронной аппаратуры, колеблется в пределах от 0,8 до 0,95. Более высокие значения имеют трансформаторы большей мощности.

Электрический расчет трансформатора

Перед расчетом трансформатора необходимо сформулировать требования, которым он должен удовлетворять. Они и будут являться исходными данными для расчета. Технические требования к трансформатору определяются также путем расчета, в результате которого определяются те напряжения и токи, которые должны быть обеспечены вторичными обмотками. Поэтому перед расчетом трансформатора производится расчет выпрямителя для определения напряжений каждой из вторичных обмоток и потребляемых от этих обмоток токов. Если же напряжения и токи каждой из обмоток трансформатора уже известны, то они являются техническими требованиями к трансформатору. Для определения габаритной мощности трансформатора необходимо определить мощности, потребляемые от каждой из вторичных обмоток и сложить их, учитывая также КПД трансформатора. Мощность, потребляемую от любой обмотки, определяют умножением напряжения между выводами этой обмотки на силу потребляемого от нее тока:

P=UI,

P– мощность, потребляемая от обмотки, Вт;

U– эффективное значение напряжения, снимаемого с этой обмотки, В;

I– эффективное значение силы тока, протекающего в этой же обмотке, А.

Суммарная мощность, потребляемая, например, тремя вторичными обмотками, вычисляется по формуле:

PS=U1I1+U2I2+U3I3

Для определения габаритной мощности трансформатора, полученное значение суммарной мощности PSнужно разделить на КПД трансформатора:Pг= , где

Pг – габаритная мощность трансформатора; η – КПД трансформатора.

Заранее рассчитать КПД трансформатора нельзя, так как для этого нужно знать величину потерь энергии в обмотках и в сердечнике, которые зависят от параметров самих обмоток (диаметры проводов и их длина) и параметров сердечника (длина магнитной силовой линии и марка стали). И те и другие параметры становятся известными только после расчета трансформатора. Поэтому с достаточной для практического расчета точностью КПД трансформатора можно определить из таблицы 6.1.

Таблица 6.1

Суммарная мощность, Вт

10-20

20-40

40-100

100-300

КПД трансформатора

0,8

0,85

0,88

0,92

Наиболее распространены две формы сердечника: О – образная и Ш – образная. На сердечнике О – образной формы обычно располагаются две катушки, а на сердечнике Ш – образной формы - одна. Зная габаритную мощность трансформатора, находят сечение рабочего керна его сердечника, на котором находится катушка:

S= 1,2

Сечением рабочего керна сердечника является произведение ширины рабочего керна а и толщины пакета с. Размеры а и с выражены в сантиметрах, а сечение – в квадратных сантиметрах.

После этого выбирают тип пластин трансформаторной стали и определяют толщину пакета сердечника. Сначала находят приблизительную ширину рабочего керна сердечника по формуле: a= 0,8

Затем по полученному значению а производят выбор типа пластин трансформаторной стали из числа имеющихся в наличии и находят фактическую ширину рабочего керна а. после чего определяют толщину пакета сердечника с:

c = S/a

Количество витков , приходящихся на 1 вольт напряжения, определяется сечением рабочего керна сердечника трансформатора по формуле: n=k/S, гдеN– количество витков на 1 В;k– коэффициент, определяемый свойствами сердечника;S- сечение рабочего керна сердечника, см2.

Из приведенной формулы видно, что чем меньше коэффициент k, тем меньше витков будут иметь все обмотки трансформатора. Однако произвольно выбирать коэффициентkнельзя. Его значение обычно лежит в пределах от 35 до 60. В первую очередь оно зависит от свойств пластин трансформаторной стали, из которых собран сердечник. Для сердечников С-образной формы, витых из тонкой ленты, можно братьk= 35. Если используется сердечник О - образной формы, собранный из П- или Г – образных пластин без отверстий по углам, берутk= 40. Такое же значениеkи для пластин типа УШ, у которых ширина боковых кернов больше половины ширины среднего керна.. Если используются пластины типа Ш без отверстий по углам, у которых ширина среднего керна ровно вдвое больше ширины крайних кернов, целесообразно взятьk= 45, а если Ш – образные пластины имеют отверстия, тоk= 50. Таки образом, выборkв значительной мере условен и им можно в некоторых пределах варьировать, если учесть, что уменьшениеkоблегчает намотку, но ужесточает режим трансформатора. При применении пластин из высококачественной трансформаторной стали этот коэффициент можно немного уменьшать, а при низком качестве стали приходится его увеличивать.

Зная необходимое напряжение каждой обмотки и количество витков на 1 В, легко определить количество витков обмотки, перемножим эти величины: W=Un

Такое соотношение справедливо только для первичной обмотки, а при определении количества витков вторичных обмоток нужно дополнительно вводить приближенную поправку для учета падения напряжения на самой обмотке от протекающего по ее проводу тока нагрузки: W=mUn

Коэффициент mзависит от силы тока, протекающего по данной обмотке (см. таблицу 6.2). Если сила тока меньше 0,2 А, можно приниматьm= 1. Толщина провода, которым наматывается обмотка трансформатора определяется силой тока, протекающей по этой обмотке. Чем больше ток, тем толще должен быть провод, подобно тому как для увеличения потока воды требуется использовать более толстую трубу. От толщины провода зависит сопротивление обмотки. Чем тоньше провод, тем больше сопротивление обмотки, следовательно, увеличивается выделяемая в ней мощность и она сильнее нагревается. Для каждого типа обмоточного провода существует предел допустимого нагрева, который зависит от свойств эмалевой изоляции. Поэтому диаметр провода может быть определен по формуле:d=p, гдеd– диаметр провода по меди, м;I- сила тока в обмотке, А;p- коэффициент, (таблица 6.3) который учитывает допустимый нагрев той или иной марки провода.

Таблица 6.2: Определение коэффициента m

Сила тока вторичной обмотки, А

0,2 – 0,5

0,5 – 1,0

1,0 – 2,0

2,0 – 4,0

m

1,02

1,03

1,04

1,06

Таблица 6.3: Выбор диаметра провода.

Марка провода

ПЭЛ

ПЭВ-1

ПЭВ-2

ПЭТ

p

0,8

0,72

0,69

0,65

Выбрав коэффициент pможно определить диаметр провода каждой обмотки. Найденное значение диаметра округляют до большего стандартного.

Сила тока в первичной обмотке определяется с учетом габаритной мощности трансформатора и напряжения сети:

I=Pг/U

Практическая работа:

Рассчитать трансформатор, имеющий три вторичные обмотки с учетом следующих исходных данных:

U1= 6,3 В,I1= 1,5 А;U2= 12 В,I2= 0,3 А;U3= 120 В,I3= 59 мА

Ход работы:

  1. Найти суммарную мощность, потребляемую от вторичных обмоток: Ps

  2. Из таблицы 6.1 найти КПД трансформатора и определить его габаритную мощность: Pг

  3. Найти сечение сердечника трансформатора: S

  4. Найти приближенное значение ширины рабочего керна: a

  5. Используя найденное значение ширины рабочего керна найти толщину пакета: с

  6. Определить фактическое сечение рабочего керна сердечника: Sф=ac

  7. Считая, что используются пластины трансформаторной стали типа Ш-19 без отверстий по углам, взять k= 45.

  8. Найти количество витков на 1В: n=k/SФ, гдеSф– фактическое сечение рабочего керна сердечника.

  9. Определить количество витков первичной обмотки при питании от сети напряжением 127 В: WI

  10. Определить количество витков первичной обмотки при питании от сети напряжением 220 В:WII

  11. Определить количество витков дополнительной секции первичной обмотки, которую необходимо подключить к обмотке, рассчитанной на 127 В, для питания напряжением 220 В: Wд=WII–WI

  12. Найти из таблицы 6.2 коэффициент mдля каждой из вторичных обмоток: приI1, определитьm1, приI2, определитьm2, приI3, определитьm3.

  13. Определить количество витков каждой из вторичных обмоток с округлением до ближайшего целого числа: W1,W2,W3.

  14. Найти силу тока в первичной обмотке при питании от сети напряжением Ua= 127 В:Ia=Pг/Ua

  15. Найти силу тока в первичной обмотке при питании от сети напряжением Ub= 220 В:Ib=Pг/Ub

  16. Считая, что используется провод марки ПЭВ-1 найти диаметр провода первичной обмотки для секции, рассчитанной на 127 В: da=p(Коэффициентpвзять из таблицы 6.3)

  17. Считая, что используется провод марки ПЭВ-1 найти диаметр провода первичной обмотки для секции, рассчитанной на 220 В: db=p(Коэффициентpвзять из таблицы 6.3)

studfiles.net

Трансформаторы силовые масляные и сухие. Технческие характеристики силовых трансформаторов.

Силовые трансформаторы предназначены для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока. Различают двух-, -трех- и многообмоточные трансформаторы, имеющие соответственно две, три и более гальванически не связанные обмотки. Передача энергии из первичной цепи силового трансформатора во вторичную происходит посредством магнитного поля.

По исполнению силовые трансформаторы могут быть трехфазными и однофазными. В трехфазном трансформаторе под обмоткой понимают совокупность соединенных между собой обмоток одного напряжения разных фаз. В двухобмоточном трансформаторе различают обмотку ВН, присоединяемую к сети высокого напряжения, и обмотку НН, присоединяемую к сети низкого напряжения. В трехобмоточном трансформаторе различают обмотки ВН, СН, НН.

По виду охлаждающей среды различают сухие и масляные силовые трансформаторы. Трансформаторы с естественным воздушным охлаждением (сухие трансформаторы) обычно не имеют специальной системы охлаждения. В масляных трансформаторах в систему охлаждения входят: бак трансформатора, заливаемый маслом, для мощных трансформаторов- охладители, вентиляторы, масляные насосы, теплообменники.

Масляный силовой трансформатор

Рис. 1. Масляный силовой трансформатор

Сухой силовой трансформатор

Рис. 2. Сухой силовой трансформатор

Технические характеристики трехфазных двухобмоточных трансформаторов 6 кВ

тип

Sном,кВА

Uном,обм

оток,кВ

Uк,%

ΔРк,кВт

ΔРх,кВт

Iх,%

R,Ом

Х,Ом

ΔQх,кВАр

ВН

НН

ТМ-25/6

25

6

0,4

4,5

0,6

0,13

3,2

39,6

54,8

0,8

ТМ-40/6

40

6

0,4

4,5

0,88

0,19

3

19,8

35,3

1,2

ТМ-63/6

63

6,3

0,4;0,23

4,7

1,4

0,36

4,5

14

26,1

2,83

ТМ-100/6

100

6

0,4

4,5

1,97

0,36

2,6

7,09

14,6

2,6

ТМ-160/6

160

6,3

0,4;0,23

4,5-4,7

2,65-3,10

0,46-0,54

2,4

4,11-4,81

10,4-10,6

3,84

ТМ-250/6

250

6

0,4;0,69

4,5

3,7

0,82

2,3

2,35

6,75

5,75

ТМ-320/6

320

6,3

0,4

5,5

6,07

1,6

6

2,35

6,4

19,2

ТМ-400/6

400

6

0,4;0,69

4,5

5,5

1,05

2,1

1,24

3,86

8,4

ТМ-400/6

400

6

0,4

5,5

5,5

1,08

4,5

1,24

4,79

18

ТМ-630/6

630

6

0,4;0,69

5,5

7,6

1,56

2

0,69

3,07

12,6

ТМ-1000/6

1000

6

0,4;0,69

5,5

12,2

2,45

1,4

0,44

1,93

14

ТМЗ-1000/6

1000

6

0,4;0,69

5,5

11

2,45

1,4

0,4

1,94

14

ТМ-2500/6

2500

6

0,4;0,69

5,5

26

4,6

1

0,15

0,78

25

ТМЗ-2500/6

2500

6

0,4;0,69

5,3

24

4,6

1

0,14

0,75

25

ТСЗ-160/6

160

6

0,4;0,23

5,5

2,7

0,7

4

ТСЗ-250/6

250

6

0,4;0,23

5,5

3,8

1

3,5

ТСЗ-400/6

400

6

0,4;0,23

5,5

5,4

1,3

1,5

ТСЗ-630/6

630

6

0,4;0,69

5,5

7,3

2

1,5

ТСЗ-1000/6

1000

6

0,4;0,69

5,5

7,3

2

1,5

ТСЗ-1600/6

1600

6

0,4;0,69

5,5

16

4,2

1,5

  

Технические характеристики трехфазных двухобмоточных трансформаторов 10 кВ

тип

Sном,кВА

Uном,обм

оток,кВ

Uк,%

ΔРк,кВт

ΔРх,кВт

Iх,%

R,Ом

Х,Ом

ΔQх,кВАр

ВН

НН

ТМ-25/10

25

10

0,4

4,5

0,6

0,13

3,2

95

152,3

0,8

ТМ-40/10

40

10

0,4

4,5

1

0,19

3

55

98,1

1,2

ТМ-63/10

63

10

0,4

4,5

1,28

0,26

2,8

37

70,5

1,76

ТМ-100/10

100

10

0,4

4,5

1,97

0,36

2,6

19,7

40,7

2,6

ТМ-250/10

250

10

0,4;0,69

4,5

3,7

0,82

2,3

5,92

17

5,75

ТМ-320/10

320

10

0,4;0,23

5,5

6,2

0,91

0,7

6,05

16,1

2,24

ТМ-400/10

400

10

0,4;0,69

4,5

5,5

1,05

2,1

3,44

10,7

8,4

ТМЗ-400/10

400

10

0,4

5,5

5,5

1,08

4,5

3,44

13,3

18

ТМ-630/10

630

10

0,4;0,69

5,5

7,6

1,56

2

1,91

8,73

12,6

ТМ-1000/10

1000

10

0,4;0,63

5,5

12,2

2,45

1,4

1,22

5,36

14

ТМЗ-1000/10

1000

10

0,4;0,69

5,5

11

2,45

1,4

1,1

5,35

14

ТМ-2500/10

2500

10

0,4-6,3

5,5

26

4,6

1

0,42

2,16

25

ТМЗ-2500/10

2500

10

0,4;0,69

5,3

24

4,6

1

0,38

2,08

25

ТМ-6300/10

6300

10

0,4-6,3

6,6

46,5

9

0,8

0,12

1,04

50,4

ТДНС-16000/10

16000

10

6,3

10

85

18

0,6

0,03

0,62

96

ТРДНС-25000/10

25000

10,5

6,3

9,5

115

25

0,5

0,02

0,42

125

ТСЗ-160/10

160

10

0,4;0,23

5,5

2,7

0,7

4

ТСЗ-250/10

250

10

0,4;0,23

5,5

3,8

1

3,5

ТСЗ-400/10

400

10

0,4;0,23

5,5

5,4

1,3

1,5

ТСЗ-630/10

630

10

0,4;0,69

5,5

7,3

2

1,5

ТСЗ-1000/10

1000

10

0,4;0,69

5,5

7,3

2

1,5

ТСЗ-1600/10

1600

10

0,4;0,69

5,5

16

4,2

1,5

Технические характеристики трехфазных двухобмоточных трансформаторов 35 кВ

тип

Sном,кВА

        Uном,обм

оток,кВ

Uк,%

ΔРк,кВт

ΔРх,кВт

Iх,%

R,Ом

Х,Ом

ΔQх,кВАр

ВН

НН

ТМ-100/35

100

35

0,4

6,5

1,9

0,5

2,6

241

796

2,6

ТМ-160/35

160

35

0,4;0,69

6,5

2,6;3,1

0,7

2,4

127;148

498

3,8

ТМ-250/35

250

35

0,4;0,69

6,5

3,7;4,2

1

2,3

72;82

318

5,7

ТМН-400/35

400

35

0,4;0,69

6,5

7,6

1,9

2

23,5

126

12,6

ТМН-630/35

630

35

0,4;0,69;6,3;11

6,5

11,6

2,7

1,5

14

79,6

15

ТМН-1000/35

1000

35

0,4;0,69;6,3;11

6,5

16,5;18

3,6

1,4

7,9;8,6

49,8

22,4

ТМН-1600/35

1600

35

6,3;11

6,5

23,5;26

5,1

1,1

11,2;12,4

49,2

17,6

ТМН-2500/35

2500

35

6,3;11

6,5

23,5;26

5,1

1,1

4,6;5,1

31,9

27,5

ТМН-4000/35

4000

35

6,3;11

7,5

33,5

6,7

1

2,6

23

40

ТМН-6300/35

6300

35

6,3;11

7,5

46,5

9,2

0,9

1,4

14,6

56,7

ТД-10000/35

10000

38,5

6,3;10,5

7,5

65

14,5

0,8

0,96

11,1

80

ТМН-10000/35

10000

36,75

6,3;10,5

7,5

65

14,5

0,8

0,88

10,1

80

ТДНС-10000/35

10000

36,75

6,3;10,5

8

60

12,5

0,6

0,81

10,8

60

ТДНС-16000/35

16000

36,75

6,3;10,5

10

85

18

0,55

0,45

8,4

88

ТРДНС-25000/35

25000

36,75

6,3;10,5

9,5

115

25

0,5

0,25

5,1

125

ТРДНС-32000/35

32000

36,75

6,3;10,5

11,5

145

30

0,45

0,19

4,8

144

ТРДНС-40000/35

40000

36,75

6,3;10,5

11,5

170

36

0,4

0,14

3,9

160

ТРДНС-63000/35

63000

36,75

6,3;10,5

11,5

250

50

0,3

0,1

2,5

220

Трехфазные трехобмоточные трансформаторы

тип

Sном,кВА

Uном,обмоток,кВ

Uк,%

ΔРк,кВт

ΔРх,кВт

Iх,%

R,Ом

Х,Ом

ΔQх,кВАр

ВН

СН

НН

В-С

В-Н

С-Н

В

С

Н

В

С

Н

ТМТН-6300/35

6300

35

10,5;13,8

6,3

7,5

7,5

16,5

55

12

0,85

0,94

0,94

0,94

17,8

18

17,8

ТМТН-10000/35

10000

36,75

10,5;13,8

6,3

16,5;8,5

8;16,5

7,2

75

18

0,85

0,51

0,51

0,51

11,7

11

10,6

85

ТМТН-16000/35

16000

36,75

10,5;13,8

6,3

17;8

8;17

7,5

115

23

0,65

0,3

0,3

0,3

7,5

7

7

104

www.eti.su

РАСЧЕТ СИЛОВОГО ТРАНСФОРМАТОРА | Техника и Программы

Классический теоретический расчет трансформатора достаточно сложен Для его выполнения необходимо знать такие характеристики, как магнитная проницаемость используемых для сердечника пластин трансформаторной стали, длина магнитных силовых линий в сердечнике, средняя длина витка обмотки и другие параметры Профессиональному разработчику НИИ все эти параметры известны, так как он обладает сертификатами применяемых в трансформаторе материалов Радиолюбитель же вынужден использовать для трансформатора совершенно случайно попавший к нему сердечник, характеристики которого ему неизвестны

По указанной причине для расчета трансформатора предлагается эмпирический метод, многократно проверенный радиолюбителями и основанный на практическом опыте Расчет элементарно прост и требует лишь знания простейших основ арифметикиПринцип действия трансформатора

Рис 61 Трансформатор: а – общий вид б – условное обозначение

Трансформатор был изобретен П Н Яблочковым в 1876 году Устройство трансформатора показано на рис 61а, а его схематическое обозначение – на рис 616

Трансформатор состоит из стального сердечника и обмоток, намотанных изолированным обмоточным проводом

Сердечник собирается из тонких пластин специальной электротехнической стали для снижения потерь энергии

Обмотка, предназначенная для подключения к сети переменного тока, называется первичной Нагрузка подключается к вторичной обмотке, которых в трансформаторе может быть несколько Номера обмоток обычно проставляются римскими цифрами Часто обмоткам присваивают номера их выводов

Работа трансформатора основана на магнитном свойстве электрического тока При подключении концов первичной обмотки к электросети по этой обмотке протекает переменный ток, который создает вокруг ее витков и в сердечнике трансформатора переменное магнитное поле Пронизывая витки вторичной обмотки, переменное магнитное поле индуцирует в них ЭДС Соотношение количества витков первичной и вторичной обмоток определяет получаемое напряжение на выходе трансформатора Если количество витков вторичной обмотки больше, чем первичной, выходное напряжение трансформатора будет больше напряжения сети Такая обмотка называется повышающей Если же вторичная обмотка содержит меньше витков, чем первичная, выходное напряжение окажется меньше сетевого (понижающая обмотка)

Трансформатор – это пассивный преобразователь энергии Его коэффициент полезного действия (КПД) всегда меньше единицы Это означает, что мощность, потребляемая нагрузкой, которая подключена к вторичной обмотке трансформатора, меньше, чем мощность, потребляемая нагруженным трансформатором от сети Известно, что мощность равна произведению силы тока на напряжение, следовательно, в повышающих обмотках сила тока меньше, а в понижающих – больше силы тока, потребляемого трансформатором от сети

Параметры и характеристики трансформатора

Два разных трансформатора при одинаковом напряжении сети могут быть рассчитаны на получение одинаковых напряжений вторичных обмоток Но если нагрузка первого трансформатора потребляет большой ток, а второго – маленький, значит, первый трансформатор характеризуется по сравнению со вторым большей мощностью Чем больше сила тока в обмотках трансформатора, тем больше и магнитный поток в его сердечнике, поэтому сердечник должен быть толще Кроме того, чем больше сила тока в обмотке, тем более толстым проводом она должна быть намотана, а это требует увеличения окна сердечника Поэтому габариты трансформатора зависят от его мощности И наоборот, сердечник определенного размера пригоден для изготовления трансформатора только до определенной мощности, которая называется габаритной мощностью трансформатора

Количество витков вторичной обмотки трансформатора определяет напряжение на ее выводах Но это напряжение зависит также и от количества витков первичной обмотки При определенном значении напряжения питания первичной обмотки напряжение вторичной зависит от отношения количества витков вторичной обмотки к количеству витков первичной Это отношение и называется коэффициентом трансформации

Если напряжение на вторичной обмотке зависит от коэффициента трансформации, можно ли выбирать количество витков одной из обмоток, например первичной, произвольно Оказывается, нельзя Дело в том, что чем меньше габариты сердечника, тем больше должно быть количество витков каждой обмотки Поэтому размеру сердечника трансформатора соответствует вполне определенное количество витков его обмоток, приходящееся на один вольт напряжения, меньше которого брать нельзя Эта характеристика называется количеством витков на один вольт

Как и всякий преобразователь энергии, трансформатор обладает коэффициентом полезного действия – отношением мощности, потребляемой нагрузкой трансформатора, к мощности, которую нагруженный трансформатор потребляет от сети

КПД маломощных трансформаторов, которые обычно применяются для питания бытовой электронной аппаратуры, колеблется в пределах от 0,8 до 0,95 Более высокие значения имеют трансформаторы большей мощности

Электрический расчет трансформатора

Прежде чем начать электрический расчет силового трансформатора, необходимо сформулировать требования, которым он должен удовлетворять Они и будут являться исходными данными для расчета Технические требования к трансформатору определяются также путем расчета, в результате которого определяются те напряжения и токи, которые должны быть обеспечены вторичными обмотками Поэтому перед расчетом трансформатора производится расчет выпрямителя для определения напряжений каждой из вторичных обмоток и потребляемых от этих обмоток токов Если же напряжения и токи каждой из обмоток трансформатора уже известны, то они и являются техническими требованиями к трансформатору

Для определения габаритной мощности трансформатора необходимо определить мощности, потребляемые от каждой вторичной обмотки, и сложить их, учитывая также КПД трансформатора Мощность, потребляемую от любой обмотки, определяют умножением напряжения между выводами этой обмотки на силу потребляемого от нее тока:

где Р – мощность, потребляемая от обмотки, Вт

U – эффективное значение напряжения, снимаемого с этой обмотки, В

I – эффективное значение силы тока, протекающего в этой же обмотке, А

Суммарная мощность, потребляемая, например, тремя вторичными обмотками, вычисляется по формуле:

Для определения габаритной мощности трансформатора полученное значение суммарной мощности Ps нужно разделить на КПД трансформатора:

где Рг – габаритная мощность трансформатора

η – КПД трансформатора

Заранее рассчитать КПД трансформатора нельзя, так как для этого нужно знать величину потерь энергии в обмотках и в сердечнике, которые зависят от параметров самих обмоток (диаметры проводов и их длина) и параметров сердечника (длина магнитной силовой линии и марка стали) И те и другие параметры становятся известны только после расчета трансформатора Поэтому с достаточной для практического расчета точностью КПД трансформатора можно определить из табл 61

Таблица 61 Определение КПД трансформатора

Суммарная мощность, Вт

10-20

20-40

40-100

100-300

кпд

трансформатора

0,8

0,85

0,88

0,92

Допустим, что нужно рассчитать трансформатор, имеющий три вторичные обмотки со следующими исходными данными:

U, = 6,3 В I, = 1,5 А

U, = 12 В I, = 0,3 А

U3 = 120 ΒΊ3 = 59 мА

Находим суммарную мощность, потребляемую от вторичных обмоток:

Ps = Ιφφ + U,I, + U3I3 = 6,3 x 1,5 + 12 x 0,3 + 120 x 0,059 = 20,13 Вт

Обращаем внимание на то, что при расчете сила тока третьей обмотки, которая в исходных данных указана в миллиамперах, обязательно должна переводиться в амперы: 59 мА = 0,059 А

Из табл 61 находим КПД трансформатора η = 0,85 и определяем его габаритную мощность:

Наиболее распространены две формы сердечника: О-образная (рис, 62а) и Ш-образная (рис, 626) На сердечнике О-образной формы обычно располагаются две катушки, а на сердечнике Ш-образной формы – одна (рис, 63) Зная габаритную мощность трансформатора, находят сечение рабочего керна его сердечника, на котором находится катушка:

Сечением рабочего керна сердечника, как показано на рис, 62, является произведение ширины рабочего керна а и толщины пакета с Размеры а и с выражены в сантиметрах, а сечение – в квадратных сантиметрах

Рис 62 Формы сердечника трансформатора

Рис 63 Расположение катушек на сердечнике

После этого выбирают тип пластин трансформаторной стали и определяют толщину пакета сердечника Сначала находят приблизительную ширину рабочего керна сердечника по формуле:

Затем по полученному значению а производят выбор типа пластин трансформаторной стали из числа имеющихся в наличии и находят фактическую ширину рабочего керна а, после чего определяют толщину пакета сердечника с:

Количество витков, приходящихся на 1 вольт напряжения, определяется сечением рабочего керна сердечника трансформатора по формуле:

где η – количество витков на 1 В

к – коэффициент, определяемый свойствами сердечника

S – сечение рабочего керна сердечника, см2

Из приведенной формулы видно, что чем меньше коэффициент к, тем меньше витков будут иметь все обмотки трансформатора Однако произвольно выбирать коэффициент к нельзя Его значение обычно лежит в пределах от 35 до 60 В первую очередь оно зависит от свойств пластин трансформаторной стали, из которых собран сердечник Для сердечников С-образной формы, витых из тонкой ленты, можно брать к = 35 Если используется сердечник О-образной формы, собранный из П- или Г-образных пластин без отверстий по углам, берут к = 40 Такое же значение к и для пластин типа УШ, у которых ширина боковых кернов больше половины ширины среднего керна Если используются пластины типа Ш без отверстий по углам, у которых ширина среднего керна ровно вдвое больше ширины средних кернов, целесообразно взять к = 45, а если Ш-образные пластины имеют отверстия, то к = 50 Наконец, коэффициент к берется равным 60 при использовании Ш-образных пластин толщиной 0,5 мм с отверстиями, в то время как меньшие значения к соответствуют толщине пластин 0,35 мм Следует заметить, что выбор к в значительной мере условен и им можно в некоторых пределах варьировать, если учесть, что уменьшение к облегчает намотку, но ужесточает режим трансформатора При применении пластин из высококачественной трансформаторной стали этот коэффициент можно немного уменьшать, а при низком качестве стали приходится его увеличивать

Зная необходимое напряжение каждой обмотки и количество витков на 1 В, легко определить количество витков обмотки, перемножив эти величины:

Такое соотношение справедливо только для первичной обмотки, а при определении количества витков вторичных обмоток нужно дополнительно вводить приближенную поправку для учета падения напряжения на самой обмотке от протекающего по ее проводу тока нагрузки:

Коэффициент ш зависит от силы тока, протекающего по данной обмотке (см табл 62)

Если сила тока меньше 0,2 А, можно принимать ш = Е

Толщина провода, которым наматывается обмотка трансформатора, определяется силой тока, протекающего по этой обмотке Чем больше ток, тем толще должен быть провод, подобно тому как для

Сила тока вторичной обмотки, А

0,2-0,5

0,5-1,0

1,0-2,00

2,0-4,0

m

1,02

1,03

1,04

1,06

увеличения потока воды требуется использовать более толстую трубу Дело в том, что от толщины провода зависит сопротивление обмотки Чем тоньше провод, тем больше сопротивление обмотки, следовательно, увеличивается выделяемая на ней мощность и она сильнее нагревается Для каждого типа обмоточного провода существует предел допустимого нагрева, который зависит от свойств эмалевой изоляции Поэтому диаметр провода может быть определен по формуле:

d = pVf,

где d – диаметр провода по меди, мм

I – сила тока в обмотке, А

р – коэффициент (табл 63), который учитывает допустимый нагрев той или иной марки провода

Таблица 63 Выбор диаметра провода

М арка провода

ПЭЛ

ПЭВ-1

ПЭВ-2

ПЭТ

Р

0,8

0,72

0,69

0,65

Выбрав коэффициент р, можно определить диаметр провода каждой обмотки Найденное значение диаметра округляют до большего стандартного

Сила тока в первичной обмотке определяется с учетом габаритной мощности трансформатора и напряжения сети:

Пример электрического расчета

Произведем расчет трансформатора по тем исходным данным, которые были приведены ранее

Находим сечение сердечника трансформатора:

Находим приближенное значение ширины рабочего керна:

Выбираем пластины трансформатора типа Ш-19, для которых а = 1,9 см, и находим толщину пакета:

Фактически полученное сечение рабочего керна сердечника:

Определяем коэффициент к Допустим, что используются пластины трансформаторной стали типа Ш-19 без отверстий по углам Тогда к = 45

Находим количество витков на 1 В:

Определяем количество витков первичной обмотки при питании от сети напряжением 127 В:

а также при питании от сети напряжением 220 В:

Определяем количество витков дополнительной секции первичной обмотки, которую необходимо подключить к обмотке, рассчитанной на 127 В, для питания напряжением 220 В:

Находим из табл 62 коэффициент ш для каждой из вторичных обмоток:

при ф = 1,5 А пр = 1,04

при 12 = 0,3 А ш2 = 1,02

при 13 = 0,059 А ш3 = 1,00

Определяем количество витков каждой из вторичных обмоток с округлением до ближайшего целого числа:

Находим силу тока в первичной обмотке при питании от сети напряжением 127 В:

то же при напряжении сети 220 В:

Находим диаметр провода первичной обмотки для секции, рассчитанной на напряжение 127 В при использовании провода марки ПЭВ-1 (коэффициент р = 0,72 берем из табл 63):

то же для секции на 220 В:

Находим диаметры проводов вторичных обмоток

Для этого составляем схему трансформатора (рис, 64) и таблицу намоточных данных (табл 64), где диаметры проводов по меди выбраны из ближайших больших стандартных значений, а диаметры проводов в изо ляции взяты на 10% больше, чем диаметры проводов по меди

Таблица 64 Намоточные данные трансформатора

Нем ера вы водов

Количество витков, W

Диаметр провода по меди, d, мм

Диаметр провода по изоляции, мм

1-2

970

СО

О

t

СО

О

2-3

710

0,25

0,275

4-5

50

0,9

0,99

6-7

94

0,41

0,45

8-9

917

0,18

0,2

Конструктивный расчет трансформатора

Окно сердечника, предназначенное для размещения катушки с обмотками, имеет размеры, соответствующие толщине катушки b и ее ширине h (рис, 62) Однако не вся площадь окна может быть занята обмотками, необходимо оставить место и для каркаса катушки Кроме того, обмотки нельзя наматывать вплотную к щечкам каркаса, так как это иногда приводит к «проваливанию» витков верхних слоев намотки в пространство, занятое нижними слоями, в результате чего может возникнуть пробой между витками, появятся короткозамкнутые витки и во время работы трансформатора его обмотки сгорят Поэтому в зависимости от конструкции каркаса и толщины материала, из которого он будет изготовлен, а также с учетом расстояния между щечкой каркаса и началом намотки каждого слоя выбираются эффективные размеры окна Ьэ и h

Обмотки трансформатора наматываются рядовой намоткой виток к витку с прокладками между слоями для обеспечения электрической изоляции одного слоя по отношению к соседнему, иначе возникнет пробой между витками обмоток Ведь между началом одного слоя и концом следующего, которые оказываются расположенными один под другим, действует значительное напряжение, соответствующее количеству витков двух слоев намотки и многократно превышающее допустимое напряжение для эмалевой изоляции Поэтому между слоями используются прокладки в виде одного слоя кабельной бумаги толщиной d, а между обмотками – три слоя такой же бумаги Иногда, если прочность электрической изоляции какой-либо обмотки нужно специально увеличить, между этой обмоткой и другими прокладывают дополнительно один или несколько слоев лакоткани

При определении толщины обмотки сначала нужно подсчитать количество витков W , которое можно намотать в одном слое Для этого эффективную ширину окна следует разделить на диаметр провода по изоляции:

Полученный результат округляют до ближайшего меньшего целого числа Затем находят количество слоев η , которое займет обмотка, разделив общее количество ее витков W на количество витков Wc одного слоя:

Полученное значение п,округляют до ближайшего большего целого числа, после чего определяют толщину обмотки t:

где (η – 1) – количество бумажных прокладок между слоями

Для определения толщины катушки нужно сложить значения толщины каждой обмотки и к результату прибавить толщину прокладок между обмотками:

где t, t, t и тд – толщина каждой обмотки d – толщина бумаги для прокладок η – количество обмоток

Полученная толщина катушки Т должна быть меньше, чем эффективный размер окна b Теоретически этого достаточно для вывода: катушка сможет разместиться в окне сердечника Однако на практике существуют некоторые факторы, которые трудно учесть в процессе инженерного расчета Одним из таких факторов является невозможность, а иногда просто неумение намотчика укладывать при намотке витки вплотную один к другому В результате уменьшается количество витков в слое относительно расчетного, а следовательно, увеличивается количество слоев, что ведет к увеличению фактической толщины катушки Кроме того, форма витка обычно не получается прямоугольной, а напоминает эллипс, что также приводит к увеличению толщины катушки Поэтому следует установить некоторый запас по толщине катушки Так, при ручной намотке и низкой квалификации намотчика полученное значение Т должно быть по крайней мере в 2 раза меньше, чем Ьэ Когда намотка производится на станке и квалификация намотчика достаточно высока, Т может быть в 1,2 раза меньше b Если такие соотношения не получаются, необходимо произвести перерасчет трансформатора, увеличив размер окна путем выбора другого типоразмера пластин или увеличив сечение рабочего керна за счет увеличения толщины пакета Это снизит количество витков на 1 В, уменьшится количество витков всех обмоток, и толщина катушки Т станет меньше

Пример конструктивного расчета

Произведем конструктивный расчет трансформатора, который должен следовать за электрическим расчетом, проведенным ранее

Для пластин трансформаторной стали типа Ш-19 размеры окна: b = 17 мм h = 46 мм

Допустим, что каркас катушки выполнен из гетинакса толщиной 0,5 мм Тогда эффективная ширина окна должна быть уменьшена на толщину каркаса, то есть Ьэ = 16,5 мм Эффективная ширина намотки может быть найдена, если из высоты окна h вычесть толщину двух щечек каркаса и двойное расстояние между щечками и крайними витками обмоток, которое можно принять равным 2 мм Тогда Ьэ = 41 мм

Выберем для прокладок между слоями и между обмотками бумагу толщиной d = ОД мм Найдем количество витков в слое для секции первичной обмотки, предназначенной для напряжении сети 127 В:

Находим количество слоев этой обмотки:  и ее толщину:

Количество витков в слое для дополнительной секции, рассчитанной на 220 В:

Количество слоев:

Толщина обмотки:

То же для вторичной обмотки № 1:

Для вторичной обмотки № 2:

Для вторичной обмотки № 3:

Находим толщину катушки трансформатора:

Определим запас размещения катушки в окне сердечника:

Полученный результат позволяет сделать вывод о том, что намотка может быть выполнена вручную при средней квалификации намотчика

Источник: Виноградов Ю А и др, Практическая радиоэлектроника-М: ДМК Пресс – 288 с: ил (В помощь радиолюбителю)

nauchebe.net


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта