Режимы работы нейтрали трансформатора, разновидности, достоинства и недостатки. Нейтраль трансформатора что это такоеРежимы работы нейтрали трансформатора: разновидности, достоинства и недостаткиВ высоковольтных сетях возможны следующие виды заземления нейтрали трансформатора:
Также возможны комбинации из нескольких способов соединения с землей, реализуемых поочередно в комплексе. Рассмотрим по очереди все эти способы, их достоинства и недостатки и показания к применению. Изолированная нейтральЭто некогда еще самый распространенный способ заземления нейтрали, применяемый в сетях 6-35 кВ. Сейчас он понемногу вытесняется другими способами. Достоинство изолированной нейтрали – наличие небольших токов однофазного замыкания на землю (ОЗЗ), с которыми сеть может работать некоторое время, необходимое для поиска и устранения повреждения. Ток замыкания носит емкостной характер. Он обусловлен наличием емкостной связи между электрооборудованием, кабельными и воздушными линиями и землей. Активная составляющая тока почти отсутствует, так как резистивной связи между нейтралью и землей нет. Но недостатки таких сетей пересиливают ее достоинство. При достаточной разветвленности сети емкостные токи увеличиваются, так как увеличивается количество одновременно подключенного к ней электрооборудования. Настает момент, когда ток становится настолько ощутимым, что все равно и почти сразу приводит к перерастанию ОЗЗ в междуфазное. Режимы работы нейтрали по уровню напряженияК тому же при ОЗЗ резко повышается напряжение на неповрежденных фазах. Особенно это проявляется при замыканиях с перемежающейся дугой, погасающей при прохождении синусоидального напряжения в месте КЗ через ноль. При повторном нарастании напряжения дуга загорается вновь. При резком погасании дуги осуществляется зарядка емкостей фаз, на которых ОЗЗ нет, до напряжения, выше номинального рабочего. Последующее зажигание дуги дает толчок к их дополнительному заряду и так далее. Результат грозит пробоем изоляции в других местах сети, имеющих ослабленную изоляцию. Дополнительно возникает риск возникновения резонансных явлений в сердечниках трансформаторов напряжения. Это явление, называемое феррорезонансом, гарантированно выводит из строя их первичные обмотки. Работу трансформаторов, у которых нейтраль изолирована, целесообразно использовать в неразветвленных сетях малой протяженности. Компенсированная нейтральБольшие емкостные токи ОЗЗ приходится снижать. Для этого сеть с изолированной нейтралью дополняется установкой компенсации. В состав ее входит силовой трансформатор с первичной обмоткой, соединенной в звезду и имеющей вывод нейтрали. Вторичная обмотка его иногда не используется, а может питать какую либо нагрузку. Нейтраль трансформатора установки компенсации заземляется через дугогасящую катушку (катушку Петерсона), представляющую собой реактор с изменяемой индуктивностью. Обмотка его находится на магнитопроводе и помещена в бак с маслом, как у обычного трансформатора. Регулировка индуктивности осуществляется либо переключением отводов, либо путем изменения зазора в магнитопроводе. В сетях 35кВ распространен способ подключения катушки непосредственно к нейтрали силового трансформатора. Настройка катушки возможна в резонанс с емкостью сети, но тогда ток ОЗЗ исчезает совсем. Его не зафиксировать стандартными элементами защиты, состоящими из ТТНП и токового реле, реагирующего на ток нулевой последовательности. Чтобы защита работала, используют режим работы катушки с перекомпенсацией. Но использование компенсированного заземления не избавляет сеть от опасных перенапряжений, не устраняет проблему ферромагнитного резонанса. Оно всего лишь снижает токи ОЗЗ. Про ферромагнитный резонанс смотрите в видео ниже: Но и это может обратиться во вред: неразвившееся повреждение в кабельной линии в дальнейшем сложнее найти. Тем не менее, установки компенсации встраиваются во все разветвленные и протяженные сети 6-35 кВ РФ. Высокоомное резистивное заземление нейтралиПарадокс в том, что многие основные руководящие документы в РФ, в том числе ПУЭ, ПТЭЭС и ПТЭЭП, не слишком подробно повествуют о резистивном заземлении нейтрали. Хотя польза от него очень ощутима.
Высокоомным заземление называется потому, что сопротивление резистора выбирается из соображений возможности длительной работы сети с ОЗЗ. Но при этом сохраняются достоинства сети с изолированной нейтралью: есть время на поиск повреждения. Но при этом снижаются величины перенапряжений путем шунтирования емкостей фаз сети резистором. Что приводит к ускорению их разряда при погасании дуги, что в свою очередь снижает потолочное значение, до которого они успевают зарядиться. В итоге минимизируется риск выхода из строя изоляции электрооборудования от перенапряжений, а также – уменьшается до минимума вероятность возникновения феррорезонансных явлений. Про резистивное заземление нейтрали можно посмотреть в видео ниже: Низкоомное заземление нейтралиУменьшение сопротивления резистора необходимо в случае, если требуется обеспечить быстродействующее отключение присоединения с ОЗЗ релейной защитой. При этом еще больше снижается величина перенапряжений, что приводит к повышению степени безаварийности работы электрооборудования. Увеличение тока КЗ через низкоомный резистор приводит к необходимости увеличения его способности отводить тепло. Если это невозможно, то предусматривается ограничение длительности протекания тока с помощью устройств РЗА. При срабатывании защиты резистор отключается, и нейтраль переводится в изолированный режим работы. Есть и второй вариант: перевод нейтрали через заранее установленное время, необходимое для ликвидации повреждения в ней устройствами РЗА, с низкоомного заземления на высокоомное. Режим низкоомного заземления иногда применяется в комбинации с установками компенсации емкостных токов. В случае фиксации ОЗЗ к сети кратковременно подключается резистор, помогающий срабатывать устройствам защиты. Эффективно заземленная нейтральСхемы непосредственного заземления нейтралей трансформаторов используются в сетях 110 кВ и выше. Главная задача при таком режиме работы – получение сравнительно больших токов ОЗЗ для облегчения их фиксации и отключения релейной защитой. Однако при этом увеличиваются капиталовложения на обустройство контуров заземления, по сравнению с электроустановками, имеющими изолированную нейтраль. А при питании повреждения от нескольких источников одновременно величина тока КЗ в месте ОЗЗ значительно превышает их величины при междуфазных КЗ. Для исключения этого недостатка нейтрали трансформаторов, подключенных к линии с нескольких сторон, не соединяют с землей одновременно: соединение выполняется на одном из них. За этим следят оперативные работники, занятые эксплуатацией сетей. pue8.ru Глухозаземленная нейтраль: принцип работы, схема, применениеГлухозаземленная нейтраль лежит в основе системы электроснабжения потребителей, она направлена на безопасное использование сетей до 1000 Вольт, которые чаще всего применяются в быту и на производстве в качестве источника стандартного низковольтного напряжения. Нейтраль, в свою очередь, это общая точка соединения обмоток звездой у источников электроэнергии, которыми являются трансформаторы или же генераторы. Если эту точку соединить с землёй, то и получится сеть с глухозаземлённой нейтралью. В нулевой точке происходит выравнивание потенциалов, что очень удобно для обеспечения электроэнергией и однофазных, и трехфазных источников. Устройство и принцип действия сетей с глухозаземлённой нейтральюПринцип работы источников электроэнергии, в частности, понижающих трансформаторов основан на законе взаимоиндукции и передаче энергии по магнитному сердечнику. Первичная обмотка при этом может и не иметь нулевого провода, в отличие от вторичной, где соединение его с нулём через проводник с низким сопротивлением, который можно приравнять с нулевым значением, будет являться эффективным средством защиты от поражения человека опасным для его жизни и здоровья напряжением. Главной особенностью сетей с глухозаземлённой нейтралью является появление не только линейного, но и фазного напряжения. Что это такое и чем оно отличается друг от друга, рассмотрим на примере простой принципиальной схемы. Фазное напряжение — это потенциал между одним из проводов линии и нулевой точкой, присоединенной к земле, то есть наглухо заземлённой. Линейное напржение — разница потенциалов между двумя выводами линий, то есть L1 и L2, L1-L3, или же L2-L3, называется оно также межфазное. Такие источники электрической энергии в бытовых условиях имеют распространенное значение напряжения в виде 380 В — линейного, и 220 — фазного. Линейное напряжение больше фазного на √3, то есть на 1,72. Но основная задача такой системы это не только транспортировка к потребителю двух систем электроснабжения с разными номиналами и разными количеством фаз, но и защита человека при пробое изоляции и появлении напряжения в точках, которые в нормальном состоянии не имеют опасного потенциала. В жилых зданиях это:
Также для обеспечения безопасности все перечисленные выше элементы должны быть заземлены, именно в этом случае опасность от использования напряжения и применения бытовых приборов в сетях с глухозаземлённой нейтралью будет минимальна. При этом для таких цепей обязательна равномерность распределения однофазных нагрузок. Объяснение для чайниковПонижающая подстанция, в которой установлен трансформатор, имеет свой контур заземления. Он соединен между собой стальными шинами и прутами, в один заземляющий контур. К потребителям в электрический щиток от подстанции прокладывается кабель, который содержит четыре жилы. Если потребителю необходимо питание от трёхфазной цепи 380 Вольт, то подключаться необходимо ко всем жилам. В однофазное сети 220 В питание будет осуществляется от нулевого провода и от одной из фаз. Защита людей в однофазных и трехфазных цепях, если нет системы заземления, должна осуществляется за счёт специальных устройств защитного отключения (УЗО), которые срабатывают при небольшой утечке на ноль, при этом отключают надёжно потребителя от сети. Классификация сетей с глухозаземлённой нейтральюСовременная система электроснабжения имеет стандартную маркировку где помимо рабочего нулевого проводника присутствует и защитный, что и даёт определение степени защищённости.
Существуют несколько подсистем в цепях с источником энергии, имеющим глухозаземлённую нейтраль:
Важно знатьДля электроснабжения однофазных и трёхфазных потребителей в промышленности и в бытовых условиях используют так называемое зануление, которое «якобы» является действенным методом, обеспечивающим автоматическое отключение электроустановки или части её, в которой произошло короткое замыкание. При занулении в цепях с глухозаземлённой нейтралью к нулевому проводу подключаются все металлические части и корпуса электрооборудования. Как работает данная защита? Дело в том что при любом коротком замыкании на корпус цепь переходит в режим короткого замыкания, ток в цепи автоматического выключателя сильно увеличивается и аварийный участок отключается от сети. Преимуществом такой системы являются экономия расходов на проводку защитного заземления, а также снижение стоимости кабельной продукции, так как к одной и той же цепи можно подключить и однофазные и трёхфазные электроприёмники. Однако недостатком глухозаземлённой нейтрали, организованной по принципу защитного зануления, можно назвать недостаточность обеспечения защиты человека при пробое изоляции на корпус электроприбора во время обрыва нулевого провода, который является и защитным. И это очень важный момент — зануление является опасной мерой защиты, поэтому оно организовываться в домашних условиях ни в коем случае не должно! Современное электроснабжение всё-таки направлено больше на безопасность, поэтому требует установки УЗО и отдельного защитного заземляющего контура, через который даже самые незначительные токи утечки будут уходить в землю, при этом не подвергая человека опасности. Теперь вы знаете, что такое глухозаземленная нейтраль, какой у нее принцип работы и в каких сетях она применяется. Если остались вопросы, можете задавать их в комментариях под статьей! Материалы по теме: Нравится(0)Не нравится(0)samelectrik.ru 13. Схемы соединений силовых трансформаторов. Режимы нейтралей трансформаторов.Схемы соединенй обмоток: звезда - Y, звезда c выведенной нейтралью - Y-0, треугольник - . Сдвиг фаз между ЭДС первичной и вторичной обмоток условно обозначает группу соединений. В трехфазном трансформаторе может быть 12 групп соединений обмоток, причем при соединении в звезду можно получить любую четную группу - 2,4,6,8,10,0. При соединении звезда - треугольник или треугольник - звезда можно получить любую нечетную группу - 1,3,5,,9,11. При напряжениях трансформаторов U=6,10,35кВ соединеня могут быть и звезда и треугольник, при U110кВ - звезда с нулем Y-0. От режима нейтрали трансформатора зависят режимы нейтралей сетей. На рисунке 2. Показаны схемы и группы соединений обмоток: Y/D - 11 группа, Y-0/D/Y-0 - 0-11 группы, Y/D/D - 11-11. В таблице 2.1 приведены распространенные группы соединений трехфазных трансформаторов и автотрансформаторов а) б) в) Рисунок 2.7 - Схемы соединения обмоток а) двухобмоточного с группой соединений 11, б) трехобмоточного 0-11, в) двухобмоточного с расщепленной обмоткой 11-11 Режимы работы нейтралей в электроустановках Нейтралью электроустановки называют общую точку обмотки генератора или трансформатора соединенной в звезду. Нейтральная точка может быть изолированной или заземленной. Это в значительной степени определяет условия работы электроустановки, уровень изоляции, токи короткого замыкания, значения напряжения перенапряжения. По режиму нейтрали электрические сети и электроустановки делят на четыре группы: - сети с изолированными нейтралями; - сети с резонансно-заземленными нейтралями; - сети с эффективно-заземленными нейтралями; - сети с глухозаземленными нейтралями. Электрической сетью с эффективно заземленной нейтралью называется трехфазная электрическая сеть напряжением выше 1 кВ, в которой коэффициент замыкания на землю не превышает 1,4. Коэффициент замыканияна землю в трехфазной электрической сети определяется отношением разности потенциалов между неповрежденной фазой и землей в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землей в этой точке до замыкания. Глухозаземленной нейтралью называется нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно или через малое сопротивление (например, через трансформаторы тока). Изолированной нейтралью называется нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через приборы сигнализации, измерения, защиты и подобные им устройства, имеющие большое сопротивление. Заземлением называется преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством. К сетям с изолированными нейтралями и сетям с резонансно-заземленными нейтралями относятся сети напряжением 3, 6, 10, 35кВ. Соединение обмоток оборудования треугольником и звездой с изолированной нейтралью в сетях создают сети изолированной нейтралью. Соответственно в сетях с изолированными нейтралями в нормальном режиме напряжение фаз относительно земли симметричны. Емкостная составляющая линий сетей обычно не превышает 5А. В случае замыкания на землю напряжение фаз возрастают до линейного значения . С учетом емкостной составляющей тока напряжение поврежденной фазы выше нуля, практически несколько меньше фазного, если замыкание проходит через некоторое переходное сопротивление. Поэтому при однофазных замыканиях на землю в сетях с изолированной нейтралью треугольник напряжений не искажается и потребители, включенные на междуфазное напряжение продолжают работу. При этом необходимо учесть, что изоляция фаз должна быть рассчитана на междуфазное напряжение. В электроустановках до 35 кВ стоимость изоляции позволяет некоторое удорожание по отношении к стоимости основного оборудования подстанций, поскольку не является определяющей. В то же время работа с замкнутой на землю фазой в одной точке, опасна замыканием в другой точке сети. Поэтому в сетях с изолированной нейтралью необходим постоянный контроль изоляции и сигнализация о ее повреждениях. Работа сети с изолированной нейтралью применяется и при напряжении до 1кВ. Эти сети обеспечивают высокий уровень электробезопасности и их применяют для передвижных установок, торфяных разработок и шахт. Для защиты от пробоя изоляции между обмотками высшего и низшего напряжений в нейтрали или в каждой фазе трансформатора устанавливается пробивной предохранитель. Если в указанных сетях ток замыкания на землю выше допустимых норм, то для снижения тока в сетях применяется заземление нейтралей через дугогасящие реакторы это сеть с резонансно-заземленными нейтралями. Дугогасящие реакторы L1 и L2 должны устанавливаться на узловых подстанциях, связанных с компенсируемой сетью не менее чем тремя линиями, на рисунке 2.13 показано их расположение. При компенсации сетей генераторного напряжения реакторы располагают вблизи генераторов. Рисунок 2.13 - Подключение дугогасящих реакторов в сетях с резонансно-заземленными нейтралями При подключении дугогасящих реакторов через специальные трансформаторы или трансформаторы собственных нужд по мощности соизмеримые с мощностью реакторов, необходимо учитывать их взаимное влияние. Это влияние сказывается в уменьшении действительного тока компенсации по сравнению с номинальным током из-за наличия последовательно включенного с реактором сопротивления обмоток трансформатора. где - номинальный ток дугогасящего реактора, - напряжение КЗ трансформатора, - номинальная мощность трансформатора. Особенно резко ограничивающее действие обмоток трансформатора проявляется при использовании схемы соединений Y/Y, заземление нейтрали показано на рисунке 2.14а. Так при однофазных КЗ на землю индуктивное сопротивление примерно в 10 раз больше, чем при междуфазных КЗ. Поэтому реактор лучше подключать к трансформатору со схемой Y/. Но следует иметь ввиду, что он создает при однофазном КЗ дополнительную нагрузку и приводит к повышению нагрева. Допустимая мощность реактора при условии, соs1 . где - максимальная мощность нагрузки. При допустимой перегрузке трансформатора мощность реактора . Сети 110кВ и выше относятся к сетям с эффективно заземленной нейтралью. В выборе способа заземления нейтрали определяющим фактором является стоимость изоляции, схема заземления нейтрали на рисунке 2.14б.
а) б) Рисунок 2.14 - Заземление нейтралей в сетях а) с резонансно - заземленной, б) с эффективно – заземленной Применение эффективного заземления нейтрали при однофазных КЗ создает напряжение в исправных фазах примерно 0,8 междуфазного в нормальном режиме. Это основное преимущество таких сетей. Недостатки эффективного заземления нейтрали 1) При однофазном КЗ образуется короткозамкнутый контур через землю и нейтраль источника с малым сопротивлением, что создает большие токи. Для предотвращения последствий необходима быстродействующая релейная защита. Поскольку большая часть однофазных КЗ в таких сетях является самоустраняющейся, то эффективно применение устройств автоматического повторного включения (АПВ). 2) Для отвода больших значений тока КЗ необходимо сооружение сложных контуров заземления распределительных устройств. 3) При большом количестве заземленных нейтралей трансформаторов ток однофазного КЗ может превысить ток трехфазного. В таком случае для его снижения применяется разземление нейтралей на 110-220кВ. Сети с глухо заземлённой нейтралью выполняются на напряжение до 1000В. Это сети, приближенные к технологическому оборудованию, требования, к безопасности которых высокие. Питание трехфазных и однофазных приемников в этих сетях выполняется одновременно. Чтобы обеспечить питание однофазных приемников от нулевой глухо заземлённой точки применяется нулевой рабочий проводник. studfiles.net Глухозаземленная нейтраль: принцип действия, устройство, схемыВ подавляющем большинстве электросетей (до 1 кВ) применяется глухозаземленная нейтраль, поскольку такое исполнение наиболее оптимально для действующих требований электробезопасности. Учитывая распространенность этой схемы заземления нейтрали, имеет смысл подробно ознакомиться с ее устройством, принципом работы и техническими особенностями, а также основными требованиями ПУЭ к электроустановкам до 1 кВ. Что такое глухозаземленная нейтраль?Начнем с определения нейтрали, в электротехнике под этим термином подразумевается точка в месте соединения всех фазных обмоток трансформаторов и генераторов, когда применяется тип подключения «Звезда». Соответственно, при включении «Треугольником» нейтрали быть не может. Включение обмоток: а) «звездой»; б) «треугольником»Если нейтраль обмоток генератора или трансформатора заземлить, то такая система получит название глухозаземленной, с ее организацией можно ознакомиться ниже. Рис. 2. Сеть с глухозаземленной нейтральюУстройство сетей с голухозаземленной нейтральюКак видно из рисунка 2, характерной особенностью электросетей TN типа является заземление нейтрали. Заметим, что в данном случае речь идет не о защитном заземлении, а о рабочем соединении между нейтралью и заземляющим контуром. Согласно действующим нормам, максимальное сопротивление такого соединения – 4-е Ома (для сетей 0,4 кВ). При этом нулевой провод, идущий от глухозаземленной средней точки, должен сохранять свою целостность, то есть, не коммутироваться и не оборудоваться защитными устройствами, например, предохранителями или автоматическими выключателями. В ВЛ до 1-го кВ, используемых в системах с глухозаземленной нейтралью, нулевые провода прокладываются на опорах, как и фазные. В местах, где делается отвод от ЛЭП, а также через каждые 200,0 метров магистрали, положено повторно заземлять нулевые линии. Пример устройства сети TN-C-SЕсли от трансформаторных подстанций отводятся кабели к потребителю, то при использовании схемы с глухозаземленной нейтралью, длина такой магистрали не может превышать 200,0 метров. На вводных РУ также следует подключать шину РЕ к контуру заземления, что касается нулевого провода, то необходимость в его подключении к «земле» зависит от схемы исполнения. Технические особенностиВ данной системе, где используется общая средняя точка, помимо межфазного присутствует и фазное напряжение. Последнее образуется между рабочим нулем и линейными проводами. Наглядно отличие первого от второго продемонстрировано ниже. Разница между фазным и линейным напряжениемРазность потенциалов UF1, UF2 и UF3 принято называть фазными, а величины UL1, UL2 и UL3 – линейными или межфазными. Характерно, что UL превышает UF примерно в 1,72 раза. В идеально сбалансированной сети трехфазного электрического тока должны выполняться поддерживаться следующие соотношения: UF1= UF2=UF3; UL1=UL2=UL3. На практике добиться такого результата невозможно по ряду причин, например из-за неравномерной нагрузки, токов утечки, плохой изоляции фазных проводников и т.д. Когда нейтраль заземлена, дисбаланс линейных и фазных характеристик энергосистемы существенно снижается, то есть, рабочий ноль позволяет выравнивать потенциалы. Обрыв нулевого провода считается серьезной аварией, которая с большой вероятностью приведет к нарушению симметрии нагрузки, более известной под термином «перекос фаз». В таких случаях в сетях однофазных потребителей произойдет резкое увеличение амплитуды электрического тока, что с большой вероятностью выведет из строя оборудование, рассчитанное на напряжение 220 В. Получить более подробную информацию о перекосе фаз и способах защиты от него, можно на страницах нашего сайта. Принцип действия сетей с глухозаземленной нейтральюТеперь рассмотрим подробно, с какой целью заземляется нейтраль и как подобная реализация обеспечивает должный уровень электробезопасности, для этого перечислим обстоятельства, которые могут привести к поражению электротоком:
В идеале между нейтралью и землей разность потенциалов должна стремиться к нулю. Подключение к заземляющему контуру на вводе потребителя существенно способствует выполнению этого условия, в тех случаях, когда ТП находится на значительном удалении. При правильной организации заземления такая особенность может спасти человеческую жизнь, как минимум, в двух последних случаях из указанного выше списка. Чтобы избежать пагубного воздействия электротока необходимо заземлять корпуса электроприборов, а также и других металлических частей электроустановок зданий. Это приведет к тому, что при «пробое» возникнет замыкание фазы на землю. В результате произойдет автоматическое отключение снабжения питанием электроприемников, вызванное срабатыванием устройства защиты от токов КЗ. Даже если защита не сработает, а кто-либо прикоснется к металлическому элементу, все равно ток будет течь по заземляющему проводнику, поскольку в этой цепи будет меньшее сопротивление. Движение тока при КЗ на корпусГоворя о принципе работы защиты заземленной нейтрали нельзя не отметить быстрый выход в аварийный режим, когда один из фазных проводов замыкается на шину PEN. По сути, это КЗ на нейтраль, следствием которого является резкое возрастание тока, приводящее к защитному отключению энергоустановки или проблемного участка цепи. При определенных условиях можно даже организовать защиту от образования опасных зон с шаговым напряжением. Для этого на пол в потенциально опасном помещении стелют (если необходимо, то замуровывают в бетон) металлическую сеть, подключенную к общему заземляющему контуру. Отличия глухозаземленной нейтрали от изолированнойЧтобы дать объяснить различие необходимо, кратко рассказать об основных особенностях изолированной нейтрали, пример такого исполнения приведен ниже. Рис. 6. Электроустановка с изолированной нейтральюКак видно из рисунка при данном способе нейтраль изолирована от контура заземления (в случае соединения обмоток «треугольником» она вообще отсутствует), поэтому открытые проводящие части (далее по тексту ОПЧ) электроустановок заземляются независимо от сети. Основное преимущество такой системы заключается в том, что при первом однофазном замыкании можно не производить защитное отключение. Это несомненный плюс для высоковольтных линий, поскольку обеспечивается более высокая надежность электроснабжения. К сожалению, такой режим заземления не удовлетворяет требования электробезопасности для сетей конечных потребителей. Низкий уровень электробезопасности основной, но не единственный недостаток изолированной нейтрали, с их полным списком, а также другими особенностями этой схемы электроснабжения, можно ознакомиться на нашем сайте. Системы TN и её подсистемыНачнем с аббревиатуры. Первые две буквы характеризуют вариант исполнения заземления для нейтрали и ОПЧ соответственно. Варианты для первой литеры:
Варианты вторых литер говорят об исполнении заземления ОПЧ: N или Т, используется глухозаземленная нейтраль или независимый контур, соответственно. Сейчас практикуется три схемы нейтрали:
У последнего варианта исполнения есть три подвида:
Требования ПУЭВ Правилах нормам и требованиям к глухозаземленной посвящена глава 1.7, приведем наиболее значимые выдержки из нее:
www.asutpp.ru 2.6. Заземление нейтралей трансформаторов. Дугогасящие реакторы для компенсации емкостных токов2.6. Заземление нейтралей трансформаторов. Дугогасящие реакторы для компенсации емкостных токов Электрические сети 35 кВ и ниже работают с изолированной нейтралью обмоток трансформаторов или заземлением через дугогасящие реакторы, сети 110 кВ и выше — с эффективным заземлением нейтралей обмоток трансформаторов. При необходимости компенсации емкостных токов в сетях 6, 10 и 35 кВ на ПС устанавливаются дугогасящие заземляющие реакторы с плавным или ступенчатым регулированием индуктивности. На напряжении 6 и 10 кВ дугогасящие реакторы подключаются к нейтральному выводу отдельного трансформатора, подключаемого к сборным шинам через выключатель. Количество и мощность дугогасящих реакторов 6-10 кВ определяются на основании данных энергосистемы. На напряжении 35 кВ дугогасящие реакторы присоединяются, как правило, к нулевым выводам соответствующих обмоток трансформаторов через развилку из разъединителей, позволяющую подключать их к любому из трансформаторов. Последствия от замыкания на землю в зависимости от вида электросети, значения емкостных токов и способы выполнения защит различны. Так, в сетях с изолированной нейтралью однофазное замыкание на землю не вызывает КЗ, поскольку в месте замыкания проходит ток малой величины, обусловленный емкостью двух фаз на землю. Значительные емкостные токи компенсируются включением в нейтраль трансформатора дугогасящего реактора. В результате компенсации остается малый ток, который не в состоянии поддерживать горение дуги в месте замыкания, поэтому поврежденный участок не отключается. Однофазное замыкание на землю сопровождается повышением напряжения на неповрежденных фазах до линейного, а при замыкании через дугу возможно возникновение перенапряжений, распространяющихся на всю электрически связанную сеть. Для предохранения трансформаторов в сетях с изолированной нейтралью или с компенсацией емкостных токов от воздействия повышенных напряжений изоляцию их нейтралей выполняют на тот же класс напряжения, что и изоляцию линейных вводов. При таком уровне изоляции не требуется применения средств защиты нейтралей, кроме вентильных разрядников, включаемых параллельно дугогасящему реактору. В сетях с эффективным заземлением нейтрали однофазное замыкание на землю приводит к КЗ, что видно из рис. 2.2. Ток КЗ проходит от места повреждения по земле к заземленным нейтралям трансформаторов Т1 и Т2, распределяясь обратно пропорционально сопротивлениям ветвей. Защита от замыкания на землю отключает поврежденный участок. Через трансформаторы Т3 и Т4 ток однофазного КЗ не проходит, поскольку их нейтрали не имеют глухого заземления. Однофазное замыкание на землю является причиной наибольшего числа повреждений в электросетях (по статистике — до 80 % случаев всех КЗ), и оно считается тяжелым видом повреждения. Поэтому для его предотвращения (снижения возможности возникновения) принимают специальные меры, например, такие как частичное разземление нейтралей трансформаторов. Эта мера не касается автотрансформаторов, поскольку они рассчитаны для работы с обязательным заземлением концов общей обмотки. Число заземленных нейтралей на каждом участке по возможности выбирается минимальным и должно определяться расчетом. Основными требованиями к защите заземленных участков являются требования к релейной защите по поддержанию на определенном уровне токов замыкания на землю и обеспечение защиты изоляции разземленных нейтралей от перенапряжений. Последнее требование тем более важно, что все отечественные трансформаторы 110–220 кВ имеют пониженный уровень изоляции нейтралей. При неполнофазных отключениях (включениях) ненагруженных трансформаторов с изолированной нейтралью, то есть когда коммутационная аппаратура (выключатели, разъединители или отделители) оказывается включенной не тремя, а двумя или даже одной фазой, переходный процесс сопровождается кратковременными перенапряжениями. Надежной защитой от таких процессов является применение вентильных разрядников. На практике, помимо воздействия кратковременных перенапряжений, нейтрали трансформаторов могут оказаться под воздействием фазного напряжения промышленной частоты, которое опасно как для изоляции трансформатора, так и для разрядника в его нейтрали. Опасность усугубляется еще тем, что такое напряжение может длительно оставаться незамеченным при неполнофазных режимах коммутации выключателями, разъединителями и отделителями ненагруженных трансформаторов, а также при аварийных режимах. При неполнофазном включении ненагруженного трансформатора, то есть при пофазной коммутации, его электрическое и магнитное состояние изменяется. Если включение трансформатора осуществляется со стороны обмотки, соединенной в звезду, то при наличии двух фаз напряжение на нейтрали и на отключенной фазе будет равно половине фазного. Если подать напряжение по одной фазе, то все обмотки трансформатора и его нейтраль будут находиться под напряжением включенной фазы. Во избежание негативных последствий и предупреждения аварии неполнофазный режим должен быть немедленно устранен. В идеале наилучшей мерой защиты в таких случаях является глухое заземление нейтралей обмоток трансформаторов. Поэтому перед включением или отключением от сети трансформаторов 110–220 кВ, у которых нейтраль защищена вентильными разрядниками, следует наглухо заземлять нейтраль включаемой или отключаемой обмотки, если к тем же шинам или к питающей линии не подключен другой трансформатор с заземленной нейтралью. Глухое заземление нейтрали трансформатора облегчает процессы отключения и включения намагничивающих токов, вследствие чего дуга при отключении трансформатора горит менее интенсивно и быстро гаснет. Отключение заземляющего разъединителя в нейтрали трансформатора, работающего с разземленной нейтралью, следует производить сразу же после включения и проверки полнофазного включения коммутационного аппарата. Не допускается длительно оставлять нейтраль заземленной. Заземлением нейтрали изменяется распределение токов нулевой последовательности и нарушается селективность действия защит от однофазных замыканий на землю. В настоящее время широкое распространение получили упрощенные схемы питания от одиночных и двойных проходящих линий 110–220 кВ. Число присоединяемых к ним трансформаторов может достигать 4–5. Если к такой линии присоединены два и более трансформаторов, то целесообразно хотя бы у одного из них иметь глухое заземление нейтрали, что позволит в случае неполнофазной подачи напряжения на линию вместе с подключенными к ней трансформаторами избежать появления опасных напряжений на изолированных нейтралях других трансформаторов. На линейных вводах всех подключенных к линии трансформаторов образуется симметричная трехфазная система напряжений, при которой напряжение на изолированной нейтрали трансформатора будет равно нулю. В сетях с эффективно заземленной нейтралью трансформаторы при возникновении аварийных режимов подвержены опасным перенапряжениям. Это может иметь место, когда при обрыве и соединении провода с землей выделяется участок сети, не имеющей заземленной нейтрали со стороны источника питания. На таком участке напряжение на нейтралях трансформаторов становится равным по величине и обратным по знаку ЭДС заземленной фазы, а напряжение неповрежденных фаз относительно земли повышается до линейного. Возникающие при этом из-за колебательного перезаряда емкостей фаз на землю перенапряжения представляют опасность для изоляции трансформаторов и другого оборудования данного участка. В сетях с эффективно заземленной нейтралью на случай перехода части сети в режим работы с изолированной нейтралью предусматривают защиты от замыкания на землю, реагирующие на напряжение нулевой последовательности 3Uо, которое появляется на зажимах разомкнутого треугольника ТН при соединении фазы с землей. Такие защиты действуют на отключение выключателей трансформаторов с незаземленной нейтралью. Их настраивают так, чтобы при однофазном повреждении первыми отключались трансформаторы с изолированной нейтралью, а затем трансформаторы с заземленной нейтралью. На ПС 110 кВ, где трансформаторы не могут получать подпитку со стороны СН и НН, такие защиты от замыкания на землю не устанавливаются и глухое заземление нейтралей не производится. На основании изложенного оперативному персоналу необходимо выполнять следующие рекомендации: при выводе в ремонт трансформаторов, а также при изменениях схем ПС необходимо обеспечивать режим заземления нейтралей, принятый в энергосистеме, и при переключениях не допускать в сетях с эффективно заземленной нейтралью выделения участков без заземления нейтралей у питающих сеть трансформаторов; во избежание автоматического выделения таких участков на каждой системе шин ПС, где возможно питание от сети другого напряжения, рекомендуется иметь трансформатор с заземленной нейтралью с обязательной токовой защитой нулевой последовательности; при выводе в ремонт трансформатора, нейтраль которого заземлена, необходимо предварительно заземлить нейтраль другого параллельно работающего с ним трансформатора; без изменения положения нейтралей других трансформаторов производится отключение трансформаторов с изолированной нейтралью или нейтралью, защищенной вентильным разрядником. Поделитесь на страничкеСледующая глава > info.wikireading.ru Режимы работы нейтрали в электроустановках и электрических сетяхЭлектрические сети, как известно, делятся в зависимости от класса напряжения – до и выше 1000В. Нейтраль – это общая точка обмоток у трансформаторов и генераторов, соединенных в звезду. Если же схема обмоток треугольник и необходим ноль, то можно вспомнить про схему «скользящий треугольник». Будем рассматривать только сети переменного тока. Виды заземления нейтрали в сетях до 1кВВ электрических сетях напряжением до 1000В принято использовать три системы заземления нейтрали – это TN, IT, TT. Каждая из букв несет определенный смысл, разберемся:
В свою очередь система TN делится на три подсистемы – TN-C, TN-S и TN-C-S. В рамках данной подсистемы третьи буквы (C - combine, S - separe) обозначают совмещение или разделение в одном проводе функций нулевого защитного (PE) и нулевого рабочего (N) проводника. Рассмотрим теперь каждую систему более подробно. Система заземления TNВ этой системе нейтраль глухозаземлена, а открытые проводящие части заземлены через эту глухозаземленную нейтраль. Глухозаземленная – это значит что нейтраль присоединена непосредственно к заземляющему устройству (болтом, сваркой) или через малое сопротивление (трансформатор тока). В сетях до 1кВ глузозаземленная нейтраль используется для питания однофазных и трехфазных нагрузок. Система заземления TTСистема TT предполагает, что нейтраль источника питания глухозаземлена, а ОПЧ оборудования заземлены заземляющим устройством электрически несвязанным с нейтралью источника. То есть защитный PE-проводник создается у самого потребителя, а не идет от источника питания. Система заземления ITВ системе IT нейтраль генератора или трансформатора изолирована или заземлена через устройства, имеющие высокое сопротивление, а ОПЧ заземлены независимо. Эта система не рекомендуется для жилых зданий, используется там, где при первом замыкании на землю не требуется перерыв питания. Это могут быть электроустановки с повышенными требованиями надежности снабжения электроэнергией. Виды заземления нейтрали в электросетях выше 1кВВ сетях напряжением выше 1000В используется изолированная (незаземленная) нейтраль, эффективно заземленная нейтраль и резонансно-заземленная нейтраль. Глухозаземленная нейтраль используется только в сетях до 1кВ. Сети с незаземленной (изолированной) нейтральюИсторически первая система заземления. Нейтральная точка источника питания не присоединена к заземляющему устройству. Обмотки соединены в треугольник и выходит, что нулевая точка отсутствует. Применяется на напряжение 3-35кВ. Сети с эффективно-заземленной нейтральюЭтот вид заземления используется в сетях напряжением выше 110кВ. Достоинство заключается в том, что при однофазных замыканиях на неповрежденных фазах напряжение относительно земли будет равно 0,8 междуфазного в нормальном режиме работы. В этой системе сам контур заземления выполняется с учетом протекания больших токов КЗ, что делает его сложным и дорогим. Сети с нейтралью, заземленной через резистор или реакторПрименяется в сетях 3-35кВ. Используется для уменьшения величины токов КЗ. Исторически был вторым способом заземления нейтрали. Заземление через резистор используется во всем мире, через реактор – в странах бывшего союза. Заземление через реактор – при отсутствии замыкания ток через реактор мал. Когда происходит замыкание фазы на землю, то через место повреждения течет емкостной ток КЗ и индуктивный ток реактора. Если их величина равна, то в месте замыкания отсутствует ток (явление резонанса). Заземление через резистор бывает низкоомным и высокоомным. Разница в величине тока, создаваемым резистором при замыкании на землю. Высокоомное применяется в сетях с малыми емкостными токами, в этом случае замыкание можно не отключать немедленно. Низкоомное заземление наоборот используется при больших емкостных токах. Выбор виды заземления нейтрали зависит от следующих факторов:
pomegerim.ru Зачем и как делают заземление трансформаторовОт производителей электроэнергии передается ток высокого напряжения. Чтобы им могли пользоваться потребители на бытовом уровне, применяют понижающие трансформаторы. Согласно ПУЭ для них необходимо применять защитное заземление. Предусмотрен внешний и внутренний контур заземления. Устанавливают также защиту от ударов молнии. Принципы устройстваТрансформатор преобразует (трансформирует) параметры переменного электрического тока. Происходит это благодаря явлению электромагнитной индукции. Основные детали прибора – катушки (обмотки) с проводами и ферромагнитный сердечник. На одну катушку ток поступает, и она называется первичной. Вторичных катушек может быть 1, 2 и больше. С них снимается ток с уже измененными характеристиками.
У повышающего трансформатора число витков на вторичной обмотке больше, чем на первичной. В прямой связи увеличивается индуцированное напряжение с одновременным понижением силы тока. Устройство понижающих трансформаторов другое. Они сделаны с точностью наоборот. Число витков в первичной обмотке у них больше, чем на вторичной обмотке, поэтому индуцированное напряжение снижается. На большие расстояния выгоднее передавать электричество высокого напряжения и низкой силы тока, поскольку потери энергии на выделения тепла наименьшие. Так и поступают. А трансформаторы впоследствии преобразуют ток до необходимых параметров. Способ соединения обмоток трансформатора может быть выбран «треугольник», «звезда» или «зигзаг». В случае «треугольника» обмотки соединены последовательно, образуя замкнутый контур. Способ «звезда» предполагает соединение концов фазных обмоток в одну точку. Ее называют нулевой (нейтральной) точкой. В случае «зигзага» каждая фазная обмотка состоит из 2-х частей на разных стержнях. Соединение 2-х частей происходит навстречу друг другу. Образовавшиеся три вывода соединяют, как «звезду». Для трансформаторов высокого напряжения применяют соединение «звезда». Заземляется нулевая точка или конец вторичной обмотки. При объединении в «звезду» заземляют фазный провод. ПрименениеДля преобразования тока, который передается по электрическим сетям, применяют силовые трансформаторы. Такие устройства способны работать с большими мощностями. Они преобразуют напряжение на линиях с 35…750 кВ в напряжение 6 и 10 кВ и далее в 400 В. После этого электроэнергией могут пользоваться потребители на бытовом уровне.
Трансформаторы тока используют, чтобы снижать ток до требуемой величины. Их применяют в схемах бесконтактного управления, чтобы обезопасить людей и технику от поражения током. Трансформаторы тока применяют также в измерительных и защитных устройствах, схемах сигнализации и в других приборах. Особенность трансформатора тока в том, что его вторичная обмотка работает в режиме, близком к короткому замыканию. Если по какой-то причине происходит разрыв цепи на вторичной обмотке, то напряжение на ней повышается до значительных величин. Скачек напряжения может вызвать поломку оборудования, включенного в сеть. Поэтому должно присутствовать защитное заземление. Существуют также трансформаторы напряжения, импульсные трансформаторы, автотрансформаторы, сварочные и другие. Для каждого из них существуют своя схема и особенности подключения заземления. Чтобы правильно его выполнить, необходимо изучить техническую документацию к оборудованию. Зачем заземлятьЗаземление нейтрали трансформатора необходимо для создания стабильной работы электроустановки и безопасности людей, которые могут находиться на подстанции. Рабочее заземление на трансформаторе является частью защитного. Это значит, что заземление, предназначенное для стабильной работы устройства, также защищает от поражения током. Правила устройства электроустановок требуют, чтобы все силовые трансформаторы были заземлены.
В трансформаторах напряжения заземляется только трансформатор. Согласно правилам устройства электроустановок у трансформатора напряжения заземление вторичной обмотки происходит путем соединения общей точки или одного из концов обмотки с заземляющим проводником. В трансформаторах тока заземляются вторичные обмотки. Для подключения проводников предусмотрены специальные зажимы. Обмотки нескольких установок можно соединять одним проводником и подключать к одной шине. В электротехнике выделяют понятие сети с эффективно заземленной нейтралью. Оно применимо для силового трансформатора, у которого заземлено большинство нейтралей обмоток (глухое заземление нейтрали). Если произойдет однофазное замыкание, то напряжение на поврежденных фазах не должно быть выше 1,4 напряжения на рабочих фазах в нормальных условиях. Дугогасящие реакторыВ сетях, рассчитанных на 110 кВ и выше, предусмотрена защита с глухозаземленной нейтралью. Если сеть рассчитана на 35 кВ и ниже, то применяется заземление с изолированной нейтралью. Преимущество изолированной нейтрали в том, что если произойдет замыкание фазы на земли, то это не приведет к короткому замыканию. На трансформаторах с системой изолированной нейтрали устанавливают дугогасящие реакторы. Они компенсируют емкостные токи, возникающие при замыкании на землю. Дело в том, что вдоль линии электропередачи накапливается электрический заряд (емкостное электричество). И как только происходит разрыв или иное повреждение изоляции, при контакте с землей возникает ток. Если он достигает 30 А, образуется разрядная дуга. В результате кабель нагревается, начинает разрушаться изоляция и вместе с ней проводник. Такое явление приводит к двухфазному и трехфазному замыканию. Срабатывает защита, и трансформатор полностью отключается. Обесточенными остаются сотни и тысячи потребителей электроэнергии. Чтобы этого не произошло, устанавливают дугогасящие реакторы. Нейтраль заземляют через них. Во время однофазного замыкания на землю возрастает индуктивность дугогасящего реактора. Индуктивная проводимость компенсирует емкостную, и электрическая дуга не возникает. Через дугогасящие реакторы заземляют нейтраль первичной обмотки одного из трансформаторов сети, в которой соединение обмоток происходит по типу «звезда-треугольник». Если произошло замыкание на землю, то благодаря такой системе заземления, трансформатор сможет работать на протяжении еще 2-х часов, пока неполадки не будут устранены. Создание внешнего контураЧтобы сделать внешний контур заземления трансформатора, применяют вертикальные электроды, соединенные горизонтальными перемычками. Перемычки выполняют из листовой стали толщиной 4 мм и шириной 40 мм. Электроды втыкают в грунт по периметру трансформатора.
Проверяют удельное сопротивление грунта. Оно должно составлять максимум 100 Ом*м. Исходя из этого, требуется создать контур сопротивлением максимум 4 Ом. Если взять круг диаметром 16 м, с условным трансформатором посередине, то для создания заземляющего контура потребуется минимум восемь электродов длиной по 5 м каждый. Их размещают на расстоянии приблизительно 1 м от фундамента трансформаторной станции. Чем ближе стержни будут располагаться к стене, тем лучше. Горизонтальные полоски-соединения укладывают на ребро на глубину 0,5-0,7 м. Такое требование к расположению связано с вопросами безопасности. Заземлитель не должен быть поврежден при проведении каких-либо ремонтных и строительных работ. Защита от молнийЧтобы выполнить молниезащиты трансформаторной подстанции с металлической крышей, необходимо соединить крышу с внешним контуром заземления. Соединение происходит в двух противоположных точках. То есть в одной точке кровля соединяется с внешним контуром, и со стороны, расположенной напротив, также происходит соединение кровли с контуром. Соединительным проводником становится проволока толщиной 8 мм.
Если кровля не металлическая, то на ней наверху создают специальный молниеприемник. Создание внутреннего контураТрансформаторная подстанция разделена на 3 помещения. Отдельно делают помещения для высокого и низкого напряжения – это помещения распределительных устройств (для входа и выхода). И отдельно предусмотрена трансформаторная камера, непосредственно для трансформатора. В каждом отделении должна быть проложена заземляющая полоса. Ее прикрепляют к стенам на высоте 0,4…0,6 м, чтобы заземлить все части из металла, не предназначенные для проведения тока. Для крепления применяют дюбеля или специальные держатели круглых и плоских заземляющих проводников. К заземляющей полосе подключают швеллер, предназначенный для установки трансформатора. Он размещен в стяжке пола. Подсоединяют и другие детали (шинный мост, металлические элементы барьера, крепежные детали, место присоединения переносного заземления). К системе заземления подключают все опорные конструкции из металла и стальные каркасы. Для разборных соединений применяют болты, в остальных случаях элементы сваривают между собой. Для закрепления переносного заземления используют гайку с ушками «барашек». Перемычки делают из гибкого медного провода ПВ3. Однако изоляционную оболочку с такого провода надо снять, чтобы можно было следить за целостностью жил. Заделку в стены осуществляют посредством вставки гильз и заполнением свободного пространства негорючим материалом. Полосу окрашивают в желтый цвет с зелеными полосами. Такую окраску имеет защитный нулевой провод. Нулевую шину подключают к заземляющему контуру. Корпус трансформатора соединяют с контуром перемычками. При осмотре трансформатора на вход ставят оградительный барьер и навешивают табличку «Осторожно! Высокое напряжение!». evosnab.ru |