Eng Ru
Отправить письмо

СХЕМЫ СОЕДИНЕНИЯ ИЗМЕРИТЕЛЬНЫХ ТРАНСФОРМАТОРОВ НАПРЯЖЕНИЯ. Трансформатор напряжения разомкнутый треугольник


Схема соединения трансформаторов напряжения в разомкнутый треугольник

 

Схема соединения, показанная на рис. 6.3.4, позволяет получить напряжение нулевой последовательности:

 

(6.4)

 

В нормальном режиме UP=0.

Необходимым условием работы схемы является заземление нейтрали первичной обмотки ТН. При отсутствии заземления напряжение на реле будет отсутствовать. Для вторичной обмотки принимается UНОМ=100 В – для сетей с заземленной нейтралью и 100/3 В –для изолированной. Практически в нормальных условиях напряжение на реле составляет Uнб = 0,5...2 В.

При однофазном КЗ в сети с заземленной нейтралью (рис. 6.3.5):

 

UA=0; UB+UC=UФ=UP.

 

В сети с изолированной нейтралью (рис. 6.3.6): UP=3UФ, поэтому у ТН, предназначенных для таких сетей, вторичные обмотки имеют увеличенный в 3 раза коэффициент трансформации (например: 6000/100/3).

Рис. 6.3.4

Рис. 6.3.5

Напряжение нулевой последовательности может быть получено и от специальных обмоток трехфазных ТН (см. рис. 6.3.2). Чаще всего применяются ТН с двумя вторичными обмотками. Одна соединяется по схеме звезды, а вторая – разомкнутым треугольником (см. рис. 4.3.1 б).

Вторичные обмотки ТН подлежат обязательному заземлению. Оно является защитным, обеспечивая безопасность персонала при попадании высокого напряжения во вторичные цепи. Обычно заземляется нулевая точка звезды или один из фазных проводов. В проводах, соединяющих точку заземления с обмотками ТН, не должно быть коммутационных и защитных аппаратов.

 

Рис. 6.3.6

 

Похожие статьи:

poznayka.org

Лаб_раб №5 Трасформаторы напряжения

Кафедра

ЭС и ЭЭС

Электромагнитные трансформаторы напряжения

Работа №5

Цель работы:

1.Назначение и основные элементы конструкции

2.Погрешности трансформаторов напряжения.

3. Схемы соединения обмоток трансформаторов напряжения.

4. Конструкции трансформаторов напряжения

5. Графическое изображение и буквенное обозначение на схемах

1.Назначение и основные элементы конструкции электромагнитных трансформаторов напряжения.

Трансформатор напряжения предназначен для понижения высокого напряжения до стандартного значения 100 или 100/√3 В и для отделения цепей измерения и релейной защиты от первичных цепей высокого напряжения.

Электромагнитный трансформатор напряжения (ТН) имеет замкнутый магнитопровод 2 (рис. 1) и две обмотки — первичную 1 (с выводами A и X и числом витков w1 ) и вторичную 3 (с выводами a и x и числом витков w2 ). Первичная обмотка включена на напряжение сети U1, а ко вторичной обмотке (напряжение U2) присоединены параллельно катушки измерительных приборов и реле. Такое взаимное присоединение приборов и реле обеспечивает на них одно и то же напряжение U2 .ТН может иметь и две вторичных обмотки расположенные на том же магнитопроводе.

Обязательным элементом конструкции ТН является изоляция: изоляция между витками обмоток, изоляция обмоток от магнитопровода и изоляция между обмотками. Для безопасности обслуживания один выход вторичной обмотки заземлен. Это заземление должно защитить вторичные цепи от высокого напряжения в случае пробоя изоляции между первичной и вторичной обмотками.

Трансформатор напряжения в отличие от трансформатора тока работает в режиме, близком к холостому ходу, так как сопротивление параллельных катушек приборов и реле большое, а ток, потребляемый ими, невелик. По этой причине для ТН не опасен разрыв вторичной цепи, но опасно короткое замыкание во вторичной цепи, так как в этом случае в обмотках ТН будут протекать большие токи. От длительного протекания этих токов защищает плавкий предохранитель F со стороны вторичной обмотки. От токов замыкания в обмотках самого ТН служат плавкие предохранители F со стороны первичной обмотки.

Рис. 1 Принципиальная конструкция однофазного трансформатора напряжения с одной вторичной обмоткой и подключение его к первичной и вторичной цепи.

Номинальный коэффициент трансформации ТН определяется следующим выражением:

где U1ном, U2ном — номинальные первичное и вторичное напряжение соответственно. Коэффициент трансформации примерно может быть выражен через отношение чисел витков обмоток: KU≈w1/w2. Чтобы ТН уменьшал первичное напряжение, необходимо выполнение условия:w1> w2.

2.Погрешности трансформаторов напряжения.

При работе ТН по его обмоткам протекают токи. В первичной обмотке протекает ток, обусловленный вторичной нагрузкой и током намагничивания, во вторичной обмотке протекает ток, обусловленный вторичной нагрузкой. Токи, протекающие в обмотках, вызывают в их активно-индуктивных сопротивлениях падения напряжения. Падения напряжения приводят к тому, что вторичное напряжение приведенное к первичной стороне KUU2 не будет равно первичному напряжениюU1. Это приводит к погешности ТН по величине и фазе. Этапогрешность зависит от конструкции магнитопровода и магнитной проницаемости стали, а также и от cosφ и величины вторичной нагрузки. Погрешность по величине, выраженная в процентах, определяется формулой:

.

В зависимости от номинальной погрешности различают классы точности 0,2; 0,5; 1; 3. Суммарное потребление обмоток измерительных приборов и реле, подключенных ко вторичной обмотке трансформатора напряжения, не должно превышать номинальную мощность трансформатора напряжения, так как в противном случае это приведет к увеличению погрешностей.

3. Схемы соединения обмоток трансформаторов напряжения.

В зависимости от назначения могут применяться трансформаторы напряжения с различными схемами соединения обмоток. Для измерения трех междуфазных напряжений можно использовать два однофазных двухобмоточных трансформатора НОМ, НОС, НОЛ, соединенных по схеме открытого треугольника (рис. 2, а), а также трехфазный двухобмоточный трансформатор НТМК, обмотки которого соединены в звезду (рис. 2, б). Для измерения напряжения относительно земли могут применяться три однофазных

Рис. 2 Схемы соединения трансформаторов напряжения

трансформатора, соединенных по схеме Y0/Y0, или трехфазный трехобмоточный трансформатор НТМИ (рис. 2, в). В последнем случае обмотка, соединенная в звезду, используется для присоединения измерительных приборов, а к обмотке, соединенной в разомкнутый треугольник, присоединяется реле защиты от замыканий на землю. Таким же образом в трехфазную группу соединяются однофазные трехобмоточные трансформаторы типа ЗНОМ и каскадные трансформаторы НКФ.

4. Конструкции трансформаторов напряжения

По конструкции различают трехфазные и однофазные трансформаторы. Трехфазные трансформаторы напряжения применяются при напряжении до 18 кВ, однофазные — на любые напряжения. По типу изоляции трансформаторы могут быть сухими, масляными и с литой изоляцией (соответственно буквы С, М или Л в обозначении типа трансформатора).

Трансформаторы напряженияс масляной изоляцией применяются на напряжение 6 — 1150 кВ в закрытых и открытых распределительных устройствах. В этих трансформаторах обмотки и магнитопровод залиты маслом, которое служит для изоляции и охлаждения.

Рис. 3. Трансформаторы напряжения однофазные масляные:

а – тип НОМ – 35;бтип ЗНОМ – 35;1– вывод высокого напряжения;2– коробка выводов низкого напряжения;3– бак.

Следует отличать однофазные двухобмоточные трансформаторы НОМ-6, НОМ-10, НОМ-15, НОМ-35 от однофазных трехобмоточных ЗНОМ-15, ЗНОМ-20, 3HOM-35.

Схема обмоток первых показана на рис. 3, а. Такие трансформаторы имеют два ввода ВН и два ввода НН, их можно соединить по схемам открытого треугольника, звезды, треугольника. У трансформаторов второго типа (рис. 3, б) один конец обмотки ВН заземлен, единственный ввод ВН расположен на крышке, а вводы НН — на боковой стенке бака. Обмотка ВН рассчитана на фазное напряжение, основная обмотка НН — на В, дополнительная обмотка — на 100/3 В. Такие трансформаторы называются заземляемыми и соединяются по схеме, показанной на рис. 2,в.

Трансформаторы типов ЗНОМ-15, ЗНОМ-20, ЗНОМ-24 устанавливаются в комплектных шинопроводах мощных генераторов. Для уменьшения потерь от намагничивания их баки выполняются из немагнитной стали.

Все шире применяются трансформаторы напряжения с литой изоляцией. Заземляемые трансформаторы напряжения серии 3HQJI.06 имеют пять исполнений по номинальному напряжению: 6, 10, 15, 20 и 24 кВ. Магнитопровод в них ленточный, разрезной, С-образный, что позволило увеличить класс точности до 0,2. Такие трансформаторы имеют небольшую массу, могут устанавливаться в любом положении, пожаробезопасны.

В установках 110 кВ и выше применяются трансформаторы напряжения каскадного типа НКФ. В этих трансформаторах обмотка ВН равномерно распределяется по нескольким магнитопроводам, благодаря чему облегчается ее изоляция. Трансформатор НКФ-110 (рис. 4) имеет двухстержневой магнитопровод, на каждом стержне которого расположена обмотка ВН, рассчитанная на Uф /2.Так как общая точка обмотки ВН соединена с магнитопроводом, то он по отношению к земле находится под потенциаломUф/2. Обмотки ВН изолируются от магнитопровода также наUф/2.Обмотки НН (основная и дополнительная) намотаны на нижнем стержне магнитопровода. Для равномерного распределения нагрузки по обмоткам ВН служит обмотка связи П. Такой блок, состоящий из магнитопровода и обмоток, помещается в фарфоровую рубашку и заливается маслом.

Рис. 4. Трансформатор напряжения НКФ-110:

а — схема; б - конструкция: 1 — ввод высокого напряжения; 2 — маслорасширитель; 3 — фарфоровая рубашка; 4 — основание; 5 — коробка вводов НН

Трансформаторы напряжения на 220 кВ состоят из двух блоков, установленных один над другим, т.е. имеют два магнитопровода и четыре ступени каскадной обмотки ВН с изоляцией на Uф/4. Трансформаторы напряжения НКФ-330 и НКФ-500 соответственно имеют три и четыре блока, т. е. шесть и восемь ступеней обмотки ВН.

Чем больше каскадов обмотки, тем больше их активное и реактивное сопротивления, возрастают погрешности, и поэтому трансформаторы НКФ-330, НКФ-500 выпускаются только в классах точности 1 и 3. Кроме того, чем выше напряжение, тем сложнее конструкция трансформаторов напряжения, поэтому в установках 500 кВ и выше применяются трансформаторные устройства с емкостным отбором мощности, присоединенные к конденсаторам высокочастотной связи С1 с помощью конденсатора отбора мощности С2 (рис. 5, а). Напряжение, снимаемое с С2 (10—15 кВ), подается на трансформатор TV, имеющий две вторичные обмотки, которые соединяются по такой же схеме, как и у трансформаторов НКФ или ЗНОМ. Для увеличения точности работы в цепь его первичной обмотки включен дроссель L, с помощью которого контур отбора напряжения настраивается в резонанс с конденсатором С2. Дроссель L и трансформатор TV встраиваются в общий бак и заливаются маслом. Заградитель ЗВ не пропускает токи высокой частоты в трансформатор напряжения. Фильтр присоединения Z предназначен для подключения высокочастотных постов защиты. Такое устройство получило название емкостного трансформатора напряжения НДЕ. На рис. 6 показана установка НДЕ-500-72.

При надлежащем выборе всех элементов и настройке схемы устройство НДЕ может быть выполнено на класс точности 0,5 и выше. Для установок 750 и 1150 кВ применяются трансформаторы НДЕ-750 и НДЕ-1150

Рис. 5. Схема трансформатор напряжения НДЕ:

Рис. 6. Конструкция трансформатор напряжения НДЕ – 500 – 72.:

1 — делитель напряжения; 2 — разъеди нитель; 3 — трансформатор напряжения и дроссель; 4 — заградитель высоко частотный; 5 — разрядник; 6 — привод

Графическое изображение и буквенное обозначение на схемах

TV

TV

TV

ТН без указания схемы соединения обмоток

Два однофазных ТН, соединенных по схеме открытого треугольника

Трехфазный ТН или группа из трех однофазных ТН, соединенных по схеме: звезда/звезда/разомкнутый треугольник

Отчет представил студент

ЭнФ 3-

Отчет принял

Дата

studfiles.net

Измерительные трансформаторы напряжения

Предназначены для понижения высокого напряжения до стандартного значения 100В и для отделения цепей релейной защиты и цепей измерения от первичных цепей высокого напряжения.

Классы точности трансформаторов напряжения:

0,2

0,5

1

3

10

В зависимости от назначения могут применяться трансформаторы напряжения с различными схемами соединения обмоток.

Для измерения трех междуфазных напряжений можно использовать2 однофазных, двухобмоточного трансформатора серии:

НОМ – трансформатор напряжения однофазный с масленой изоляцией;

НОС – трансформатор напряжения однофазный с сухой изоляцией;

НОЛ – трансформатор напряжения однофазный с литой изоляцией.

НОМ, НОС, НОЛ соединенных по схеме открытого треугольника, а также трехфазных двухобмоточный трансформатор НТМК.

К – каскадный или сколигерсирующий обмоткой для уменьшения угловой погрешности.

Схема включения однофазных трансформаторов серии НОМ

По схеме открытого треугольника

личико

Схема трехфазного трехобмоточного

Трансформатора серии нтми

Трансформатор напряжения с магнитной изоляцией охватывает напряжение 6-1150 кВ и эксплуатируется в закрытых и открытых распределительных устройствах. Обмотки и магнитопровод трансформатора залиты маслом, которые предназначены для изоляции и охлаждения. В трансформаторе НТМИ вторичная обмотка, соединенная в звезду, используется для присоединения изомерных приборов, а в другой вторичной обмотке, соединенный в разомкнутый треугольник, подключает релезащиты от замыканий на землю.

Дугогасящие и токоограничительные реакторы Дугогасящий реактор

В сетях до 35 кВ для уменьшения тока замыкания на землю применяют заземление нейтрали через дугогасящий реактор и такая сеть называется с компенсированной нейтралью.

В сети с компенсированной нейтралью ток через реактор в нормальном режиме практически равен нулю.

При замыкании на землю одной фазы реактор оказывается под фазным напряжении и через место замыкания протекает емкостной и индуктивный токи, которые компенсируют друг друга и дуга в месте замыкания не возникает.

Конструкция дугогасящего реактор похожа на конструкцию масленых трансформаторов и различается исполнением в магнитной системе, которая может быть следующих разновидностей:

1 С распределительным воздушным зазором, который обеспечивает практически линейный характер вольтамперные характеристики реактора

2 В реакторе с магнитопроводом плунжерного типа осуществляется плавное регулирование воздушного зазора внутри обмотки реактора, что позволяет обеспечивать плавное регулирование, сопротивление реактора без его отключения от сети.

3 Дугогасящий реактор с магнитной системой с подмагничиванием магнитопровода, которое осуществляется выпрямленным током, значение которого изменяется с помощью автоматического регулятора.

Пример обозначения дугогасящего реактора:

РЗДПОМ

Р – реактор

З – заземляющий

Д – дугогасящий

П – плавное регулирование сопротивления

О – однофазны

М – масленый

studfiles.net

Схемы соединения измерительных трансформаторов напряжения

Схема включения однофазного трансформатора напряжения представлена на рис. 1, а. Предохранители FV1 и FV2 защищают сеть высокого напряжения от повреждений первичной обмотки TV. Предохранители FV3 и FV4 (или автоматические выключатели) защищают TV от повреждений в нагрузке.

Схема соединения двух однофазных трансформаторов напряжения TV1 и TV2 в открытый треугольник (рис. 2). Трансформаторы включены на два междуфазных напряжения, например UAB и UBC. Напряжение на зажимах вторичных обмоток TV всегда пропорционально междуфазным напряжениям, подведенным с первичной стороны. Между проводами вторичной цепи включается нагрузка (реле).

Схема позволяет получать все три междуфазных напряжения UAB, UBC и UCA (не рекомендуется присоединять нагрузку между точками а и с, так как через трансформаторы будет протекать дополнительный ток нагрузки, вызывающий повышение погрешности). 

Рис. 1. Схема включения измерительного трансформатора напряжения

Рис. 2. Схема соединения двух однофазных трансформаторов напряжения в открытый треугольник

Схема соединения трех однофазных трансформаторов напряжения в звезду, приведенная на рис. 3, предназначена для получения напряжений фаз относительно земли и междуфазных (линейных) напряжений. Три первичные обмотки TV соединяются в звезду. Начала каждой обмотки Л присоединяются к соответствующим фазам линии, а концы X объединяются в общую точку (нейтраль N1) и заземляются.

При таком включении к каждой первичной обмотке трансформатора напряжения (ТН) подводится напряжение фазы линии электропередачи (ЛЭП) относительно земли. Концы вторичных обмоток ТН (х) также соединяются в звезду, нейтраль которой N2 связывается с нулевой точкой нагрузки. В приведенной схеме нейтраль первичной обмотки (точка N1) жестко связана с землей и имеет потенциал, равный нулю, такой же потенциал будут иметь нейтраль N2 и связанная с ней нейтраль нагрузки. 

Рис. 3. Схема соединение трех однофазных трансформаторов напряжения в звезду

При такой схеме фазные напряжения на вторичной стороне соответствуют фазным напряжениям относительно земли первичной стороны. Заземление нейтрали первичной обмотки трансформатора напряжения и наличие нулевого провода во вторичной цепи являются обязательным условием для получения фазных напряжений относительно земли.

Схема соединения однофазных трансформаторов напряжения в фильтр напряжения нулевой последовательности (рис. 4). Первичные обмотки соединены в звезду с заземленной нейтралью, а вторичные — последовательно, образуя незамкнутый треугольник. К зажимам разомкнутых вершин треугольника подсоединяются реле напряжения KV. Напряжение U2 на зажимах разомкнутого треугольника равно геометрической сумме напряжений вторичных обмоток: 

Рис. 4. Схема соединения трех однофазных трансформаторов напряжения в фильтр напряжений нулевой последовательности

Рассмотренная схема является фильтром нулевой последовательности (НП). Необходимым условием работы схемы в качестве фильтра НП является заземление нейтрали первичной обмотки ТН. Применяя однофазные ТН с двумя вторичными обмотками, можно соединить одну из них по схеме звезды, а вторую — по схеме разомкнутого треугольника (рис. 5). 

Рис. 5. Схема включения трех однофазных трансформаторов напряжения для контроля изоляции

Номинальное вторичное напряжение у обмотки, предназначенной для соединения в разомкнутый треугольник, принимается равным для сетей с заземленной нейтралью 100 В, а для сетей с изолированной нейтралью 100/3 В.

Схема включения трехфазного трехстержневого трансформатора напряжения показана на рис. 6. Нейтраль ТН заземлена.

Рис. 6. Схема включения трехфазного трехстержневого трансформатора напряжения в системе с заземленной нейтралью

Схема соединения обмоток трехфазного трансформатора напряжения в фильтр напряжения НП показана на рис. 5.

Трехфазные трехстержневые ТН для данной схемы применяться не могут, так как в их магнитопроводе отсутствуют пути для замыкания магнитных потоков НП Фо, создаваемых током 10 в первичных обмотках при замыкании на землю в сети. В этом случае поток Фо замыкается через воздух по пути с большим магнитным сопротивлением.

Это приводит к уменьшению сопротивления НП трансформатора и резкому увеличению Iнам. Повышенный ток Iнам вызывает недопустимый нагрев трансформатора, в связи с чем применение трехстержневых трансформаторов напряжения недопустимо.

В пятистержневых трансформаторах для замыкания потоков Ф0 служат четвертый и пятый стержни магнитопровода (рис. 7). Для получения 3U0 от трехфазного пятистержневого трансформатора напряжения на каждом из его основных стержней 7, 2 и 3 выполняется дополнительная (третья) обмотка, соединяемая по схеме разомкнутого треугольника.

Напряжение на выводах этой обмотки появляется только при КЗ на землю, когда возникают магнитные потоки НП, замыкающиеся по 4 и 5 стержням маг-нитопровода. Схемы с пятистержневым ТН позволяют получать одновременно с напряжением НП фазные и междуфазные напряжения. Применяются для измерения напряжений и контроля изоляции в сетях с изолированной нейтралью. Для этих же целей можно использовать схему рис. 5 с тремя однофазными ТН.

При измерении мощности или энергии трехфазной системы применяется схема включения трансформатора напряжения, приведенная на рис.8 .

Рис. 7. Пути замыкания магнитных потоков нулевой последовательности в трехфазном пятистержневом трансформаторе напряжения

Рис. 8. Схема включения трехфазного трехстержневого трансформатора напряжения для измерения мощности по методу двух ваттметров

www.transformator-service.ru

СХЕМЫ СОЕДИНЕНИЙ ТРАНСФОРМАТОРОВ НАПРЯЖЕНИЯ

⇐ ПредыдущаяСтр 16 из 75Следующая ⇒

Для питания цепей релейной защиты используются между­фазные напряжения и фазные — относительно земли, а также симметричные составляющие этих напряжений.

Ниже рассматриваются типовые схемы соединений трансфор­маторов напряжения (ТН) и схемы фильтров, позволяющие полу­чить указанные напряжения.

а) Схема соединений трансформаторов напряжения в звезду

Схема, приведенная на рис. 6-7, а, предназначена для полу­чения напряжения фаз относительно земли и междуфазных (ли­нейных) напряжений. Три первичные обмотки трансформатора напряжения ТН1 соединяются в звезду. Начала каждой обмотки (выводы А, В, С) присоединяются к соответствующей фазе линии, а концы X, У, Z объединяются в общую точку (нейтраль Н1) и заземляются.

При таком включении к каждой первичной обмотке ТН1 под­водится напряжение фазы линии относительно земли, которое затем трансформируется во вторичные об­мотки. Концы вторичных обмоток ТН1 (х, у, z на рис. 6-7, а) также соединяются в звезду, нейтраль которой Н2 связывается проводом с нулевой точкой Н3нагрузки (обмотки реле 1, 2, 3).

В приведенной схеме нейтраль первичной обмотки (точка Н1) жестко связана с землей и имеет поэтому ее потенциал, а ней­траль нагрузки Н3соединена с нейтралью вторичных обмоток Н2 и всегда имеет потенциал точки Н2.

При такой схеме фазные напряжения на вторичной стороне соответствуют фазным напряжениям относительно земли первич­ной стороны.

Если по каким-либо причинам первичная нейтраль трансфор­матора напряжения (Н1) окажется разземленной, как показано на рис. 6-7, б, то ее потенциал станет отличным от потенциала земли.

Из теории электротехники известно [Л. 29, 95], что потенциал изолированной от земли нейтрали, образованной тремя соединен­ными в звезду одинаковыми сопротивлениями z (какими являются сопротивления первичных обмоток ТН2 на рис. 6-7, б) находится

в точке О' (рис. 6-7, в), лежащей на пересечении диан треугольника линейных напряжений

 

 

Аналогичным образом на фазные напряжения влияет обрыв или отсутствие нулевого провода во вторичной цепи.

При отсутствии связи между Н2 и Н3 точка Н3 становится изолированной нейтралью; как было показано выше, сумма на­пряжений на обмотках реле (1, 2 и 3) во всех случаях будет равна нулю, и, следовательно, на векторной диаграмме потенциал точки Н3 совпадет с точкой О, если принять для простоты, что nн = 1.

Из всего сказанного следует очень важный вывод, что зазем­ление нейтрали первичной обмотки ТН и наличие нулевого провода во вторичной цепи являются обязательным условием для получе­ния фазных напряжений относительно земли.

Соединение трансформаторов напряжения по схеме λ/λ может выполняться по 6-й и 12-й группам. Типовым является соедине­ние по 12-й группе, показанное на рис. 6-7.

Рассмотренная схема соединений может быть выполнена по­средством трех однофазных трансформаторов напряжения или одного трехфазного пятистержневого трансформатора напряже­ния. Трехфазные трехстержневые трансформаторы напряжения на могут применяться для данной схемы, так как в их магнитопроводе нет пути для замыкания магнитных потоков нулевой последовательности Фо, создаваемых током I0 в первичных об­мотках при замыканиях на землю в сети. В этом случае поток Фо замыкается через воздух по пути с большим магнитным со-

 

 

б) Схема соединения обмоток трансформаторов напряжения в открытый треугольник

Следовательно, на зажимах разомкнутого треугольника полу­чается напряжение, пропорциональное напряжению нулевой по­следовательности.

В нормальных условиях напряжения фаз симметричны и равны в сумме нулю. Поэтому в нормальном режиме Uр = 0.

При к. з. без земли сумма фазных напряжений всегда равна нулю, ибо в этом случае векторы напряжений не содержат составляющей нулевой последовательности. По­этому напряжение Uрив этом случае также равно нулю. И только при замыканиях на землю геометрическая сумма напряжений фаз относительно земли не равна нулю за счет появления в них составляющей U0.

В результате этого на зажимах разом­кнутого треугольника появляется остаточ­ное напряжение, равное Uр= 3U0/пн.

Напряжения прямой и обратной после­довательностей образуют симметричные звез­ды и поэтому при суммировании в цепи разомкнутого треугольника всегда дают нуль на его зажимах.

Таким образом, рассмотренная схема яв­ляется фильтром, пропускающим только на­пряжение нулевой последовательности. Рас­смотренная схема соединения очень удобна и получила широкое распространение на практике.

Необходимым условием работы рассмот­ренной схемы в качестве фильтра U0 является заземление нейтрали первичной обмотки ТН.

При отсутствии заземления к первичным обмоткам ТН будут подводиться вместо фазных напряжений относительно земли фаз­ные напряжения относительно изолированной нейтрали (см. § 6-3, а). Эти напряжения не содержат U 0, и их сумма всегда равна нулю. Поэтому при замыканиях на землю напряжение на выходе схемы будет отсутствовать.

Применяя однофазные трансформаторы напряжения с двумя вторичными обмотками, можно соединить одну вторичную обмотку по схеме звезды, а вторую — разомкнутым треугольником (рис. 6-11) и получить, таким образом, от одного трансформатора напряжения три вида напряжении: фазные, между­фазные и нулевой последовательности.

Номинальное вторичное напряжение у обмот­ки, предназначенной для соединения в разомкну­тый треугольник, принимается равным для сетей с заземленной нейтралью 100 В и для сетей с изолированной нейтралью 100/3 В.

г) Схема соединения обмоток трехфазных трансформаторов напряжения в фильтр на­пряжения нулевой последовательности

Для получения напряжения нулевой последовательности от трехфазного пятистержневого транс­форматора (рис. 6-8) на каждом из его основных стержней 1, 2 и 3 выполняется дополнительная (третья) обмотка, соединяемая, как и в предыдущем случае, по схеме разомкнутого треугольника. Напряжение на выводах этой обмотки появляется, так же как и в преды­дущем случае, только при к. з. на землю, когда возникают магнитные потоки нулевой последовательности, замыкающиеся по четвертому и пятому стержням магнитопровода.

Схемы с пятистержневым трансформатором, показанные на рис. 6-8, позволяют получать одновременно с напряжением ну­левой последовательности фазные и междуфазные напряжения.

Читайте также:

lektsia.com


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта