Eng Ru
Отправить письмо

билеты_ЭМ / 24.Схемы и группы соединения трансформатора. Схема и группа соединения обмоток трансформатора


Схемы и группы соединительных обмоток. Группы соединения обмоток

Группой соединения обмоток трансформатора называется угол сдвига между векторами одноименных линейных ЭДС первичной (ВН) и вторичной (НН) обмоток трансформатора.

1. Для характеристики относительного сдвига фаз линейных ЭДС обмоток ВН и НН вводится понятие группы соединения обмоток трансформатора.

2. Фазовый сдвиг между одноименными линейными ЭДС обмоток ВН и НН зависит от обозначения их выводов (концов), от направления намотки и от схемы соединения. Этот угол, как будет показано далее, кратен 30°.

Группа соединения обозначается целым положительным числом, получающимся от деления на 30° угла сдвига между линейными ЭДС одноименных обмоток ВН и НН трансформатора. Отсчет угла производят от вектора ЭДС ВН по направлению вращения часовой стрелки.

Трансформаторы, имеющие одинаковый сдвиг фаз между линейными ЭДС обмоток ВН и НН, относятся к одной и той же группе соединения.

В трехфазных трансформаторах схемы соединения Y, D, Z («звезда», «треугольник», «зигзаг») могут образовывать 12 различных групп со сдвигом фаз линейных ЭДС через 30°. В связи с этим на практике принято определять группу соединения с помощью стрелок на часовом циферблате (угол между любыми двумя цифрами кратен 30°). Это так называемый «часовой метод» определения группы соединения трансформатора.

Для определения группы соединения трансформатора по «часовому методу» необходимо совместить минутную стрелку вектором линейной ЭДС обмотки ВН, а часовую – с вектором линейной ЭДС обмотки НН. Далее обе стрелки поворачиваются так, чтобы минутная стрелка показывала на цифру 12, тогда часовая стрелка укажет час, соответствующий группе соединения трансформатора.

Рассмотрим определение группы соединения при помощи топографической векторной диаграммы на примере соединения обмоток трансформатора по схеме Y/ Y – 0.

Задавшись произвольной маркировкой выводов обмоток ВН и НН, и соединив электрически два одноименных зажима (например, A и a , рис.7), измеряют ЭДС .

Выбрав масштаб, строят векторную диаграмму линейных ЭДС первичной обмотки (ВН). Так как выводы A и а совпадают, то на диаграмме эти точки должны быть совмещены. Точка b строится следующим образом. Строится окружность радиусом, равным с центром в точке B . Далее строится еще одна окружность радиусом, равным с центром в точке С . Точкой пересечения этих окружностей и является точка b , которая находится на расстоянии от точки a . Аналогичным образом строится точка c , которая находиться на расстоянии от точки а . По углу сдвига между одноименными линейными ЭДС определяется группа соединения (в рассматриваемом случае Y/ Y – 0).

Схемы соединения обмоток трехфазных трансформаторов могут образовывать группы:

· Y/Y, D/D, D/Z образуют четные группы: 0, 2, 4, 6, 8, 10;

· Y/D, D/Y, Y/Z образуют нечетные группы: 1, 3, 5, 7, 9, 11.

При построении векторных диаграмм необходимо руководствоваться следующими правилами. Направление намотки всех обмоток считается одинаковым; векторы ЭДС обмоток ВН и НН, расположенные на одном стержне, совпадают по фазе, если в рассматриваемый момент времени ЭДС этих обмоток направлены к одноименным выводам, а если наоборот, то сдвинуты на 180°.

Трехфазные трансформаторы с соединением обмоток Y/Y, D/D, D/Z образуют группы 0 и 6, с соединением обмоток Y/D, D/Y, Y/Z – группы 11 и 5, если на каждом стержне магнитопровода размещены одноименные фазы.

Если у одной из стороны, например НН, сделать перемаркировку (не изменяя самих соединений) обозначений выводов (без изменения самих соединений): вместо a – b – c сделать с – a – b и затем b– c – a , то можно получить из группы 0 соответственно группы 4 и 8, из группы 6 – группы 10 и 2; из группы 11 – группы 3 и 7, из группы 5 – группы 9 и 1.

В России стандартизованы трехфазные трансформаторы Y/Y н – 0, Y н /D - 11 и Y/Z н – 11; однофазные 1/1 – 0.

Убедившись, что оба трансформатора принадлежат к одной группе, делается заключение о возможности включения их на параллельную работу.

Предположим, что два трансформатора, одинаковые по своим параметрам, но имеющие разные группы соединения обмоток включены на параллельную работу. Пусть первый трансформатор имеет группу соединения Y/Y – 0, а второй Y/D - 11. Тогда векторы линейных ЭДС вторичных обмоток будут сдвинуты на угол 30°, геометрическая сумма линейных ЭДС вторичных обмоток , уравнительный ток будет очень большим:

,

трансформаторы могут выйти из строя.

Параллельная работа трансформаторов

Собирается схема по рис.8. Следует опытным путем проверить соответствие маркировки. Для этого необходимо измерить напряжение между одноименными зажимами вторичных обмоток трансформаторов: . Одну пару одноименных выводов, например a – a 1 соединить перемычкой. Если маркировка определена правильно, то напряжение между одноименными зажимами будет равно нулю, а между разноименными, например между a и b 1 - .После этого рубильник «П» можно замкнуть.

При построении векторных диаграмм трансформатора с

levevg.ru

24.Схемы и группы соединения трансформатора

24) Схемы и группы соединения трансформатора

Трехфазный трансформатор имеет две трехфазные обмотки - высшего (ВН) и низшего (НН) напряжения, в каждую из которых входят по три фазные обмотки, или фазы. Таким образом, трехфазный трансформатор имеет шесть независимых фазных обмоток и 12 выводов с соответствующими зажимами, причем начальные выводы фаз обмотки высшего напряжения обозначают буквами A, B, С, конечные выводы - X, Y, Z, а для аналогичных выводов фаз обмотки низшего напряжения применяют такие обозначения: a,b,c,x,y,z

В большинстве случаев обмотки трехфазных трансформаторов соединяют либо в звезду -Y, либо в треугольник - Δ (рис. 1).

Выбор схемы соединений зависит от условий работы трансформатора. Например, в сетях с напряжением 35 кВ и более выгодно соединять обмотки в звезду и заземлять нулевую точку, так как при этом напряжение проводов линии передачи будет в √3 раз меньше линейного, что приводит к снижению стоимости изоляции.

 

Рис.1

Осветительные сети выгодно строить на высокое напряжение, но лампы накаливания с большим номинальным напряжением имеют малую световую отдачу. Поэтому их целесообразно питать от пониженного напряжения. В этих случаях обмотки трансформатора также выгодно соединять в звезду (Y), включая лампы на фазное напряжение.

С другой стороны, с точки зрения условий работы самого трансформатора, одну из его обмоток целесообразно включать в треугольник (Δ ).

Фазный коэффициент трансформации трехфазного трансформатора находят, как соотношение фазных напряжений при холостом ходе:

nф = Uфвнх / Uфннх,

а линейный коэффициент трансформации, зависящий от фазного коэффициента трансформации и типа соединения фазных обмоток высшего и низшего напряжений трансформатора, по формуле:

nл = Uлвнх / Uлннх.

Если соединений фазных обмоток выполнено по схемам "звезда-звезда" (Y/Y) или "треугольник-треугольник" (Δ/Δ), то оба коэффициента трансформации одинаковы, т.е. nф = nл.

При соединении фаз обмоток трансформатора по схеме "звезда - треугольник" (Y/Δ) - nл = nф√3, а по схеме "треугольник-звезда" (Δ / Y) - nл = nф /√3

Группы соединений обмоток трансформатора

Группа соединений обмоток трансформатора характеризует взаимную ориентацию напряжений первичной и вторичной обмоток. Изменение взаимной ориентации этих напряжений осуществляется соответствующей перемаркировкой начал и концов обмоток.

Стандартные обозначения начал и концов обмоток высокого и низкого напряжения показаны на рис.1.

Рассмотрим вначале влияние маркировки на фазу вторичного напряжения по отношению к первичному на примере однофазного трансформатора (рис. 2 а).

 

Рис.2

Обе обмотки расположены на одном стержне и имеют одинаковое направление намотки. Будем считать верхние клеммы началами, а нижние - концами обмоток. Тогда ЭДС Ё1 и E2 будут совпадать по фазе и соответственно будут совпадать напряжение сети U1 и напряжение на нагрузке U2 (рис. 2 б). Если теперь во вторичной обмотке принять обратную маркировку зажимов (рис. 2 в), то по отношению к нагрузке ЭДС Е2 меняет фазу на 180°. Следовательно, и фаза напряжения U2 меняется на 180°.

Таким образом, в однофазных трансформаторах возможны две группы соединений, соответствующих углам сдвига 0 и 180°. На практике для удобства обозначения групп используют циферблат часов. Напряжение первичной обмотки U1 изображают минутной стрелкой, установленной постоянно на цифре 12, а часовая стрелка занимает различные положения в зависимости от угла сдвига между U1 и U2. Сдвиг 0° соответствует группе 0, а сдвиг 180° - группе 6 (рис. 3).

 

Рис.3

В трехфазных трансформаторах можно получить 12 различных групп соединений обмоток. Рассмотрим несколько примеров.

Пусть обмотки трансформатора соединены по схеме Y/Y (рис. 4). Обмотки, расположенные на одном стержне, будем располагать одну под другой.

Зажимы А и а соединим для совмещения потенциальных диаграмм. Зададим положение векторов напряжений первичной обмотки треугольником АВС. Положение векторов напряжений вторичной обмотки будет зависеть от маркировки зажимов. Для маркировки на рис. 4а, ЭДС соответствующих фаз первичной и вторичной обмоток совпадают, поэтому будут совпадать линейные и фазные напряжения первичной и вторичной обмоток (рис. 4, б). Схема имеет группу Y/Y - О.

 

Рис. 4

Изменим маркировку зажимов вторичной обмотки на противоположную (рис. 5. а). При перемаркировке концов и начал вторичной обмотки фаза ЭДС меняется на 180°. Следовательно, номер группы меняется на 6. Данная схема имеет группу Y/Y - б.

 

Рис. 5

На рис. 6 представлена схема, в которой по сравнению со схемой рис 4 выполнена круговая перемаркировка зажимов вторичной обмотки (а→b , b→c, с→a). При этом фазы соответствующих ЭДС вторичной обмотки сдвигаются на 120° и, следовательно, номер группы меняется на 4.

 

 

Рис. 6

 

 

Рис. 7

Схемы соединений Y/Y позволяют получить четные номера групп, при соединении обмоток по схеме Y/Δ номера групп получаются нечетными. В качестве примера рассмотрим схему, представленную на рис. 7. В этой схеме фазные ЭДС вторичной обмотки совпадают с линейными, поэтому треугольник аbс поворачивается на 30° против часовой стрелки по отношению к треугольнику АВС. Но так как угол между линейными напряжениями первичной и вторичной обмоток отсчитывается по часовой стрелке, то группа будет иметь номер 11.

Из двенадцати возможных групп соединений обмоток трехфазных трансформаторов стандартизованы две: Y/Y - 0 и Y/Δ-11. Они, как правило, и применяются на практике.

4

studfiles.net

Оглавление

Тема: Электрические станции и подстанции

Лекция 5. СИЛОВЫЕ ТРАНСФОРМАТОРЫ.

5.1 Схемы и группы соединений обмоток трансформаторов 1

5.2 Системы охлаждения силовых трансформаторов 7

5.3 Системы регулирования напряжения в силовых трансформаторах 11

5.4 Параллельное включение трансформаторов 11

5.1 Схемы и группы соединений обмоток трансформаторов

Обмотки трансформаторов имеют обычно соединения: звезда — Y, звезда с выведенной нейтралью — Y и треугольник — Δ. Сдвиг фаз между ЭДС первичной и вторичной обмоток (Е1 и Е2) принято выражать условно группой соединений.

В трёхфазном трансформаторе применением разных способов соединений обмоток можно образовать двенадцать различных групп соединений, причём при схемах соединения обмоток звезда — звезда мы можем получить любую чётную группу (2, 4, 6, 8, 10, 0), а при схеме звезда—треугольник или треугольник—звезда — любую нечётную группу (1, 3, 5, 7, 9, 11).

Группы соединений указываются справа от знаков схем соединения обмоток. Трансформаторы по рис. 5.2 имеют схемы и группы соединения обмоток: Y/Δ-11; Y/Ύ/Δ-0-11; Y/Δ/Δ - 11 - 11.

Соединение в звезду обмотки ВН позволяет выполнить внутреннюю изоляцию из расчёта фазной ЭДС, т.е. в раз меньшелинейной. Обмотки НН преимущественно соединяются в треугольник, что позволяет уменьшить сечение обмотки, рассчитав ее на фазный ток . Кроме того, при соединении обмоткитрансформатора в треугольник создаётся замкнутый контур для токов высших гармоник, кратных трём, которые при этом не выходят во внешнюю сеть, вследствие чего улучшается симметрия напряжения на нагрузке.

Соединение обмоток в звезду с выведенной нулевой точкой применяется в том случае, когда нейтраль обмотки должна быть заземлена. Эффективное заземление нейтрали обмоток ВН обязательно в трансформаторах 330 кВ и выше и во всех автотрансформаторах (подробнее ниже). Системы 110, 150 и 220 кВ также работают с эффективно заземлённой нейтралью, однако для уменьшения токов однофазного КЗ нейтрали части трансформаторов могут быть разземлены. Так как изоляция нулевых выводов обычно не рассчитывается на полное напряжение, то в режиме разземления нейтрали необходимо снизить возможные перенапряжения путем присоединения ограничителей перенапряжений к нулевой точке трансформатора (рис. 5.1).

Рис.5.1 . Схемы заземления трансформаторов и автотрансформаторов:

а – трансформаторов 110 – 220 кВ без РПН; б – трансформаторов 330 – 750 кВ без РПН; в – трансформаторов 110 кВ с РПН; г – автотрансформаторов всех напряжений; д - трансформаторов 150 – 220 кВ с РПН; е – трансформаторов 330 – 500 кВ с РПН.

Нейтраль заземляется также на вторичных обмотках трансформаторов, питающих четырёхпроводные сети 380/220 и 220/127 В. Нейтрали обмоток при напряжении 10—35 кВ не заземляются или заземляются через дугогасящий реактор для компенсации емкостных токов. Технические данные силовых трансформаторов и автотрансформаторов, их схемы и группы соединений определяются действующими ГОСТ и приводятся в каталогах и справочниках.

К основным параметрам трансформатора относятся: номинальные мощность, напряжение, ток; напряжение КЗ; ток холостого хода; потери холостого хода и КЗ.

Номинальной мощностью трансформатора называется указанное в заводском паспорте значение полной мощности, на которую непрерывно может быть нагружен трансформатор в номинальных условиях места установки и охлаждающей среды при номинальных частоте и напряжении.

Рис. 5.2 Условное обозначение и схемы соединения обмоток трансформаторов: а – двухобмоточного; б – трехобмоточного; г - с расщепленной обмоткой низкого напряжения

Номинальная мощность для двухобмоточного трансформатора — это мощность каждой из его обмоток. Трехобмоточные трансформаторы могут быть выполнены с обмотками как одинаковой, так и разной мощности. В последнем случае за номинальную принимается наибольшая из номинальных мощностей отдельных обмоток трансформатора.

За номинальную мощность автотрансформатора принимается номинальная мощность каждой из сторон (ВН или СН), имеющих между собой автотрансформаторную связь («проходная мощность»).

Номинальные напряжения обмоток — это напряжения первичной и вторичной обмоток при холостом ходе трансформатора. Для трехфазного трансформатора — это его линейное (междуфазное) напряжение. Для однофазного трансформатора, предназначенного для включения в трёхфазную группу, соединённую в звезду, — это .При работе трансформатора под нагрузкой и подведении к зажимам его первичной обмотки номинального напряжения на вторичной обмотке напряжение меньше номинального на величину потери напряжения в трансформаторе. Коэффициент трансформации трансформатора n определяется отношением номинальных напряжений обмоток высшего и низшего напряжений

В трехобмоточных трансформаторах определяется коэффициент трансформации каждой пары обмоток: ВН и НН; ВН и СН; СН и НН.

Номинальными токами трансформатора называются указанные в заводском паспорте значения токов в обмотках, при которых допускается длительная нормальная работа трансформатора.

Номинальный ток любой обмотки трансформатора определяют по ее номинальной мощности и номинальному напряжению.

Напряжение короткого замыкания uк — это напряжение, при подведении которого к одной из обмоток трансформатора при замкнутой накоротко другой обмотке в ней проходит ток, равный номинальному.

Напряжение КЗ определяют по падению напряжения в трансформаторе, оно характеризует полное сопротивление обмоток трансформатора.

В трехобмоточных трансформаторах и автотрансформаторах напряжение КЗ определяется для любой пары его обмоток при разомкнутой третьей обмотке. Таким образом, в каталогах приводятся три значения напряжения КЗ: u к ВН – НН , uк ВН – СН, uк СН - НН.

Поскольку индуктивное сопротивление обмоток значительно выше активного (у небольших трансформаторов в 2 — 3 раза, а у крупных в 15 — 20 раз), то uк в основном зависит от реактивного сопротивления, т.е. взаимного расположения обмоток, ширины канала между ними, высоты обмоток. Величина uк регламентируется ГОСТ в зависимости от напряжения и мощности трансформаторов. Чем больше высшее напряжение и мощность трансформатора, тем больше напряжение КЗ. Так, трансформатор мощностью 630 кВ*А с высшим напряжением 10 кВ имеет uK=5,5%, с высшим напряжением 35 кВ — uк= 6,5 %; трансформатор мощностью 80000 кВ-А с высшим напряжением 35 кВ имеет uK=9%, a с высшим напряжением110кВ — uк= 10,5%.

Увеличивая значение uк, можно уменьшить токи КЗ на вторичной стороне трансформатора, но при этом значительно увеличивается потребляемая реактивная мощность и увеличивается стоимость трансформаторов. Если трансформатор 110 кВ мощностью 25 MB•А выполнить с uK= 20% вместо 10%, то расчетные затраты на него возрастут на 15,7 %, а потребляемая реактивная мощность возрастёт вдвое (с 2,5 до 5,0 МВАр).

Трехобмоточные трансформаторы могут иметь два исполнения по значению ик в зависимости от взаимного расположения обмоток. Если обмотка НН расположена у стержня магнитопровода, обмотка ВН — снаружи, а обмотка СН — между ними, то наибольшее значение имеет uк ВН – НН, а меньшее значение — uк ВН – СН. В этом случае потери напряжения по отношению к выводам СН уменьшатся, а ток КЗ в сети НН будет ограничен благодаря повышенному значению uкВН-НН. Это понижающий трансформатор на подстанциях.

Если обмотка СН расположена у стержня магнитопровода, обмотка ВН — снаружи, а обмотка НН — между ними, то наибольшее значение имеет uк ВН – СН, а меньшее —uк ВН – НН. Значение uк СН - НН останется одинаковым в обоих исполнениях. Это повышающий трансформатор на станциях.

Ток холостого хода IХ характеризует активные и реактивные потери в стали и зависит от магнитных свойств стали, конструкции и качества сборки магнитопровода и от магнитной индукции. Ток холостого хода выражается в процентах номинального тока трансформатора. В современных трансформаторах с холоднокатаной сталью токи холостого хода имеют небольшие значения.

Потери холостого хода Рх и короткого замыкания Рк определяют экономичность работы трансформатора. Потери холостого хода состоят из потерь в стали на перемагничивание и вихревые токи. Для их уменьшения применяются электротехническая сталь с малым содержанием углерода и специальными присадками, холоднокатаная сталь толщиной 0,3 мм марок 3405, 3406 и других с жаростойким изоляционным покрытием. В справочниках и каталогах приводятся значения Рх для уровней А и Б. Уровень А относится к трансформаторам, изготовленным из электротехнической стали с удельными потерями не более 0,9 Вт/кг, уровень Б — с удельными потерями не более 1,1 Вт/кг (при В= 1,5 Тл, f= 50 Гц).

Потери короткого замыкания состоят из потерь в обмотках при протекании по ним токов нагрузки и добавочных потерь в обмотках и конструкциях трансформатора. Добавочные потери вызваны магнитными полями рассеяния, создающими вихревые токи в крайних витках обмотки и конструкциях трансформатора (стенки бака, ярмовые балки и др.). Для их снижения обмотки выполняются многожильным транспонированным проводом, а стенки бака экранируются магнитными шунтами.

В современных конструкциях трансформаторов потери значительно снижены. Например, в трансформаторе мощностью 250000 кВ-А при U=110кВ (Рх=200 кВт, Рк=790 кВт), работающем круглый год (Ттах=6300 ч), потери электроэнергии составят 0,43% электроэнергии, пропущенной через трансформатор. Чем меньше мощность трансформатора, тем больше относительные потери в нем.

В сетях энергосистем установлено большое количество трансформаторов малой и средней мощности, поэтому общие потери электроэнергии во всех трансформаторах страны значительны, и очень важно для экономии электроэнергии совершенствовать конструкции трансформаторов с целью дальнейшего уменьшения значений Рх и Рк.

Особенности автотрансформаторов. В установках 110 кВ и выше широкое применение находят автотрансформаторы (AT) большой мощности. Объясняется это рядом преимуществ, которые они имеют по сравнению с трансформаторами той – же мощности:

  • меньший расход меди, стали, изоляционных материалов;

  • меньшая масса, а, следовательно, меньшие габариты;

  • меньшие потери и больший КПД;

  • более лёгкие условия охлаждения.

Однофазный автотрансформатор имеет электрически связанные обмотки ОВ и ОС (рис. 5.3). Часть обмотки, заключённая между выводами В и С, называется последовательной, а между С и О — общей.

При работе автотрансформатора в режиме понижения напряжения в последовательной обмотке проходит ток Iв, который, создавая магнитный поток, наводит в общей обмотке ток I0. Ток нагрузки вторичной обмотки IС складывается из тока Iв, проходящего благодаря гальванической (электрической) связи обмоток, и тока I0, созданного магнитной связью этих обмоток: Ic= Iв+I0, откуда I0=IC -IВ.

Полная мощность, передаваемая автотрансформатором из первичной сети во вторичную, называется проходной.

Если пренебречь потерями в сопротивлениях обмоток автотрансформатора, можно записать следующее выражение:

S= UBIB~ UCIC. Преобразуя правую часть выражения, получаем

S= UBIB=[(UB- UC)+UC]IB=(UB- UC)IB+ UCIB, (2.6)

где (UB- UC)IB= ST — трансформаторная мощность, передаваемая магнитным путем из первичной обмотки во вторичую; UCIB=SЭ— электрическая мощность, передаваемая из первичной

Рис.5.3 . Схема однофазного трансформатора.

обмотки во вторичную за счет их гальванической связи, без трансформации.

Эта мощность не нагружает общей обмотки, потому что ток IВ из последовательной обмотки проходит на вывод С, минуя обмотку ОС.

В номинальном режиме проходная мощность является номинальной мощностью автотрансформатора S= Sном, а трансформаторная мощность — типовой мощностью SТ= Sтип.

Размеры магнитопровода, а следовательно, его масса определяются трансформаторной (типовой) мощностью, которая составляет лишь часть номинальной мощности:

где nВС= UB/UC — коэффициент трансформации; Кт — коэффициент выгодности или коэффициент типовой мощности.

Из формулы для Кт следует, что чем ближе UB к UС, тем меньше Кт и меньшую долю номинальной составляет типовая мощность. Это означает, что размеры автотрансформатора, его масса, расход активных материалов уменьшаются по сравнению с трансформатором одинаковой номинальной мощности.

Например, при UВ= 330 кВ и UС=110 кВ КТ=0,667, а при UВ= 550 кВ и UС= 330 кВ КТ= 0,34.

Наиболее целесообразно применение автотрансформаторов при сочетании напряжений 220/110; 330/150; 500/220; 750/330.

Из схемы (см. рис. 5.3) видно, что мощность последовательной обмотки:

;

мощность общей обмотки:

.

Таким образом, еще раз можно подчеркнуть, что обмотки и магнитопровод автотрансформатора рассчитываются на типовую мощность, которую иногда называют расчетной мощностью. Какая бы мощность ни подводилась к зажимам В или С, последовательную и общую обмотки загружать больше чем на SТИП нельзя. Этот вывод особенно важен при рассмотрении комбинированных режимов работы автотрансформатора. Такие режимы возникают, если имеется третья обмотка, связанная с автотрансформаторными обмотками только магнитным путем.

Третья обмотка автотрансформатора (обмотка НН) используется для питания нагрузки, для присоединения источников активной или реактивной мощности (генераторов и синхронных компенсаторов), а в некоторых случаях служит лишь для компенсации токов третьих гармоник. Мощность обмотки НН SHH не может быть больше SТИП, так как иначе размеры автотрансформатора будут определяться мощностью этой обмотки. Номинальная мощность обмотки НН указывается в паспортных данных автотрансформатора.

В автотрансформаторах с обмоткой НН возможны различные режимы работы: передача мощности из обмотки ВН в обмотку СН при отключенной обмотке НН; передача мощности из обмотки НН в СН или ВН; передача из обмотки ВН и НН в обмотку СН и другие режимы Во всех случаях необходимо контролировать загрузку общей, последовательной обмоток и вывода СН. К особенностям следует отнести необходимость глухого заземления нейтрали у автотрансформаторов, общей для ВН и СН.

studfiles.net

Группы соединения обмоток

 

При построении векторных диаграмм трансформатора считалось, что ЭДС фазы обмотки ВН ĖАХ и обмотки НН Ėахсовпадают по фазе. Но это справедливо лишь при условии намотки первич­ной и вторичной обмоток трансформатора в одном направлении и одноименной маркировке выводов этих обмоток, рис. 46, а. Если же в трансформаторе изменить направление обмотки НН или же переставить обозначения ее выводов, то ЭДС Ėах окажется сдвинутой по фазе относительно ЭДС ĖАХ на 180° (рис. 46, б). Сдвиг фаз между ЭДС ĖАХ и Ėах принято выражать группой соединения. Так как этот сдвиг фаз может изменяться от 0 до 360°, а кратность сдвига составляет 30°, то для обозначения группы соединения принят ряд чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 и 0.

Угол смещения вектора линейной ЭДС обмотки НН по отношению к вектору линейной ЭДС обмотки ВН определяют умножением числа, обозначающего группу соединения, на 30°. Угол смещения отсчиты­вают от вектора ЭДС обмотки ВН по часовой стрел­ке до вектора ЭДС обмотки НН. Например, группа соединения 5 указывает, что вектор ЭДС НН отстает по фазе от вектора ЭДС ВН на угол 5×30° = 150°.

Для лучшего понимания принятого обозначения групп соединения пользуются сравнением с часами. При этом вектор ЭДС обмотки ВН соответствует минутной стрелке, установленной на цифре 12, а вектор ЭДС обмотки НН – часовой стрелке (рис. 47). Так же необходимо иметь в виду, что совпадение по фазе векторов ЭДС ĖАХи Ėахэквивалентное сов­падению стрелок часов на циферблате, обозначается группой 0 (а не 12). Кроме того, следует помнить, что за положительное направление вращения векто­ров ЭДС принято их вращение против часовой стрелки.

Таким образом, в однофазном трансформаторе возможны лишь две группы соединения: группа 0, соответствующая совпа­дению по фазе ĖАХи Ėах,и группа 6, соответствующая сдвигу фаз между ĖАХи Ėахна 180°. Из этих групп ГОСТ предусматри­вает лишь группу 0, она обозначается I/I - 0.

Применением разных способов соединения обмоток в трех­фазных трансформаторах можно создать 12 различных групп со­единения. Рассмотрим в качестве примера схему соединений «звезда–звезда» (рис. 48, а). Векторные диаграммы ЭДС показы­вают, что сдвиг между линейными ЭДС ĖАВи Ėab в данном слу­чае равен нулю. В этом можно убедиться, совместив точки А и а при наложении векторных диаграмм ЭДС обмоток ВН и НН. Сле­довательно, при указанных схемах соединения обмоток имеет ме­сто группа 0; обозначается Y/Y - 0. Если же на стороне НН в ну­левую точку соединить зажимы а, b и с, а снимать ЭДС с зажимов х, у и z, то ЭДС Ėab изменит фазу на 180° и трансформатор будет принадлежать группе 6 (Y/Y - 6) (рис. 48, б).

 

Рис. 46. Группы соединения обмоток однофазных транс­форматоров:

а – группа I/I – 0; б – группа I/I – 6

 

Рис. 47. Сравнение положения стрелок часов с обозначением групп соединения

 

При соединении обмоток «звезда–треугольник», показанном на рис. 49, а, имеет место группа 11 (Y/D - 11). Если же поменять местами начала и концы фазных обмоток НН, то вектор Ėab по­вернется на 180° и трансформатор будет относиться к группе 5 (Y/D - 5) (рис. 49, б).

Рис. 48. Схемы соединения обмоток и векторные диаграммы:

а – для группы Y/Y – 0; б – для группы Y/Y – 6

 

Рис. 49. Схемы соединения обмоток и векторные диаграммы:

а – для группы Y/D – 11; б – для группы Y/D – 5

 

 

При одинаковых схемах соединения обмоток ВН и НН, на­пример Y/Y и D/D, получают четные группы соединения, а при неодинаковых схемах, например Y/D или D/Y, – нечетные.

Рассмотренные четыре группы соединения (0, 6, 11 и 5) назы­вают основными. Из каждой основной группы соединения мето­дом круговой перемаркировки выводов на одной стороне транс­форматора, например на стороне НН (без изменения схемы соединения), можно получить по две производные группы. На­пример, если в трансформаторе с группой соединения Y/Y – 0 (рис. 48, а) выводы обмотки НН перемаркировать и вместо после­довательности abc принять последовательность cab, то вектор ЭДС Ėab повернется на 120°, при этом получим группу соедине­ния Y/Y – 4. Если же выводы обмоток НН перемаркировать в по­следовательность bca, то вектор Ėab повернется еще на 120°, а всего на 240°; получим группу Y/Y - 8.

 

Рис. 50. Схемы и группы соединения обмоток трехфазных

двухобмоточных трансформаторов

 

Аналогично от основной группы 6 путем круговой перемаркировки получают производные группы 10 и 2, от основной группы 11 – производные группы 3 и 7, от основной группы 5 – произ­водные группы 9 и 1.

ГОСТ определяет схемы и группы соединения, применяемые для силовых двухобмоточных транса форматоров общепромышленного назначения (рис. 50).

 

Похожие статьи:

poznayka.org

СХЕМЫ И ГРУППЫ СОЕДИНЕНИЯ ОБМОТОК

Существуют три основных способа соединения фазовых обмоток каждой стороны трёхфазного трансформатора:

 

  • Δ-соединение, так называемое соединение треугольником, где три фазных обмотки соединены последовательно и образуют кольцо (или треугольник)
  • Y-соединение, так называемой соединение звездой, где все три обмотки соединены вместе одним концом каждой из обмоток в одной точке, называемой нейтральной точкой или звездой
  • Z-соединение, так называемое соединение зигзагом

 

Естественным выбором для самых высоких напряжений является Y-соединение. В целях защиты от перенапряжения или для прямого заземления имеется нейтральный проходной изолятор.

 

Соединение треугольником используется на одной стороне трансформатора, другая сторона должна быть соединена звездой, особенно в случаях, если нейтраль соединения звездой планируется для зарядки. Соединение обмотки треугольником обеспечивает баланс ампер-виток для тока нулевой последовательности и каждой фазы соединения звездой, это даёт оптимальный  уровень полного сопротивления нулевой последовательности. Без соединения треугольником обмотки ток нулевой последовательности привёл бы к образованию поля токов нулевой последовательности в сердечнике. Если сердечник имеет три стержня, данное поле проникнет сквозь стенки бака и приведёт к выделению тепла. При наличии пяти стержней сердечника или в случае с броневым сердечником, данное поле проникнет между раскрученными боковыми стержнями и полное сопротивление нулевой последовательности повысится. Вследствие этого ток, в случае пробоя на землю может стать настолько слабым, что защитное реле не сработает.

 

Соединение обмотки треугольником позволяет циркулировать третьей гармонике тока внутри треугольника, образованного тремя последовательно соединёнными фазными обмотками. Третья гармоника тока во всех трёх фазах имеет одинаковое направление. Эти токи не могут циркулировать в обмотке, соединённой звездой, с изолированной нейтралью.

 

В  случаях, если у сердечника 5 стержней, или он исполнен в броневом варианте недостаток троичных синусоидальных токов в намагничивающем токе может привести к значительным искажениям наведённого напряжения. Обмотка трансформатора соединённая треугольником устранит это нарушение, так как обмотка с данным соединением обеспечит затухание гармонических токов.

 

Так же в трансформаторах предусмотрено наличие третичной Δ-соединённой обмотки, которая применяется не для зарядки, а для предотвращения искажения напряжения и понижения полного сопротивления нулевой последовательности. Такие обмотки называются компенсационными. Распределительные трансформаторы, которые предназначены для зарядки, между фазой и нейтралью на стороне первого контура, снабжены соединённой треугольником обмоткой. Однако ток в таком соединении может быть очень слабым для достижения минимума номинальной мощности. В подобных случаях высоковольтная обмотка может быть соединена звездой, а вторичная обмотка — зигзагообразно. Токи нулевой последовательности, циркулирующие в двух отводах зигзагообразно соединённой обмотки будут балансировать друг друга, полное сопротивление нулевой последовательности вторичной стороны определяется полем рассеяния магнитного поля между двумя разветвлениями обмоток.

 

При использовании соединения пары обмоток различными способами, есть возможность достигнуть различных степеней напряжения смещения между сторонами трансформатора.

 

  • Большие буквы Y - звезда; D – треугольник – для первичной обмотки;
  • маленькие буквы y - звезда; d – треугольник; z – зигзаг – для вторичного напряжения;
  • буква N - означает вывод нейтрального зажима первичной обмотки на клеммную колодку;
  • буква n - означает вывод нейтрального зажима вторичной обмотки на клеммную колодку;

 

 

for-transformator.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта