Eng Ru
Отправить письмо

О симметрирующих свойствах трансформаторов со схемами соединения обмоток У/ Ун-0 и У/ Zн-11. 6 кв трансформатор тока нулевой последовательности


Трансформаторы тока нулевой последовательности | Трансформаторы

ТЗЛК 0,66 Аналоги: ТЗЛМ, ТЗЛК-СЭЩ-0,66, ТЗЛЭ, ТЗЛ, ТДЗЛК

ТЗЛКР 0,66 Аналоги: ТЗЛР, ТДЗРЛ

Трансформаторы тока ТЗЛК-0,66 и ТЗЛКР-0,66 предназначены для питания схем релейной защиты от замыкания на землю отдельных жил трехфазного кабеля путем трансформации токов нулевой последовательности.

Трансформаторы устанавливаются на кабель диаметром до 200 мм.

Трансформаторы изготавливаются в климатическом исполнении У и Т категории размещения 2 и 3 по ГОСТ 15150-69.

 

Основные параметры и характеристики трансформаторов тока нулевой последовательности ТЗЛК-0,66 и ТЗЛКР-0,66

Наименование параметраЗначение параметра
Номинальное напряжение, кВ 0,66
Номинальная частота , Гц 50 или 66
Односекундный ток стойкости вторичной термической обмотки, А 140
Испытательное одноминутное напряжение промышленной частоты, кВ 3

 

ТРАНСФОРМАТОРЫ ТОКА НУЛЕВОЙ ПОСЛЕДОВАТЕЛЬНОСТИ ТЗЛК-0,66

Тип

тр-ра

Коэффициент

трансформации

Кол-во витков

вторичной обмотки

Значения сопротивления

вторичной обмотки постоянному току, мОм

ТЗЛК-0,66-70

30/1

30

50 ±20%

ТЗЛК-0,66-100

60 ±20%

ТЗЛК-0,66-125

55 ±20%

ТЗЛК-0,66-200

60/1

60

120 ±20%

 

Максимальная чувствительность защиты

Тип реле

Тип

трансфор­

матора

Исполь­зуемая шкала реле, А

Установка тока срабатыва ния, А

Чувствительность защиты (первичный ток, А), не более

При ра­боте с одним тр-ом

При после­дователь­ном сое­динении 2-х тр-ов

При

параллель

ном

соедине­нии 2-х тр-ов

При

параллел ьном соедине­нии 3-х тр-ов

При

параллел

ьном

соедине­

нии

4-х тр-ов

РТ-40/0,2 РТ-140/0,2 SIPROTEC

ТЗЛК

0,1...0,2

0,1

8,5

10,2

12,5

15

25

РТЗ-51

SIPROTEC

ТЗЛК

0,02.,.0,1

0,03

2,8

3,2

4,8

5,0

5,5

Габаритные, установочные, присоединительные размеры и масса трансформаторов тока нулевой последовательности ТЗЛК-0,66

 

ТРАНСФОРМАТОРЫ ТОКА НУЛЕВОЙ ПОСЛЕДОВАТЕЛЬНОСТИ ТЗЛКР-0,66

Максимальная чувствительность защиты

Тип реле

Использ.

шкала реле, А

Установка

срабатывания

 Чувствительность защиты

(первичный ток, А) не более 

При работе

с одним трансф-м

При последова-

тельном соед-ии

2-х трансф-в

При

параллельном соедин-ии 2-х трансф-в

Р 1 -140 /0,2

0,1 - 0,2

0,1

25

30

4.5

РТ 3 - 51

0,02 – 0,1

0,03

3

4

4,5
Габаритные, установочные, присоединительные размеры и масса трансформаторов тока нулевой последовательности ТЗЛКР-0,66

tzlk size2

www.kaskad.com.ua

ТТ нулевой последовательности.

⇐ ПредыдущаяСтр 5 из 5

Для защиты от однополюсных замыканий на кабельных линиях в сетях с малыми токами часто применяют специальный трансформатор тока, так называемый трансформатор тока нулевой последовательности (ТНП). Этот трансформатор состоит из стального магнитопровода кольцеобразной или прямоугольной формы, на который намотана вторичная обмотка. Трансформатор надевают на трехжильный кабель, являющийся его первичной обмоткой. При нормальном режиме работы результирующий магнитный поток обмотки равен нулю. При замыкании одной из фаз на землю в первичной обмотке трансформатора появляются токи нулевой последовательности, в результате которых в его вторичной обмотке наводится э.д.с, и реле, включенное в эту обмотку, срабатывает. В зависимости от выбранной схемы защиты реле может действовать на включение сигнала или отключение установки. Под действием внешних причин (сварочные работы, замыкание на землю близко расположенного кабеля а т. п.) по броне и оболочке кабеля могут протекать токи, способные вызвать ложное срабатывание защиты. Во избежание этого при монтаже трансформатора нулевой последовательности проводник 4, заземляющий воронку 5, пропускают сквозь окно трансформатора. При этом токи, протекающие по оболочке и броне кабеля, яройдут сквозь окно трансформатора дважды, но в разных направлениях, и создаваемые ими магнитные потоки взаимно уничтожатся.

Кроме рассмотренных простейших схем защит, реагирующих на повышение тока, в защищаемой линии существуют защиты минимального напряжения. Наиболее простая - это защита с использованием отключающей катушки минимального напряжения, встроенной в привод выключателя мощности. При падении напряжения до 0,8 номинального (и ниже) защелка привода, удерживаемая катушкой, освобождается и выключатель отключается.

15. Как обеспечивается селективность МТЗ линий.Принцип действия и селективности защиты. Максимальные токовые защиты (МТЗ) являются основным видом РЗ для сетей с односторонним питанием. Они устанавливаются в начале каждой ЛЭП со стороны источника питания (рис. 1). Каждая ЛЭП имеет самостоятельную РЗ, отключающую ЛЭП в случае повреждения на ней самой или на шинах питающейся от нее ПС. и резервирующую РЗ соседней ЛЭП.

При КЗ в какой-либо точке сети, например в точке К1 (рис. 1), ток КЗ проходит по всем участкам сети, расположенным между источником питания и местом повреждения, в результате чего приходят в действие все РЗ (1, 2, 3, 4). Однако по условию селективности сработать на отключение должна только РЗ 4, установленная на поврежденной ЛЭП. Для обеспечения указанной селективности МТЗ выполняются с выдержками времени, нарастающими от потребителей к источнику питания, как это показано на рис. 1, б. При соблюдении этого принципа в случае КЗ в точке К1 раньше других сработает МТЗ 4 и отключит поврежденную ЛЭП. Зашиты 1, 2 и 3, имеющие большие выдержки времени, вернутся в начальное положение, не успев подействовать на отключение. Соответственно при КЗ в точке К2 быстрее всех сработает МТЗ 3, а МТЗ 1 и 2, имеющие большее время, не успеют подействовать.

24. Принцип действия и параметры срабатывания токовой направленной защиты.

Направленной называется РЗ, действующая только при определенном направлении (знаке) мощности КЗ SK. Необходимость в применении направленных РЗ возникает в сетях с двусторонним питанием (рис. 7.1, а) и в кольцевых сетях с одним источником питания (рис. 7.1, б). При двустороннем питании места КЗ для ликвидации повреждения РЗ должна устанавливаться с обеих сторон защищаемой ЛЭП, как показано на рис. 7.1.

Направленная токовая защита (НТЗ) при КЗ должна реагировать на значение тока и направление мощности в поврежденных фазах защищаемой ЛЭП. Структурная (функциональная) схема НТЗ, наиболее часто применяемая и показанная на рис. 7.2, состоит из трех основных элементов (органов): два пусковых реле тока КА (органы тока), которые срабатывают при появлении тока КЗ и выдают сигнал, разрешающий РЗ действовать; два реле направления мощности KW (органы направления мощности - OHM), которые срабатывают при направлении мощности от шин в ЛЭП и подают сигнал, разрешающий РЗ действовать. Если же мощность направлена к шинам, то реле KW выдают сигнал, блокирующий действие РЗ; логической схемы (органы логики), которая действует по заданной программе: получив сигнал о срабатывании органа тока, OHM формирует сигнал о срабатывании РЗ, который с заданной выдержкой времени поступает на ЭО выключателя и производит его отключение. Пусковое реле тока КА включают на ток фазы ЛЭП, а реле направления мощности (РHМ) - на ток той же фазы и соответствующее междуфазное напряжение (рис. 7.3).

 

Назначение ТН НАМИ-10.

Трансформаторы напряжения (ТН) предназначены для понижения высокого напряжения до значения, равного 100 В, необходимого для питания измерительных приборов, цепей автоматики, сигнализации и защитных устройств.

Для питания защитных устройств применяются трехобмоточные трансформаторы с дополнительной вторичной обмоткой.

Применение трансформаторов напряжения позволяет использовать для измерения на высоком напряжении стандартные измерительные приборы, расширяя пределы измерения; обмотки реле, включаемых через ТН, также могут иметь стандартные исполнения.

Трансформатор напряжения изолирует измерительные приборы и реле от высокого напряжения, благодаря чему обеспечивается безопасность их обслуживания.

ТН применяются в наружных или внутренних электроустановках переменного тока напряжением 0,38 – 110 кВ и номинальной частотой 50 Гц от их работы зависит точность электрических измерений и учета электроэнергии, а также надежность действия релейной защиты и противоаварийной автоматики.

ТН с двумя вторичными обмотками предназначается не только для питания измерительных приборов и реле, но и для работы в устройстве сигнализации замыкания на землю в сети с изолированной нейтралью.

Трехобмоточные трансформаторы серии НАМИ предназначены для сетей с изолированной нейтралью.

НАМИ – трансформатор напряжения антирезонансный масляный с обмоткой для контроля изоляции;

Трансформаторы напряжения серии НАМИ предназначены для выработки сигнала измерительной информации для электрических приборов, цепей учета, защиты и сигнализации в сетях с изолированной или заземленной через дугогасящий реактор нейтралью. Трансформатор устойчив к токам короткого замыкания и дуговым разрядам на линии.

 

Читайте также:

lektsia.com

Коэффициенты трансформации трансформаторов тока нулевой последовательности

Опорный трансформатор тока ТОЛ-35 III-7.2

Класс напряжения: 35 кВНоминальный первичный ток: 10-2000 АНоминальный вторичный ток: 1-5 АКласс точности: 0,5; 0,5S; 0,2; 0,2S; 10PКоличество вторичных обмоток: 1, 2, 3 или 4

Высоковольтные вводы

ГКВП III-90-40,5/1000-ТТ150 О1ГКЛП III-90-110/2000 О1

Заземляемый трансформатор напряжения ЗНОЛ.01ПМИ-35

Класс напряжения, кВ: 35Напряжение основной вторичной обмотки, В: 100/√3Напряжение второй основной вторичной обмотки, В: 100/√3(для четырех обмоточного трансформатора)Напряжение дополнительной вторичной обмотки, В: 100/3Номинальная мощность, ВА: от 10 до 600

Трансформаторы тока наружной установки серии ТВ

Класс напряжения: 35, 110 и 220 кВНоминальный первичный ток: 100-3000 АНоминальный вторичный ток: 1-5 АКласс точности: 0,5; 0,5S; 0,2; 0,2S; 10PКоличество вторичных обмоток: 1 или 3

Пункт коммерческого учета (ПКУ)

Высоковольтные модули для пунктов коммерческого учета (ПКУ) в уменьшенных габаритных размерах.

 

 

Опорные трансформаторы тока ТОП-0,66-I и шинные трансформаторы тока ТШП-0,66-I

Класс напряжения: 0,66 кВНоминальный первичный ток: 1-600 АНоминальный вторичный ток: 1-5 АКласс точности: 0,5; 0,5S; 0,2; 0,2S

Незаземляемые трансформаторы напряжения НОЛ.08-6(10)М

Класс напряжения, кВ: 6 или 10Напряжение основной вторичной обмотки, В: 100Номинальная мощность, ВА, в классе точности: от 20 до 200

Шинные трансформаторы тока ТШЛ-0,66-VI

!!! НОВИНКА !!!

Номинальный первичный ток: 200-1200 АНоминальный вторичный ток: 1-5 АКласс точности: 0,5; 0,5S; 0,2; 0,2S; 5Р; 10P

Опорные трансформаторы тока ТОЛ-110 III

!!! НОВИНКА !!!

Класс напряжения: 110 кВНоминальный первичный ток: 20-2000 АНоминальный вторичный ток: 1-5 АКласс точности: 0,5; 0,5S; 0,2; 0,2S; 1; 3; 5P; 10PКоличество вторичных обмоток: 3, 4, 5 или 6

Однофазные силовые трансформаторы ОЛС-6,3

Номинальная мощность: 6.3 кВА

 

www.cztt.ru

О симметрирующих свойствах трансформаторов со схемами соединения обмоток У/ Ун-0 и У/ Zн-11

<div><img src="//mc.yandex.ru/watch/25694846" mce_src="//mc.yandex.ru/watch/25694846" mce_style="position:absolute; left:-9999px;" alt="" /></div>

Отсутствие у изготовителей и заказчиков четкого представления о принципиальных отличиях свойств силовых трансформаторов малой мощности с разными схемами соединения обмоток приводит к ошибкам в их применении. Причем неправильный выбор схемы соединения трансформаторных обмоток не только ухудшает технические показатели электроустановок и снижает качество электроэнергии, но и приводит к серьезным авариям.

В соответствии с ГОСТ 11677-85 [1] силовые трансформаторы 10(6)/0,4 кВ мощностью от 25 до 250 кВА могут изготавливаться со следующими схемами соединения обмоток:

  • «звезда/звезда» - Y/Yн;
  • «треугольник-звезда» - D/Yн;
  • «звезда-зигзаг» - Y/Zн.

Принципиальное отличие технических характеристик трансформаторов с различными схемами соединений обмоток заключается в разной реакции на несимметричные токи, содержащие составляющую нулевой последовательности. Это прежде всего однофазные сквозные короткие замыкания, а также рабочие режимы с неравномерной загрузкой фаз. Как известно, силовые трансформаторы 6(10)/0,4 кВ имеют трехстержневой стальной сердечник, на каждом стержне которого располагаются первичная и вторичная обмотки соответствующей фазы - А, В и С. Магнитные потоки трех фаз в симметричных режимах работы циркулируют в стальном сердечнике трансформатора и за его пределы не выходят. Что происходит при нарушении симметрии с преобладанием нагрузки одной из фаз на стороне 0,4 кВ? Такие режимы работы исследуются с использованием теории симметричных составляющих [2]. Согласно этой теории любой несимметричный режим работы трехфазной сети представляется в виде геометрической суммы трех симметричных составляющих тока и напряжения: это составляющие прямой, обратной и нулевой последовательностей.Рассмотрим режим максимальной однофазной несимметрии - режим однофазного короткого замыкания (ОКЗ) на стороне 0,4 кВ трансформатора со схемой соединения обмоток D/Yн. Картинка токов симметричных составляющих в обмотках в этом режиме представлена на рис. 1. В неповрежденных фазах на стороне 0,4 кВ геометрическая сумма трех симметричных составляющих тока равна нулю (рабочей нагрузкой фаз пренебрегаем), а в поврежденной фазе эта сумма максимальна и равна току ОКЗ. Его величина определяется известной формулой:

, (1)

где Uл - линейное напряжение;R1, R0, X1, Х0 - соответственно активные и реактивные сопротивления прямой и нулевой последовательности.

СОПРОТИВЛЕНИЯ ПРЯМОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

Сопротивления прямой последовательности R1 и X1 трансформаторов с разными схемами соединения обмоток определяются одними и теми же формулами и отличаются незначительно:

Заглянув в каталоги, нетрудно убедиться, что входящие в эти формулы известные величины Ркз и Uк от схем соединения обмоток трансформатора практически не зависят, а следовательно, от них не зависят и сопротивления прямой последовательности. В отличие от этих сопротивлений, сопротивления нулевой последовательности трансформаторов с разными схемами соединения обмоток отличаются принципиально.

СОПРОТИВЛЕНИЯ НУЛЕВОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

Рассмотрим схему векторов токов и магнитных потоков в трансформаторе со схемой соединения обмоток D/Yн (рис. 2).В таких трансформаторах токи прямой, обратной и нулевой последовательностей протекают как в первичной, так и во вторичной обмотках. При этом токи нулевой последовательности в первичной обмотке замыкаются внутри нее и в сеть не выходят. Создаваемые токами нулевой последовательности первичных и вторичных обмоток намагничивающие силы (ампер-витки) направлены встречно и почти полностью компенсируют друг друга, что обуславливает небольшую величину реактивных сопротивлений трансформатора. При этом сопротивления прямой и нулевой последовательностей приблизительно равны:R1 = R0; Х1 = Х0.В трансформаторах со схемой соединения обмоток Y/Zн в аналогичном режиме ОКЗ токи нулевой последовательности протекают лишь по вторичной обмотке трансформатора, однако магнитного потока нулевой последовательности они не создают, что объясняется особенностью схемы Zн - «зигзаг». Эта особенность состоит в том, что на каждом стержне трансформатора расположено по одной вторичной полуобмотке двух разных фаз (рис. 3). В режиме ОКЗ намагничивающие силы, создаваемые токами нулевой последовательности в этих полуобмотках, направлены встречно и друг друга взаимно компенсируют. При этом токи нулевой последовательности в первичной обмотке отсутствуют. В таких трансформаторах сопротивления нулевой последовательности оказываются меньше сопротивлений прямой последовательности: R0 < R1; Х0 < Х1.

Рис. 1. Токи симметричных составляющих в обмотках трансформатора в режиме однофазного короткого замыкания

IA21, IA22, IA20, IB21, IB22, IB20, IC21, IC22, IC20 - токи фаз А, В, С прямой, обратной и нулевой последовательностей вторичной обмотки;IA11, IA12, IA10, IB11, IB12, IB10, IC11, IC12, IC10 - токи фаз А, В, С прямой, обратной и нулевой последовательностей первичной обмотки.

Рис. 2. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмотокD/Yн

Рис. 3. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Y/Zн 

Как следует из формулы (1), это обеспечивает большую величину тока ОКЗ у трансформаторов со схемами Y/Zн по сравнению с трансформаторами со схемами D/Yн.Теперь обратимся к трансформаторам со схемой соединения обмоток Y/Yн. Как известно, в обмотках, соединенных в звезду без выведенной нулевой точки, токи нулевой последовательности протекать не могут. Поэтому в режиме ОКЗ токи этой последовательности протекают только во вторичной обмотке трансформатора.Совпадающие по фазе магнитные потоки нулевой последовательности, создаваемые токами вторичной обмотки, выходят за пределы магнитного сердечника и замыкаются через металлический кожух трансформатора (рис. 4). Это определяет значительно большую величину сопротивлений нулевой последовательности таких трансформаторов: R0 >> R1; X0 >> X1.

Рис. 4. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Y/Yн 

Следует отметить, что в отличие от сопротивлений прямой последовательности трансформаторов, которые можно рассчитать, сопротивления нулевой последовательности трансформаторов со схемами соединения обмоток Y/Yн расчету не поддаются. Их можно определить только экспериментально. Величина этих сопротивлений во многом зависит от конструкции кожуха трансформатора, от величины зазоров между сердечником и кожухом и т.п. Схема замера сопротивлений нулевой последовательности приведена в ГОСТ 3484.1-88 [3]. К сожалению, в этом документе указано, что такие замеры предприятия-производители проводят по просьбе заказчиков. Вероятно, в последние годы таких просьб от заказчиков не поступает, а изготовители эти замеры самостоятельно не производят, считая, что в них нет необходимости. В результате проектировщики при выполнении расчетов пользуются старыми справочными данными. Однако использовать устаревшую информацию надо чрезвычайно осторожно, ведь конструкции современных трансформаторов, в частности кожухов, а также материалы, из которых они изготовлены, существенно изменились.Кроме того, имеющиеся на сегодня данные по сопротивлениям нулевой последовательности трансформаторов крайне скудны и противоречивы. Так, согласно замерам Минского трансформаторного завода, выполненным много лет назад, реактивные сопротивления нулевой последовательности трансформаторов со схемами соединения обмоток Y/Yн превышают сопротивления прямой последовательности в среднем в 10 раз. В то же время в ГОСТ 3484.1-88 имеется фраза о том, что эти сопротивления могут отличаться на два порядка. И этим сегодня противоречия не исчерпываются[4].

ПОЧЕМУ НЕОБХОДИМО ЗНАТЬ РЕАЛЬНЫЕ ЗНАЧЕНИЯ СОПРОТИВЛЕНИЙ

Реальные значения сопротивлений нулевой последовательности знать необходимо, поскольку они определяют величину тока ОКЗ. Чем больше эти сопротивления, тем меньше ток ОКЗ, соответственно труднее осуществить защиту трансформатора. В нормальных режимах работы большие сопротивления нулевой последовательности при неравномерной загрузке фаз трансформатора на стороне 0,4 кВ приводят к ухудшению качества электроэнергии у потребителя.Так, если принять R1 = R0, X1 = X0, что характерно для трансформаторов со схемами соединения обмоток D/Yн, то получим:

(2)

Таким образом, при этих условиях ток ОКЗ на выводах 0,4 кВ трансформатора будет равен току трехфазного КЗ.Однако, если R0>>R1 и X0>>X1, что характерно для трансформаторов со схемами соединения обмоток Y/Yн, то величина тока ОКЗ оказывается значительно меньше тока трехфазного КЗ, то есть Iокз << I3фкз. Какие при этом могут возникнуть трудности с защитой, особенно если она выполнена со стороны обмотки ВН предохранителями 6(10) кВ, можно показать на конкретном примере. На рис. 5 изображена схема подключения трансформатора 100 кВА, 6/0,4 кВ питания собственных нужд (ТСН) ПС 110/35/6 кВ. На ПС с переменным оперативным током такие трансформаторы устанавливаются на ОРУ и подключаются к воздушному вводу, идущему от силового трансформатора к вводной ячейке ЗРУ-6(10) кВ. Защита трансформатора, включая кабель 0,4 кВ до щита 0,4 кВ, выполняется предохранителями 6 кВ. Токи КЗ в конце защищаемой предохранителями зоны - при вводе на щит 0,4 кВ приведены в табл. 1. Как из нее видно, минимальное значение тока КЗ через предохранители 6 кВ имеет место при однофазном замыкании на стороне 0,4 кВ.

Таблица 1. Токи короткого замыкания в конце защищаемой предохранителями зоны за трансформатором 100 кВА, 6/0,4 кВ, D/Yн при вводе на щит 0,4 кВ

Рис. 5. Схема подключения трансформатора 100 кВА, 6/0,4 кВ для питания собственных нужд ПС 110/35/6 кВ

Согласно существующим рекомендациям по условиям отстройки от броска тока намагничивания трансформатора мощностью 100 кВА номинальный ток предохранителей принимается равным Iн.пр = (2 ÷ 3) Iн.тр. В данном случае Iн.пр  2 ·10 А  20. Принимаем Iн.пр = 20 А.

Минимальный отключаемый ток предохранителем типа ПКТ-6 кВ, 20 А согласно каталожным данным составляет Iмин.откл.пр = 240 А, что значительно больше токов КЗ, приведенных в табл. 1.Таким образом, защита предохранителями типа ПКТ 6 кВ оказывается нечувствительной. Более того, при протекании тока КЗ ниже минимально отключаемого, предохранитель не только не защищает оборудование, но и разрушается сам, вызывая аварию. В качестве защитного аппарата можно рассмотреть возможность использования предохранителей зарубежных фирм, например марки Merlin Gerin. Номинальный ток предохранителя специалисты компании рекомендуют выбирать из условия Iпр. 0,1с  12 Iном.тр.Пользуясь времятоковой зависимостью, приведенной в [5], определяем, что этому условию удовлетворяет предохранитель Fusarc c номинальным током 20 А, минимальный ток отключения которого равен 55 А. Казалось бы, этот предохранитель надежно защищает электрооборудование, т.к. минимально отключаемый им ток меньше минимального тока КЗ: 62 А  55 А. Однако время отключения данным предохранителем тока КЗ, равного 62 А, составляет 7 с. При таком длительном времени необходимо учитывать эффект спада тока, вызванный увеличением активного сопротивления кабеля вследствие его нагрева [6]. В результате спада тока его значение приближается к минимальному току отключения предохранителя -55 А, что делает защиту ненадежной.Улучшить надежность защиты можно путем применения силового трансформатора 6/0,4 кВ со схемой соединения обмоток Y/Zн. В этом случае минимальный ток короткого замыкания через предохранители увеличивается до 80 А, а время его отключения предохранителем сокращается до 0,6 с и защита становится достаточно надежной.Если же в рассмотренном примере будет применен трансформатор со схемой соединения обмоток Y/Yн, то минимальный ток КЗ через предохранители составит лишь 22 А. Очевидно, что защитить электрооборудование предохранителями 6 кВ при таком токе невозможно. Недостатки трансформаторов со схемой соединения обмоток Y/Yн проявляются и в нормальных режимах работы при неравномерной загрузке фаз. Потери напряжения в более загруженной фазе могут резко возрасти по сравнению с менее за-груженными фазами, особенно при большой загрузке трансформатора и низком cos j нагрузки.Однако означает ли всё вышесказанное, что трансформаторы со схемой соединения обмоток Y/Yн не должны изготавливаться вообще? Представляется, что это не так. Не всегда большая величина сопротивления нулевой последовательности трансформатора является недостатком. Например, при применении трансформаторов более 1000 кВА может возникнуть проблема устойчивости однофазной коммутационной аппаратуры 0,4 кВ к току ОКЗ. В этом случае большая величина сопротивления нулевой последовательности трансформатора со схемой Y/Yн поможет решить эту проблему.Что же касается защиты таких трансформаторов, то она решается с помощью релейной защиты и выключателя 6(10) кВ, а с низкой стороны - с помощью вводного автомата.

ВЫВОДЫ:

Для трансформаторов малой мощности (от 25 до 250 кВА), защищаемых предохранителями со стороны ВН, безусловное преимущество имеет схема соединения обмоток Y/Zн. Несколько меньший эффект дает схема D/Yн. Схему Y/Yн для таких трансформаторов применять не следует.Схема соединения обмоток трансформаторов Y/Yн может применяться в сравнительно редких случаях для более мощных трансформаторов при необходимости ограничения тока однофазного КЗ с целью повышения устойчивости коммутационной аппаратуры.Предприятиям-изготовителям силовых трансформаторов следует в обязательном порядке производить замеры их сопротивлений нулевой последовательности.

ЛИТЕРАТУРА

1. ГОСТ 11677-85. Трансформаторы силовые. Общие технические условия.2. Ульянов С.А. Короткие замыкания в электрических системах. - М.: Госэнергоиздат, 1952. - 280 с.3. ГОСТ 3484.1-88 (СТ СЭВ 1070-78). Трансформаторы силовые. Методы электромагнитных испытаний.4. Справочник по проектированию электроснабжения, линий электропередачи и сетей / Под ред. Большама Я.М., Круповича В.И., Самовера М.Л. и др. - М.: Энергия, 1975. - 696 с.5. Каталог на предохранители Fusarc Merlin Gerin (стандарт DIN).6. ГОСТ 28249-93. Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ.

russkij-transformator.ds30.ru

О симметрирующих свойствах трансформаторов со схемами соединения обмоток У/ Ун-0 и У/ Zн-11

Отсутствие у изготовителей и заказчиков четкого представления о принципиальных отличиях свойств силовых трансформаторов малой мощности с разными схемами соединения обмоток приводит к ошибкам в их применении. Причем неправильный выбор схемы соединения трансформаторных обмоток не только ухудшает технические показатели электроустановок и снижает качество электроэнергии, но и приводит к серьезным авариям.

В соответствии с ГОСТ 11677-85 [1] силовые трансформаторы 10(6)/0,4 кВ мощностью от 25 до 250 кВА могут изготавливаться со следующими схемами соединения обмоток:

  • «звезда/звезда» - Y/Yн;
  • «треугольник-звезда» - D/Yн;
  • «звезда-зигзаг» - Y/Zн.

Принципиальное отличие технических характеристик трансформаторов с различными схемами соединений обмоток заключается в разной реакции на несимметричные токи, содержащие составляющую нулевой последовательности. Это прежде всего однофазные сквозные короткие замыкания, а также рабочие режимы с неравномерной загрузкой фаз. Как известно, силовые трансформаторы 6(10)/0,4 кВ имеют трехстержневой стальной сердечник, на каждом стержне которого располагаются первичная и вторичная обмотки соответствующей фазы - А, В и С. Магнитные потоки трех фаз в симметричных режимах работы циркулируют в стальном сердечнике трансформатора и за его пределы не выходят. Что происходит при нарушении симметрии с преобладанием нагрузки одной из фаз на стороне 0,4 кВ? Такие режимы работы исследуются с использованием теории симметричных составляющих [2]. Согласно этой теории любой несимметричный режим работы трехфазной сети представляется в виде геометрической суммы трех симметричных составляющих тока и напряжения: это составляющие прямой, обратной и нулевой последовательностей.Рассмотрим режим максимальной однофазной несимметрии - режим однофазного короткого замыкания (ОКЗ) на стороне 0,4 кВ трансформатора со схемой соединения обмоток D/Yн. Картинка токов симметричных составляющих в обмотках в этом режиме представлена на рис. 1. В неповрежденных фазах на стороне 0,4 кВ геометрическая сумма трех симметричных составляющих тока равна нулю (рабочей нагрузкой фаз пренебрегаем), а в поврежденной фазе эта сумма максимальна и равна току ОКЗ. Его величина определяется известной формулой:

, (1)

где Uл - линейное напряжение;R1, R0, X1, Х0 - соответственно активные и реактивные сопротивления прямой и нулевой последовательности.

СОПРОТИВЛЕНИЯ ПРЯМОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

Сопротивления прямой последовательности R1 и X1 трансформаторов с разными схемами соединения обмоток определяются одними и теми же формулами и отличаются незначительно:

Заглянув в каталоги, нетрудно убедиться, что входящие в эти формулы известные величины Ркз и Uк от схем соединения обмоток трансформатора практически не зависят, а следовательно, от них не зависят и сопротивления прямой последовательности. В отличие от этих сопротивлений, сопротивления нулевой последовательности трансформаторов с разными схемами соединения обмоток отличаются принципиально.

СОПРОТИВЛЕНИЯ НУЛЕВОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

Рассмотрим схему векторов токов и магнитных потоков в трансформаторе со схемой соединения обмоток D/Yн (рис. 2).В таких трансформаторах токи прямой, обратной и нулевой последовательностей протекают как в первичной, так и во вторичной обмотках. При этом токи нулевой последовательности в первичной обмотке замыкаются внутри нее и в сеть не выходят. Создаваемые токами нулевой последовательности первичных и вторичных обмоток намагничивающие силы (ампер-витки) направлены встречно и почти полностью компенсируют друг друга, что обуславливает небольшую величину реактивных сопротивлений трансформатора. При этом сопротивления прямой и нулевой последовательностей приблизительно равны:R1 = R0; Х1 = Х0.В трансформаторах со схемой соединения обмоток Y/Zн в аналогичном режиме ОКЗ токи нулевой последовательности протекают лишь по вторичной обмотке трансформатора, однако магнитного потока нулевой последовательности они не создают, что объясняется особенностью схемы Zн - «зигзаг». Эта особенность состоит в том, что на каждом стержне трансформатора расположено по одной вторичной полуобмотке двух разных фаз (рис. 3). В режиме ОКЗ намагничивающие силы, создаваемые токами нулевой последовательности в этих полуобмотках, направлены встречно и друг друга взаимно компенсируют. При этом токи нулевой последовательности в первичной обмотке отсутствуют. В таких трансформаторах сопротивления нулевой последовательности оказываются меньше сопротивлений прямой последовательности: R0 < R1; Х0 < Х1.

Рис. 1. Токи симметричных составляющих в обмотках трансформатора в режиме однофазного короткого замыкания

IA21, IA22, IA20, IB21, IB22, IB20, IC21, IC22, IC20 - токи фаз А, В, С прямой, обратной и нулевой последовательностей вторичной обмотки;IA11, IA12, IA10, IB11, IB12, IB10, IC11, IC12, IC10 - токи фаз А, В, С прямой, обратной и нулевой последовательностей первичной обмотки.

Рис. 2. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмотокD/Yн

Рис. 3. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Y/Zн 

Как следует из формулы (1), это обеспечивает большую величину тока ОКЗ у трансформаторов со схемами Y/Zн по сравнению с трансформаторами со схемами D/Yн.Теперь обратимся к трансформаторам со схемой соединения обмоток Y/Yн. Как известно, в обмотках, соединенных в звезду без выведенной нулевой точки, токи нулевой последовательности протекать не могут. Поэтому в режиме ОКЗ токи этой последовательности протекают только во вторичной обмотке трансформатора.Совпадающие по фазе магнитные потоки нулевой последовательности, создаваемые токами вторичной обмотки, выходят за пределы магнитного сердечника и замыкаются через металлический кожух трансформатора (рис. 4). Это определяет значительно большую величину сопротивлений нулевой последовательности таких трансформаторов: R0 >> R1; X0 >> X1.

Рис. 4. Направления токов и магнитных потоков нулевой последовательности в трансформаторе со схемой соединения обмоток Y/Yн 

Следует отметить, что в отличие от сопротивлений прямой последовательности трансформаторов, которые можно рассчитать, сопротивления нулевой последовательности трансформаторов со схемами соединения обмоток Y/Yн расчету не поддаются. Их можно определить только экспериментально. Величина этих сопротивлений во многом зависит от конструкции кожуха трансформатора, от величины зазоров между сердечником и кожухом и т.п. Схема замера сопротивлений нулевой последовательности приведена в ГОСТ 3484.1-88 [3]. К сожалению, в этом документе указано, что такие замеры предприятия-производители проводят по просьбе заказчиков. Вероятно, в последние годы таких просьб от заказчиков не поступает, а изготовители эти замеры самостоятельно не производят, считая, что в них нет необходимости. В результате проектировщики при выполнении расчетов пользуются старыми справочными данными. Однако использовать устаревшую информацию надо чрезвычайно осторожно, ведь конструкции современных трансформаторов, в частности кожухов, а также материалы, из которых они изготовлены, существенно изменились.Кроме того, имеющиеся на сегодня данные по сопротивлениям нулевой последовательности трансформаторов крайне скудны и противоречивы. Так, согласно замерам Минского трансформаторного завода, выполненным много лет назад, реактивные сопротивления нулевой последовательности трансформаторов со схемами соединения обмоток Y/Yн превышают сопротивления прямой последовательности в среднем в 10 раз. В то же время в ГОСТ 3484.1-88 имеется фраза о том, что эти сопротивления могут отличаться на два порядка. И этим сегодня противоречия не исчерпываются[4].

ПОЧЕМУ НЕОБХОДИМО ЗНАТЬ РЕАЛЬНЫЕ ЗНАЧЕНИЯ СОПРОТИВЛЕНИЙ

Реальные значения сопротивлений нулевой последовательности знать необходимо, поскольку они определяют величину тока ОКЗ. Чем больше эти сопротивления, тем меньше ток ОКЗ, соответственно труднее осуществить защиту трансформатора. В нормальных режимах работы большие сопротивления нулевой последовательности при неравномерной загрузке фаз трансформатора на стороне 0,4 кВ приводят к ухудшению качества электроэнергии у потребителя.Так, если принять R1 = R0, X1 = X0, что характерно для трансформаторов со схемами соединения обмоток D/Yн, то получим:

(2)

Таким образом, при этих условиях ток ОКЗ на выводах 0,4 кВ трансформатора будет равен току трехфазного КЗ.Однако, если R0>>R1 и X0>>X1, что характерно для трансформаторов со схемами соединения обмоток Y/Yн, то величина тока ОКЗ оказывается значительно меньше тока трехфазного КЗ, то есть Iокз << I3фкз. Какие при этом могут возникнуть трудности с защитой, особенно если она выполнена со стороны обмотки ВН предохранителями 6(10) кВ, можно показать на конкретном примере. На рис. 5 изображена схема подключения трансформатора 100 кВА, 6/0,4 кВ питания собственных нужд (ТСН) ПС 110/35/6 кВ. На ПС с переменным оперативным током такие трансформаторы устанавливаются на ОРУ и подключаются к воздушному вводу, идущему от силового трансформатора к вводной ячейке ЗРУ-6(10) кВ. Защита трансформатора, включая кабель 0,4 кВ до щита 0,4 кВ, выполняется предохранителями 6 кВ. Токи КЗ в конце защищаемой предохранителями зоны - при вводе на щит 0,4 кВ приведены в табл. 1. Как из нее видно, минимальное значение тока КЗ через предохранители 6 кВ имеет место при однофазном замыкании на стороне 0,4 кВ.

Таблица 1. Токи короткого замыкания в конце защищаемой предохранителями зоны за трансформатором 100 кВА, 6/0,4 кВ, D/Yн при вводе на щит 0,4 кВ

Рис. 5. Схема подключения трансформатора 100 кВА, 6/0,4 кВ для питания собственных нужд ПС 110/35/6 кВ

Согласно существующим рекомендациям по условиям отстройки от броска тока намагничивания трансформатора мощностью 100 кВА номинальный ток предохранителей принимается равным Iн.пр = (2 ÷ 3) Iн.тр. В данном случае Iн.пр  2 ·10 А  20. Принимаем Iн.пр = 20 А.

Минимальный отключаемый ток предохранителем типа ПКТ-6 кВ, 20 А согласно каталожным данным составляет Iмин.откл.пр = 240 А, что значительно больше токов КЗ, приведенных в табл. 1.Таким образом, защита предохранителями типа ПКТ 6 кВ оказывается нечувствительной. Более того, при протекании тока КЗ ниже минимально отключаемого, предохранитель не только не защищает оборудование, но и разрушается сам, вызывая аварию. В качестве защитного аппарата можно рассмотреть возможность использования предохранителей зарубежных фирм, например марки Merlin Gerin. Номинальный ток предохранителя специалисты компании рекомендуют выбирать из условия Iпр. 0,1с  12 Iном.тр.Пользуясь времятоковой зависимостью, приведенной в [5], определяем, что этому условию удовлетворяет предохранитель Fusarc c номинальным током 20 А, минимальный ток отключения которого равен 55 А. Казалось бы, этот предохранитель надежно защищает электрооборудование, т.к. минимально отключаемый им ток меньше минимального тока КЗ: 62 А  55 А. Однако время отключения данным предохранителем тока КЗ, равного 62 А, составляет 7 с. При таком длительном времени необходимо учитывать эффект спада тока, вызванный увеличением активного сопротивления кабеля вследствие его нагрева [6]. В результате спада тока его значение приближается к минимальному току отключения предохранителя -55 А, что делает защиту ненадежной.Улучшить надежность защиты можно путем применения силового трансформатора 6/0,4 кВ со схемой соединения обмоток Y/Zн. В этом случае минимальный ток короткого замыкания через предохранители увеличивается до 80 А, а время его отключения предохранителем сокращается до 0,6 с и защита становится достаточно надежной.Если же в рассмотренном примере будет применен трансформатор со схемой соединения обмоток Y/Yн, то минимальный ток КЗ через предохранители составит лишь 22 А. Очевидно, что защитить электрооборудование предохранителями 6 кВ при таком токе невозможно. Недостатки трансформаторов со схемой соединения обмоток Y/Yн проявляются и в нормальных режимах работы при неравномерной загрузке фаз. Потери напряжения в более загруженной фазе могут резко возрасти по сравнению с менее за-груженными фазами, особенно при большой загрузке трансформатора и низком cos j нагрузки.Однако означает ли всё вышесказанное, что трансформаторы со схемой соединения обмоток Y/Yн не должны изготавливаться вообще? Представляется, что это не так. Не всегда большая величина сопротивления нулевой последовательности трансформатора является недостатком. Например, при применении трансформаторов более 1000 кВА может возникнуть проблема устойчивости однофазной коммутационной аппаратуры 0,4 кВ к току ОКЗ. В этом случае большая величина сопротивления нулевой последовательности трансформатора со схемой Y/Yн поможет решить эту проблему.Что же касается защиты таких трансформаторов, то она решается с помощью релейной защиты и выключателя 6(10) кВ, а с низкой стороны - с помощью вводного автомата.

ВЫВОДЫ

Для трансформаторов малой мощности (от 25 до 250 кВА), защищаемых предохранителями со стороны ВН, безусловное преимущество имеет схема соединения обмоток Y/Zн. Несколько меньший эффект дает схема D/Yн. Схему Y/Yн для таких трансформаторов применять не следует.Схема соединения обмоток трансформаторов Y/Yн может применяться в сравнительно редких случаях для более мощных трансформаторов при необходимости ограничения тока однофазного КЗ с целью повышения устойчивости коммутационной аппаратуры.Предприятиям-изготовителям силовых трансформаторов следует в обязательном порядке производить замеры их сопротивлений нулевой последовательности.

ЛИТЕРАТУРА

1. ГОСТ 11677-85. Трансформаторы силовые. Общие технические условия.2. Ульянов С.А. Короткие замыкания в электрических системах. - М.: Госэнергоиздат, 1952. - 280 с.3. ГОСТ 3484.1-88 (СТ СЭВ 1070-78). Трансформаторы силовые. Методы электромагнитных испытаний.4. Справочник по проектированию электроснабжения, линий электропередачи и сетей / Под ред. Большама Я.М., Круповича В.И., Самовера М.Л. и др. - М.: Энергия, 1975. - 696 с.5. Каталог на предохранители Fusarc Merlin Gerin (стандарт DIN).6. ГОСТ 28249-93. Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ.

russkij-transformator.ds30.ru

Трансформатор ТЗРЛ-100

Трансформатор ТЗРЛ-100 предназначен для передачи сигнала приборам и устройствам релейной защиты, автоматики, сигнализации и управления. Устанавливается в комплектных распределительных устройствах на кабель диаметром до 100мм.

Трансформатор ТЗРЛ-100 изготавливают 2-х типов. 1 тип - трансформатор тока нулевой последовательности, 2 тип - трансформатор тока для защиты. Трансформатор тока нулевой последовательности используется для подачи напряжения в цепь релейной защиты при замыкании на землю какой-либо из жил трехфазного кабеля. Трансформатор тока для защиты используется для передачи сигнала об аварийном состоянии (токи перегрузки, токи короткого замыкания) в линии электропередачи или электрооборудовании.

 

Основной принцип работы трансформатора тока нулевой последовательности. В окне трансформатора расположен трехфазный кабель. При нормальных условиях все фазы смещены на одинаковые углы. Этим осуществляется компенсация магнитных полей от протекающих по кабелю токов. Результирующее магнитное поле вокруг кабеля равно нулю. При замыкании какой либо из жил нарушается симметрия, возникают токи нулевой последовательности, которые наводят напряжение в трансформаторе, которое питает катушку реле. Таким образом осуществляется управление работой реле.

Трансформатор ТЗРЛ-100 изготавливают в климатическом исполнении “У”, категории размещения 2 и его необходимо эксплуатировать при следующих условиях:- установку необходимо производить на высоте не превышающей 1000м над уровнем моря (под заказ возможна поставка трансформаторов для работы на высоте выше 1000м);- верхнее значение температуры внутри КРУ +50°C, нижнее согласно ГОСТ 15543.1;- допускается влажность воздуха 100%, при температуре +25°C;- неагрессивная и не взрывоопасная окружающая среда;- положение в котором может работать трансформатор – любое.

Чертеж, габаритные и установочные размеры трансформатора ТЗРЛ-100

Основные технические характеристики трансформаторов тока нулевой последовательности ТЗРЛ-100:

Параметр Величина
Напряжение сети, В 660*
Частота сети, Гц 50
Коэффициент трансформации 30/1
Односекундный ток термической стойкости, А 140
Значение испытательного одноминутного напряжения, кВ 3

 

Наименование реле Шкала реле, А Ток уставки, А Чувствительность срабатывания защиты по первичному току, А
с одним включенным трансформатором 2 последовательно включенных трансформатора 2 параллельно включенных трансформатора
РТ-140/0,2 0,1-0,2 0,1 25 30 45
РТЗ-51 0,02-0,1 0,03 3 4 4,5

Значения чувствительности срабатывания защиты указаны для обмоток реле, соединенных параллельно и соединительных проводов сопротивлением не более 1 Ом.

 

Основные технические характеристики трансформаторов ТЗРЛ-100 для защиты:

Параметр Величина
Значение номинального напряжения, кВ 0,66*
Значение наибольшего рабочего напряжения, кВ 0,8
Частота сети, Гц 50
Значение номинального первичного тока, А 600; 750; 800; 1000; 1200; 1500; 2000
Значение наибольшего рабочего первичного тока, А 630; 800; 800; 1000; 1250; 1600; 2000
Значение номинального вторичного тока, А 1
Количество вторичных обмоток, шт. 1
Значение номинальной вторичной нагрузки, при cosφ=0,8 3; 5; 10; 15; 20; 25; 30
Значение класса точности 5P; 10P
Значение односекундного тока термической стойкости, А 80

Значение номинальной предельной кратности вторичной обмотки, при номинальной вторичной нагрузке 30ВА и номинальном первичном токе:

600

750

800

1000

1200

1500

2000

 

 

 

4

5

6

7

8

9

11

 

* Возможна установка трансформаторов в высоковольтных шинных или кабельных линиях на номинальное напряжение 3-110 кВ при условии, что главная изоляция между вторичной обмоткой трансформатора и токопроводящими жилами (шина, кабель) обеспечивается изоляцией кабеля (шины) или воздушным зазором.

 

Конструкция трансформатора ТЗРЛ-100.  Трансформатор ТЗРЛ-100 изготавливается в литом корпусе с диаметром окна 100мм. Трансформатор имеет вид разъемной конструкции. Роль первичной обмотки выполняет  трехфазный кабель, который пропускается через окно трансформатора. Вторичная обмотка тороидального типа намотана на разрезной магнитопровод, помещена в корпус, и заливается эпоксидным компаундом. Магнитопровод изготавливают из высококачественной электротехнической стали. Изоляция между первичной и вторичной обмоткой трансформатора обеспечивается изоляцией кабеля. Для соединения разрезных частей трансформатора служат шпильки. Для крепления трансформатора на месте установки служат втулки с резьбовыми отверстиями, расположенные в нижней части трансформатора. Маркировка выводов обмоток трансформатора – рельефная и выполняется путем заливки трансформаторов эпоксидным компаундом в форму.

Видео трансформатора ТЗРЛ-100:

 

Фото трансформатора ТЗРЛ-100:

Чтобы заказать трансформатор ТЗРЛ-100 звоните в компанию “ЭнергоСфера” по телефону:
Vodafon(066)473-42-45 Киевстар(068)256-29-77 Лайфселл (093)113-81-73
  • < Трансформатор ТЗРЛ-125
  • Трансформатор ТЗРЛ-70 >
Автор: Денис Ярошенко

energosfera.org.ua

ТЗРЛ трансформаторы тока для защиты от замыканий на землю. Описание. Цена. Заказ.

Тип трансформатора: Измерительный

Класс напряжения: 0,66 кВ

Тип изоляции: Твердый диэлектрик

Цена (без учета НДС): По запросу руб.

www.tdtransformator.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта