Eng Ru
Отправить письмо

Вопрос 1. Устройство и принцип действия трансформатора. Строение трансформатора


Вопрос 1. Устройство и принцип действия трансформатора.

Ответ1. Трансформатор – это статическое электромагнитное устройство, предназначенное для преобразования переменного тока одного напряжения в переменный ток другого напряжения, но той же частоты.

Основными конструктивными элементами трансформатора являются магнитопровод и обмотки. Магнитопровод служит для усиления основного магнитного потока и обеспечения магнитной связи между обмотками.

В работе рассматривается двухобмоточный силовой трансформатор.(рис5.1)

К первичной обмотке W1подводится электрическая энергия от источника. От вторичной обмоткиW2энергия отводится к приемнику( потребителю).

Под действием переменного напряжения u1 (t) в первичной обмотке возникает ток i1 (t) и в сердечнике возбуждается изменяющийся магнитный поток w1·ф(t) . Этот поток индуцирует эдс е1(t) и е2(t) в обеих обмотках трансформатора. ЭДС е1 уравновешивает основную часть напряжения u1 , а е2 создает напряжение u2 на выходных клеммах трансформатора . При включении нагрузки во вторичной обмотке в цепи нагрузки возникает ток i2(t), который создает собственный магнитный поток, накладывающийся на магнитный поток от первичной обмотки. В результате создается общий магнитный поток сердечника Ψ, сцепленный с витками обеих обмоток трансформатора и определяющий в них результирующие ЭДС е1 и е2 с действующими значениями: и, где- амплитуда магнитного потока:- частота переменного тока; , - число витков обмоток.

На щитке тр-ра указываются его номинальные напряжения -высшее (ВН) и низшее НН) . Так же указываются номинальная полная мощность S (ВА), токи (А) , число фаз, схема соединения, режим работы, и способ охлаждения.

Вопрос 2. Записать и объяснить формулы эдс и уравнения электрического и магнитного состояний трансформатора

Ответ2-1 ЭДС определяется скоростью изменения магнитного потока сердечника и числом витков w1 , w2 обмоток трансформатора

В первичной обмотке под действием напряжения U1 возникает ток I1. Он создает магнитный поток катушки с сердечником. Поток переменный, он наводит в первичной обмотке ЭДС самоиндукции e1 =- w1dФ/dt, а во вторичной обмотке

ЭДС взаимоиндукции е 2 =- w2dФ/dt. Магнитный поток для обеих обмоток один и тот же.

В режиме холостого хода катушка - чистая индуктивность, поэтому, если напряжение изменяется по закону u1(t) =U1m Sinωt , то ток отстает от напряжения на 90°:

i(t) =I1m Sin(ωt-90°), при этом магнитный поток совпадает по фазе с током Ф(t) =Ф1m Sin(ωt-90°). Тогда ЭДС будут равны

е1 = - w1dФ/dt = -w1ω Ф1m Sinωt= -E1m Sinωt

е2 = - w2dФ/dt =- w2ω Ф1m Sinωt= -E2m Sin ωt

Векторная диаграмма идеального (без потерь) трансформатора в режиме холостого хода представлена на рис 5.2 :

Ответ2-2. Уравнения электрического состояния реального трансформатора для первичной и вторичной цепей имеют вид:

;

,

где и – активные сопротивления обмоток; и– индуктивные сопротивления рассеяния обмоток.

Ответ2-3.Уравнения магнитного состояния трансформатора можно получить, исходя из анализа МДС в трансформаторе. ЭДС обеих обмоток возникают благодаря изменению одного и того же магнитного потока Ф с индукцией В. Индукция В и напряженность магнитного поля H связаны зависимостью B=μ·H. Пусть μ= const. Напряженность магнитного поля H по закону полного тока связана с суммарной МДС обеих обмоток соотношением :

Н·l = I1 ·w1+(-I2) ·w2 (5-2)

где l-длина средней линии магнитопровода;

I1 ·w1 - МДС первичной обмотки ;

-I2 ·w2 - МДС вторичной обмотки. Знак минус МДС вторичной обмотки отрицательный в силу закона ЭМИ( правило Ленца –ток возникающий в обмотке 2 всегда будет иметь направление, при котором магнитный поток, создаваемый током I2, будет препятствовать изменению основного потока ).

ЭДС Е1=const*Ф= const*В·S= const* μ ·H·S, с учетом (5-2) :

Е1 = const* μ ·( I1 ·w1-I2 ·w2) ·S/ l (5-3)

В режиме холостого хода I2=0, соответственно уравнение (5-3) будет иметь вид :

Е1= const* μ · I10 ·w1 ·S/ l (5-4)

где I10 ток первичной обмотки трансформатора в режиме холостого хода.

Из уравнений (5-3) и (5-4) получим уравнение магнитного состояния трансформатора:

(5-5)

Определим ток I1:

I1= I10 - Iי2

где I10 – ток холостого хода или намагничивающий ток (ток создающий магнитный поток ),

Iי2 = - w2/ w1 ·I2 - компенсирующий ток . Tок Iי2 компенсирует действие тока вторичной обмотки на основной магнитный поток.

Магнитный поток в сердечнике всегда постоянный. !!!

studfiles.net

Трансформатор

Трансформатор

Трансформатор - устройство, используемое для преобразования электрической энергии одного уровня напряжения в электрическую энергию другого уровня напряжения.

Трансформатор (от лат. Transformo - превращать) - электрический аппарат, имеющий две или более индуктивно связанные обмотки и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока без изменения частоты систем ( системы) переменного тока (ГОСТ Р52002-2003).

Трансформаторы широко применяются в линиях электропередач, в распределительных и бытовых устройствах. Передача электроэнергии происходит с меньшими потерями при высоком напряжении и малой силе тока. Поэтому обычно линии электропередач высоковольтные. Одновременно бытовые и промышленные машины требуют высокой силы тока и малого напряжения, поэтому перед употреблением электроэнергия преобразуется в низковольтную.

Трансформаторы характеризуются очень высоким КПД.

Впервые трансформаторы, как были продемонстрированы в 1882 году [1], хотя еще в 1876 ​​году Яблочков использовал аналогичное устройство для созданных им осветительных устройств - "свечей Яблочкова" [2] [3]. Изобретение трансформатора был важным фактором в так называемой войне токов - конкурентной борьбе за то, какой электрический ток, постоянный или переменный эффективен для массового пользования.

Схематическое строение идеального трансформатора

1. Строение и принцип действия

Обозначение трансформатора в схеме

Самый трансформатор состоит из обмоток на совместном сердечнике. Одна из обомоток подключена к источника переменного тока. Эта обмотка называется первичной. Другая обмотка, вторичная, служит источником тока для нагрузки. Создан током в первичной обмотке переменный магнитный поток вызывает появление э.д.с. во вторичной обмотке, поскольку обе обмотки имеют общее сердечника. Соотношение э.д.с. во вторичной обмотке и напряжения на первичной зависит от количества витков в обеих обмотках. В идеальном случае

\ Frac {U_ {S}} {U_ {P}} = \ frac {N_ {S}} {N_ {P}} = \ frac {I_P} {I_S} ,

где индексом P обозначены величины, касающиеся первичной обмотки, а индексом S - соответствующие величины для вторичной обмотки, U - напряжение, N - количество витков, I - сила тока.

Таким образом, преобразования напряжения и силы тока в трансформаторов определяется количеством витков в первичной и вторичной обмотках. Напряжение пропорционально количеству витков, тогда как сила тока обратно пропорциональна ей.

Трехфазный трансформатор

2. Потери энергии

В реальных трансформаторах энергия не передается от первичной цепи к вторичному без потерь. Существует ряд физических причин, которые предопределяют.

Одной из причин потерь является активное сопротивление обмоток. При протекании тока через трансформатор, он нагревается и отдает тепло окружающим. При высокой частоте сопротивление увеличивается благодаря скин-эффекта и эффекта близости, которые уменьшают площадь сечения проводника, через который протекает ток.

Еще одна причина потерь - перемагничивания сердечника благодаря гистерезиса. Эти потери для конкретного вещества сердечника пропорциональны частоте и зависят от пикового потока магнитного поля через сердечник.

Другое причина потерь - токи Фуко. Переменное магнитное поле в сердечнике порождает переменное вихревое электрическое поле, которое вызывает дополнительные вихревые токи, тоже приводят к нагреванию. Для уменьшения токов Фуко сердечник изготавливают из тонких пластинок, поскольку потери, связанные с токами Фуко, обратно квадратично зависят от толщины материала.

Часть энергии теряется на механические колебания. Ферромагнитный материал сердечника расширяется и сжимается в переменном магнитном поле благодаря явлению магнитострикции. Этим объясняется гудение трансформатора, сопровождающий его работу. Дополнительно, первичная и вторичная обмотка привлекаются и отталкиваются в переменном магнитном поле, заставляя также колебаться корпус трансформатора.

Магнитный поток, выходящий за пределы сердечника, сам по себе не приводит к потере энергии, но он может приводить к появлению вихревых токов Фуко в металлических деталях корпуса и крепления, что тоже приводит небольшие потери энергии.

В общем, большие трансформаторы имеют высокий коэффициент полезного действия, до 98% [4]. Трансформаторы с сверхпроводящих материалов могут увеличить этот коэффициент до 99,85% [5].

Потери в трансформаторах зависят от нагрузки. Потери без нагрузки обусловлены в основном сопротивлением обмоток, тогда как причиной потерь при полной нагрузке обычно гистерезис и вихревые токи. Потери при отсутствии нагрузки могут быть значительными, поэтому даже если к вторичной обмотке ничего не подключено, трансформаторы должны удовлетворять условиям экономной работы. Конструирование трансформаторов с малыми потерями требует большого сердечника, высококачественной электрической стали, толстых проводников, увеличивает начальные затраты, но окупается при экспуатации [6].

3. Разновидности

3.1. Автотрансформатор

Автотрансформатор - вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счет этого не только электромагнитную связь, но и электрический. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать различные напряжения. Преимуществом автотрансформатора есть высший КПД, поскольку лишь часть мощности подвергается преобразованию - это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичным и вторичным кругом. В промышленных сетях, где наличие заземления нулевого провода обязательно, этот фактор роли не играет, зато существенным является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в результате - меньше стоимость

3.2. Трансформатор Теслы

3.2.1. Устройство и принцип действия

Трансформатор Теслы - устройство для получения высокого напряжения. Параллельно источники тока включен конденсатор небольшой емкости, рассчитанный на высокое напряжение (несколько киловольт). После конденсатора последовательно включен искровой промежуток (расторгнут провод). Затем параллельно - катушка № 1. Катушка № 1 из объединенная индуктивно с катушкой № 2 без сердечника. Один конец катушки № 2 заземлен, на конце другого расположен тороид, из которого во время работы "выскакивают" стримеры - потоки ионизированного газа (воздуха).

Если такого трансформатора подключена напряжение, то конденсатор начинает заряжаться. Зарядившсь к напряжению пробой, через искровой промежуток проходит ток, круг замыкается, образуется LC-система (система с емкостью и индуктивностью). В катушке № 2 появляется индуктивный ток. В катушке № 1 явление самоиндукции не наблюдается, поскольку когда снижается напряжение (а соответственно и сила тока), через искровой промежуток ток не идет и через угасающее магнитное поле в катушке № 2 появляется ток. Если две системы катушек и конденсатора настроены в резонанс, тогда достигается наивысшая напряжение.

Источники

  • И.М. Кучерук, И.Т. Горбачук, П.П. Луцик Общий курс физики: Учебное пособие в 3-х т. Т.2. Электричество и магнетизм. - Киев: Техника, 2006.
  • Сивухин Д.В. Общий курс физики. т III. Электричество. - Москва: Наука, 1977.

5. Внешние ссылки

6. Сноски

  1. Allan DJ Power Transformers - The Second Century / / Power Engineering Journal. - 5. - (Jan. 1991) (1) 5-14.
  2. "Stanley Transformer". Los Alamos National Laboratory; University of Florida . http://www.magnet.fsu.edu/education/tutorials/museum/stanleytransformer.html . Проверено Jan. 9, 2009 .
  3. De Fonveille W. Gas AND Electricity In Paris / / Nature. - 21. - (Jan. 22, 1880) (534). Просмотров: Jan. 9, 2009.
  4. Kubo, T. Opportunities For New Appliance AND Equipment Efficiency Standards (PDF). - American Council for an Energy-Efficient Economy, 2001.
  5. Riemersma H., et al. Application of Superconducting Technology to Power Transformers / / IEEE Transactions on Power Apparatus and Systems. - PAS-100. - (1981) (7). DOI : 10.1109/TPAS.1981.316682.
  6. Heathcote, Martin J & P Transformer Book, Twelfth edition. - С. 41-42. - Newnes, November 3, 1998. ISBN 0750611588.

nado.znate.ru

Принцип работы и предназначение трансформатора

трансформатор

Принцип действия:

  1. В устройстве существуют 2 обмотки, их называют первичной и вторичной. К внешнему источнику подключается только первичная обмотка, тогда как вторичная обмотка предназначена для снятия напряжения.
  2. Включая в электросеть первичную обвивку, в магнитопроводе создаётся магнитное поле (переменное) от первичной обмотки, в результате чего образуется ток вторичной обмотки, если его замкнуть через приёмник.
  3. Синхронно в первичной обвивке образуется нагрузочный ток.
  4. Отсюда происходит трансформирование электрической энергии, когда первичная сеть передаёт её вторичной. В результате, приёмник получит ту величину, на которую рассчитан прибор.
схема работы

Явление взаимной индукции, является основой работы трансформатора:

  1. Чтобы улучшить магнитную связь 2 обмоток, они укладываются на магнитопровод стальной структуры.
  2. В свою очередь, делается изоляция не только между ними, но и с магнитопроводом.
  3. Каждая обмотка имеет свою маркировку. Если обмотка с высоким напряжением, её обозначают (ВН), низким – (НН).
  4. Первичная обмотка подключается к электросети, вторичная – к приёмнику.

Напряжение на обвивках имеют различную величину, и от того в каких целях будет применяться устройство, зависит величина на обвивках:

  1. Повышающий трансформатор будет иметь меньше напряжение на первичной обвивке, чем на второй.
  2. Понижающий прибор, в точности всё наоборот.

Использование их различно:

  1. На больших расстояниях используются повышающие приборы.
  2. Если надо распределить электроэнергию потребителям – понижающие.

Существуют приборы с 3 обмотками, когда надо получить не только высокое и низкое напряжение, но и среднюю величину (СН).

Обвивки такого устройства также изолированы друг от друга и имеют подключение от электроэнергии одной обвивкой, когда 2 другие подсоединяются к разным приёмникам:

  1. Обвивки имеют форму цилиндра и выполняются намоткой медного провода, имеющего круглое сечение для малых токов.
  2. Для тока большой величины используются шины с прямоугольным сечением.
  3. На сердечник магнитопровода делается обвивка для малого напряжения, так как она легко изолируется, по сравнению с обвивкой высокого номинала.
  4. Сам сердечник исполняется круглой формы, если обвивка в форме цилиндра. Это делается для уменьшения немагнитных зазоров, и уменьшить длину витков обвивок. Отсюда уменьшится и масса меди на заданную площадь сечения круглого магнитопровода.
  5. Круглый стержень проходит сложный процесс сборки из стальных листов. И чтобы упростить задачу, в устройствах с большим напряжением используются стержни со ступенчатым поперечным сечением, когда их число достигает всего 17 штук.
  6. В мощных агрегатах устанавливаются дополнительные вентиляционные каналы, для охлаждения магнитопровода. Это достигается расположением их перпендикулярно и параллельно поверхности листов из стали.
  7. В менее мощных устройствах сердечник выполняется с прямоугольным сечением.

Назначение и типы

трехфазный трансформатор

Трансформатор, можно назвать преобразователем одной величины напряжения или тока в другую.

Они могут быть:

  • трёхфазными;
  • однофазными;
  • понижающими;
  • повышающими;
  • измерительными и т.д.;

Назначение прибора: передаёт и распределяет электроэнергию заказчику.

В приборе есть активные компоненты: обвивка и сердечник магнитопоровода. В свою очередь, сердечник может быть стержневым и броневым. Для них используется холоднокатаная горячекатаная электротехническая сталь.

Обвивку используют непрерывную, винтовую, цилиндрическую, дисковую.

Среди современных изделий можно отметить следующие:

  • тороидальные;
  • броневые;
  • стержневые;

типы трансформаторов

Они имеют характеристики похожие друг с другом, с высокой надёжностью. Единственное, что их различает – это способ изготовления.

В стержневом варианте, обвивка наматывается вокруг сердечника, тогда как в броневом типе идёт включение в сердечник. Поэтому, в стержневом типе, обвивку можно увидеть и располагается она только горизонтально, а в броневом, она скрыта, но может быть, как горизонтально, так и вертикально размещена.

Какой бы тип мы не рассматривали, у него имеются 3 компонента:

  • система охлаждения;
  • обвивка;
  • магнитопровод;

За счёт приборов удаётся значительно повысить напряжённость, идущую с электрических станций, на дальние расстояния, при этом, потери энергии будут минимальные по проводам. На основании вышеизложенного, можно использовать провода на линиях передач, с меньшей площадью сечения.

Потребителю также можно уменьшать потребление энергии с высоковольтных линий до номинальных значений (380, 220, 127 В).

Область применения и виды

трансформатор в телевизоре

Бытовые трансформаторы защищают технику при перепадах напряжения.

Поэтому применяют их в следующих приборах:

  • в освещении;
  • осциллографах;
  • телевизорах;
  • радиоприёмниках;
  • измерительных устройствах и т.д;

Сварочные экземпляры, разделяющие силовую и сварочную сеть, активно используются при сварке и электротермических конструкциях, где успешно понижают величину напряжения до обязательных номиналов.

В энергосети используются масляные агрегаты, где напряжённость 6 и 10 кВ.

Многие автоматические конструкции используют трансформаторы, где напряжение на обвивках несуидальное.

Виды:

вращающиеся трансформаторы

  1. Вращающийся. Передача сигнала ведётся на объекты, которые вращаются. Например, видеомагнитофон, где передача сигнала ведётся на барабан узла магнитной головки. Здесь существуют 2 половины магнитопровода и вращение их происходит с минимальным зазором в отношении друг друга. На основании этого, реализуется большая скорость оборотов, в контактном способе сигнала достичь такого эффекта не считается возможным.
  2. Пик-трансформатор. В этом варианте происходит преобразование синусоидального напряжения в сплески, имеющие пикообразную форму. Активно используются в управлении тиристоров, а также электронных и полупроводниковых устройств.
  3. Согласующий. Принимает участие в согласовании сопротивлений в разных промежутках электронной схемы, при этом, форма сигнала искажается минимально. Синхронно обеспечивается гальваническая развязка между зонами схем.
  4. Разделительный. Здесь 2 обмотки не соединены между собой электрически. Такая схема даёт возможность повысить безопасность электрических сетей. Когда происходит случайное одновременное прикосновение к токоведущей части и земли, выдаётся гальваническая развязка электрической цепи.
  5. Импульсный. В этом варианте преобразуются импульсные сигналы за очень короткий промежуток времени (десятки микросекунд), при этом, искривление конфигурации импульса минимально.
  6. По напряжению. Здесь происходит конверсия большого напряжения в низкую величину. Этот вариант позволяет изолировать измерительные и логические цепи от большого напряжения.
  7. По току. В этом типе измеряются цепи с большим током. Например, в конструкциях релейных щитов электроэнергетических систем. Поэтому, применяются достаточно жёсткие требования к точности.
  8. Автотрансформатор. В этом типе соединение 2 обмоток ведётся напрямую. В результате, создаётся электрическая и электромагнитная связь, чем объясняется высокий КПД этого вида. Недостатком такого устройства, можно назвать отсутствие изоляции, то есть не существует гальваническая развязка.
  9. Силовой. Этот вариант используется при изменяемом токе и преобразует электрическую энергию в установках и электросетях. Широко применяется этот тип на линиях ЛЭП с высокой напряжённостью (35-750 кВ), городских электрических сетях (10 и 6 кВ).
  10. Сдвоенный дроссель. Наличие 2 равных обвивок, даёт возможность получить более результативный дроссель, чем обычный. Их используют на вводе фильтра в блоке питания, а также в звуковом оборудовании.
  11. Трансфлюксор. Оставшаяся намагниченность магнитного провода имеет большую величину, что позволяет использовать его для сохранения сведений.

Немного из истории

трансформатор

Изобретение трансформаторов начиналось ещё в 1876 году, великим русским учёным П.Н. Яблоковым. Тогда его изделие не имело замкнутого сердечника, который появился значительно позже – 1884 год. И с появлением прибора учёные активно стали интересоваться переменным током.

Например, уже в 1889 году, М.О. Доливо-Добровольским (русским электротехником) была предложена трёхфазная система переменного тока. Им был построен первый 3-х фазный асинхронный двигатель и трансформатор.

Уже через пару лет, электромеханик предоставил свои работы на выставке, где произошла презентация трёхфазной высоковольтной линии, имеющую протяженность 175 км, где успешно повышалась и понижалась электроэнергия.

Немного позже, пришла очередь масляным агрегатам, так как масло не только оказалось хорошим изолятором, но и прекрасной охлаждающей средой.

В 20 столетии появились изделия более компактные и экономичные. Производителями продукции являлись иностранные фирмы. На настоящий момент, выпуском продукции занимаются и отечественные фирмы.

slarkenergy.ru

Принцип работы трансформатора: этапы работы

Трансформатор – это регулирующее устройство, которое достаточно часто используется для того, чтобы повысить эффективность многих устройств. Эти устройства могут использоваться для повышения и понижения напряжения в сети. В этой статье вы узнаете принцип работу трансформатора тока.

Принцип работы трансформатора тока

Измерительные трансформаторы имеют достаточно простой принцип работы. Его работа подчиняется закону про электромагнитную индукцию. Если разобраться более детально, то взаимная индукция будет отвечать за действие преобразования напряжения. В соответствии с этим законом Фарадей гласит: «скорость изменения потокосцепления будет пропорциональной наведенной ЭДС в проводнике».

Основы теории трансформатора

Представьте, что у вас есть трансформатор с одной обмоткой, которая соединяется с электрическим током. Переменный ток будет производить меняющийся поток, который окружает катушку. Определенная ее часть может соединяться в том случае, если переменный ток постоянно будет проходить через обмотку. Этот поток может постоянно меняться в своем направлении.

Следуя из закона Фарадея у нас должно быть ЭДС, которое будет производить индукцию раз в секунду. Если в последней обмотке цепь будет закрыта, тогда через нее пройдет ток. Этот принцип работы трансформатора считается простейшим. Тороидальный трансформатор имеет немного другой принцип работы.

Когда вы будете использовать движение переменного тока к электрической катушке, поток энергии будет ее окружать. Поток будет неравномерным, а его скорость может изменяться. Это понятие считается фундаментальным в работе трансформатора. Обмотка, которую он содержит, будет принимать электрическую мощность от источника. Она дает выходное напряжение благодаря взаимной индукции.

Конструктивные части трансформатора

На сегодняшний день устройство трансформатора включает в себя три основные части, к которым относят:

  • Первичную обмотку. Когда подключается к источнику, она будет производить магнитный поток.
  • Магнитный сердечник. Магнитный поток будет создан в замкнутую цепь.
  • Вторичная обмотка. Ее необходимо наматывать на сердечник.

Это три основные части, из которых будет состоять силовой трансформатор.

Принцип работы трансформатора

Электрический силовой трансформатор является статистическим устройством. Принцип работы сварочного трансформатора заключается в том, что он будет преобразовывать энергию от схемы одного устройства к другому. Этот процесс проходит благодаря индукции между обмотками. Преобразование энергии будет происходить на основе изменения частоты. Он может работать в разных уровнях напряжения.

Работа однофазного трансформатора

Принцип работы однофазного трансформатора на сегодняшний день ничем не отличается от других устройств. Когда ток будет проходить по первичной обмотке, то будет создано магнитное поле. У него имеются мощные силовые линии. Первичную катушку они будут пронизывать полностью. Все линии являются замкнутыми между вокруг проводников катушек.

Закон про магнитную связь гласит о том, чем ближе расположены объекты, тем сильнее будет их связь. Вам следует знать, что в однофазном трансформаторе сила магнитного поля будет зависеть от напряжения. Именно поэтому скачки напряжения могут снизить силу МП. При соединении концов обмотки устройство начнет снабжаться электрическим током.

Принцип работы автотрансформатора

Здесь мы рассмотрим принцип работы автотрансформатора. Эти устройства можно отнести к трансформаторам, которые имеют специальное использование. Обмотки в этом устройстве связаны между собою не только магнитным полем, но и гальваническим.

При переключении обмоток можно получить как высокое, так и низкое напряжение. Переменное магнитное поле возникает в момент подключения переменного тока к сердечнику. Благодаря устройству сердечника небольшое напряжение способно создавать сильное МП. Автотрансформаторы довольно часто используют в областях, где существует незначительное изменение напряжения.

На сегодняшний день существуют также узкоспециализированные лабораторные трансформаторы. Они имеют другой принцип работы трансформатора.

Их обмотка должна выполняться из ферромагнитного материала. Она сводит резонансное движение к минимуму. К основным его отличиям относят:

  1. Кроме ферромагнетика используют медный провод.
  2. Он имеет низкие допустимые параметры.
  3. В нем работает система строчного ролика.

Эти трансформаторы также могут иметь недостатки, к которым относят:

  • Все цепи нужно изолировать, так как они имеют сильную связь.
  • Его нельзя использовать для защиты в мощных цепях.
  • Ремонт стоит достаточно дорого.

Работа гидротрансформатора

Наверное, каждый водитель бульдозера знает принцип работы гидротрансформатора. На самом деле прибор является муфтой, которая вращается два раза. Устанавливать его необходимо между двигателем. Это необходимо чтобы получить вращательное движение. Механизм напоминает бублик, но у него достаточно сложная конструкция:

  • По краям находятся специальные насосы. Передний прибор будет передавать жидкость на турбинное колесо.
  • Переднее колесо необходимо соединить с главным валом. Благодаря этому он будет передавать жидкость по механизму.

Как видите, принцип работы трансформатора у всех устройств практически одинаковый. Существуют некоторые особенности, но все зависит от его модели.

Вам будет интересно: типы трансформаторов тока.

vse-elektrichestvo.ru

Устройство и работа трансформатора

Виды и характеристики трансформаторов

Устройство и работа трансформатора

Трансформатор – это статическое электромагнитное устройство, предуготовленное для преобразования посредством электромагнитной индукции одной системы переменного тока в другую систему переменного тока (без изменения частоты). Трансформатор сконструирован из обмоток и магнитной системы.

Магнитная система трансформатора (магнитопровод) из себя представляет комплект пластин из ферромагнитного материала (из электротехнической стали), собранных в обусловленной геометрической форме. Данная система предназначается для сосредоточения в магнитопроводе магнитного поля. Магнитопроводы трансформаторов мощностью до 1,5 кВ∙А располагают прямоугольной формой, причем соотношение высоты стержня и длины ярма находится в пределах от 1,2 до 2. Производят их из листов электротехнической стали толщиной от 0,35 до 0,5 мм. Из определенного количества витков алюминиевого или медного изолированных проводов намотанных в форме катушки, состоит обмотка трансформатора.

В трансформаторе могут находится две или несколько обмоток. Под обмотками в трехфазном трансформаторе подразумевают совокупность трех фаз, соединенных треугольником или звездой. На момент подключения к источнику переменного тока одну из обмоток (её называют первичной) в этой обмотке возникает ЭДС самоиндукции E1, а в другой (её называют вторичной) – ЭДС индукции Е2.

Если же игнорировать падение напряжения в обмотках трансформатора, значение которого очень мало, то формулы можно записать так: E1 = U1 и E2 = U2

U1 – напряжение на первичной обмотке;

U2 – напряжение на вторичной обмотке.

Нам известно, из науки физики что

w1 – число витков в первичной обмотке;

w2 – число витков во вторичной обмотке.

Отношение для представленного трансформатора – величина постоянная, и называют её коэффициентом трансформации (k). Если , то трансформатор понижающий, если , то – повышающий.

Трансформатор можно применять как для повышения, так и для понижения напряжения.

Путем расчетов касательно опыта можно удостовериться, что если проигнорировать (из-за незначительности по значению) потери энергии в самом трансформаторе, то можно записать:

P1=P2

P1 – мощность тока в первичной обмотке; P2 – мощность тока во вторичной обмотке.

Вследствие соотношение напряжений и силы токов в обмотках трансформатора можно выразить формулой:

В первичной и во вторичной обмотках мощности тока одинаковы лишь при идеальном случае. Практически же на нагревание магнитопровода и обмоток часть электрической энергии бесполезно тратится. В таком случае часто сообщают о потере энергии. Конечно, энергия не теряется, а расходуется напрасно на нагревание трансформатора.

Потерями в меди называют потери энергии в обмотках, которые в свою очередь согласно закону Джоуля – Ленца зависят от электрического сопротивления обмоток и силы тока, проходящего по ним. Принято говорить о мощности потерь в меди – Рм.

При работе трансформатора перемагничивается его сердечник (это явление гистерезиса), на что также потребляется и тратится энергия. Впоследствии индуцируются вихревые токи в сердечнике, тем самым, нагревая его. Трата энергии на потери, перемагничивание сердечника и на нагревание вихревыми токами сердечника (на вихревые токи) имеют названия как потери в стали. Обусловлено сообщать о мощности потерь в стали – Рст. Из-за того, что теряется часть энергии в трансформаторе, мощность тока в первичной обмотке больше мощности тока во вторичной обмотке.

Связь мощности тока во вторичной обмотке касательно мощности тока в первичной обмотке именуют коэффициентом полезного действия трансформатора – КПД трансформатора. КПД трансформатора значительный – примерно 98-99,5%.

Производя замер мощности тока в обмотках или мощности потерь энергии в обмотках и магнитопроводе, тем самым находят КПД трансформатора. Вследствие этого формула для нахождения КПД трансформатора

выглядит так:

Распознают всего два режима работы трансформатора: эта работа под нагрузкой и работа без нагрузки – холостой ход. На момент работы трансформатора, при котором первичная обмотка находится под номинальным напряжением, а вторичная просто разомкнута, то есть мощность и сила тока в ней равны нулю, называют холостым ходом трансформатора. На время холостого хода сила тока в первичной обмотке в десятки раз меньше номинальной. Отчего значительно малы и потери энергии в меди. От того, что напряжение на первичной обмотке номинальное, то на момент холостого хода потери в стали те же самые, как и на время номинального режима работы трансформатора под нагрузкой.

При включении электроприемника в цепь вторичной обмотки, то есть, на момент работы трансформатора под нагрузкой, напряжение на его первичной обмотке остается практически неизменным, а пропорционально изменению силы тока во вторичной обмотке изменяется сила тока в ней. Таким образом, к примеру в увеличении силы тока во вторичной обмотке увеличивается энергия используемая электроприемником, а это значит мощность тоже увеличивается, используемая трансформатором от источника тока, то есть от электрической сети, в которую подключена первичная обмотка трансформатора.

Такое явление поясняют следующим образом: полное значение в сердечнике суммарного магнитного потока – постоянная величина; ток, идущий по вторичной обмотке, образовывает магнитный поток, который в соответствии правилу Ленца сориентирован против магнитного потока, образовываемого током первичной обмотки; например, если возрастет сила тока во вторичной обмотке, то усилится и магнитный поток в ней, а это значит, должен увеличиться и магнитный поток, формируемый током первичной обмотки; последнее может произойти лишь при увеличении силы тока в первичной обмотке.

electrokiber.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта