Eng Ru
Отправить письмо

Конструкция и техническая характеристика силовых трансформаторов 6-10 кВ. Конструкция трансформатора


Конструкция трансформатора

 

Конструктивной основой трансформатора является магнитопровод. Он служит для проведения основного магнитного потока. Для уменьшения магнитного сопротивления по пути потока, а следовательно, и уменьшения МДС и тока, необходимых для создания потока, магнитопровод выполняется из специальной электротехнической стали. Так кик магнитный поток в трансформаторе изменяется во времени, то для уменьшения потерь от вихревых токов в магнитопроводе он собирается из отдельных электрически изолированных друг от друга листов. Толщина листов выбирается тем меньше, чем выше частота питающего напряжения. При частоте 50 Гц толщина листов стали принимается равной 0,35—0,5 мм. Изоляция листов осуществляется чаще всего с помощью лаковой пленки, которая наносится с двух сторон листа.

В магнитопроводе различают стержень и ярмо. Стержень — это та часть магнитопровода, на которой располагаются обмотки, а ярмо — часть, не несущая обмоток и служащая для замыкания магнитной цепи (см. рис. 1.1).

В зависимости от взаимного расположения стержней, ярм и обмоток магнитопроводы разделяются на стержневые (рис. 1.3) и броневые (рис. 1.4).

 

Рис. 1.3. Стержневой однофазный трансформатор

 

Рис. 1.4. Броневой однофазный трансформатор

 

В стержневых магнитопроводах ярма прилегают к торцевым поверхностям обмоток, не охватывая их боковых поверхностей. Магнитопровод стержневого трансформатора имеет два стержня, на каждом из которых располагаются по половине обмоток 1 и 2. Половины каждой из обмоток соединяются между собой последовательно или параллельно. В броневых магнитопроводах ярма охватывают не только торцевые, но и боковые поверхности обмоток.

В трёхфазных цепях могут применяться три однофазных трансформатора, обмотки которых соединяются по трехфазной схеме (рис. 1.5). Такой трансформатор называют групповым.

 

Рис. 1.5. Трёхфазная группа однофазных трансформаторов

 

Однако чаще применяют трехфазные трансформаторы с общей магнитной системой для всех фаз (рис. 1.6).

 

Рис. 1.6. Стержневой трёхфазный трансформатор

 

Набольшее распространение в практике трансформаторостроения получили магнитопроводы стержневого типа. На каждом стержне трёхфазного стержневого магнитопровода располагаются обе обмотки одной фазы (рис. 1.6).

По способу соединения стержней с ярмами различают трансформаторы со стыковыми (рис. 1.7) и шихтованными впереплёт (рис. 1.8) магнитопроводами.

 

Рис. 1.7. Принцип стыковой конструкции магнитопровода однофазного (а) и трёхфазного (б) трансформаторов

 

Рис. 1.8. Укладка листов стали шихтованного магнитопровода однофазного (а) и трёхфазного (б) трансформаторов

 

В первом случае стержни и ярма выполняются и скрепляются раздельно. При сборке магнитопровода стержни с обмотками устанавливаются встык с ярмами и стягиваются специальными деталями. В местах стыка во избежание замыкания листов и возникновения больших вихревых токов, вызывающих увеличение потерь и чрезмерное повышение температуры стали, устанавливаются изоляционные прокладки.

Сборка магнитопровода впереплёт ведётся путём чередования слоя листов, разложенных по положению 1 со слоем листов, разложенных по положению 2 (рис. 1.8). В результате такой сборки после стяжки ярм прессующими балками и стержней бандажами из стеклоленты получается остов трансформатора, не требующий добавочных креплений.

Остовом трансформатора называется магнитопровод вместе со всеми конструкциями и деталями, служащими для крепления его отдельных частей.

Листы, из которых собирается шихтованный магнитопровод, имеют прямоугольную форму, если они штампуются из горячекатаной электротехнической стали.

В настоящее время магнитопроводы трансформаторов изготовляются из холоднокатаной электротехнической стали, обладающей низкими удельными потерями и повышенной магнитной проницаемостью. Это позволяет уменьшить поперечное сечение стержня и, следовательно, сократить массы металла стали и обмоток трансформатора. Кроме того, уменьшаются потери в стали и намагничивающий ток трансформатора.

Для снижения потерь и падения магнитного напряжения в местах стыка при сборке магнитопровода из холоднокатаной электротехнической стали применяют косые стыки (рис. 1.9).

После сборки шихтованного впереплёт магнитопровода листы верхнего ярма вынимаются (расшихтовываются), на стержнях размещаются обмотки, после чего ярмо снова зашихтовывается.

Наболее широкое распространение в трансформаторостроении получили шихтованные впереплет магнитопроводы. Стыковая конструкция применяется значительно реже, так как наличие немагнитных зазоров в местах стыков увеличивает магнитное сопротивление на пути потока, что приводит к возрастанию намагничивающего тока трансформатора и снижению его коэффициента мощности.

 

 

Рис. 1.9. Форма пластин и порядок шихтовки магнитопровода из холоднокатаной стали: а – первый слой, б – второй слой, в – взаимное расположение слоёв при укладке

 

 

 

Рис. 1.10. Поперечные сечения стержней трансформатора

 

Стержни магнитопровода трансформаторов в поперечном сечении имеют форму ступенчатой фигуры, вписанной в окружность с диаметром D0, или прямоугольника.

Число ступеней фигуры увеличивается с возрастанием мощности трансформатора. Увеличение числа ступеней увеличивает заполнение площади круга площадью ступенчатой фигуры, но одновременно увеличивает число типов пластин, необходимых для сборки стержня. В мощных трансформатоpax в сечении магнитопровода предусматриваются каналы для его охлаждения.

При стержнях, имеющих поперечное сечение, приближающееся к кругу, обмотки будут иметь вид полых цилиндров. При такой конструктивной форме обмотки (по сравнению с прямоугольной) сокращается расход материалов на ее изготовление и увеличивается электрически и механическая прочность.

Прямоугольное сечение стержней применяется иногда в трансформаторах броневого типа и трансформаторах большой мощности.

Форма сечения ярма и его сочленение со стержнем выбираются с учетом обеспечения равномерного распределения магнитного потока в сечении сердечника. Неравномерность распределения потока между отдельными пакетами магнитопровода приводит к увеличению потерь в стали и возрастанию намагничивающего тока.

Равномерное распределение магнитного потока между пакетами можно получить, если ярмо будет иметь число ступеней, равное числу ступеней стержня. Для упрощения технологии изготовления ярм иногда число ступеней у них берут меньше, чем у стержней.

По способу расположения на стержне обмотки трансформатора подразделяются на концентрические (рис. 1.11) и чередующиеся (рис. 1.12). Концентрические обмотки выполняются каждая в виде цилиндра и располагаются на стержне концентрически относительно друг друга. Высота обоих обмоток, как правило, делается равной.

Рис. 1.11. Стержень трансформатора с концентрическими обмотками

Рис. 1.12 Стержень трансформатора с дисковыми чередующимися обмотками

 

В высоковольтных трансформаторах ближе к стержню располагается обмотка НН, так как при этом уменьшается изоляционное расстояние между стержнем и этой обмоткой. В чередующихся обмотках катушки ВН и НН чередуются вдоль стержня по высоте. Эти обмотки имеют меньшее магнитное рассеяние. Однако при высоких напряжениях изоляция таких обмоток сложнее из-за большого количества промежутков между катушками ВН и НН.

В силовых трансформаторах нашли применение главным образом концентрические обмотки.

Важным элементом конструкции обмоток является их изоляция. Различают главную и продольную изоляцию.

Главной изоляциейназывается изоляция данной обмотки от магнитопровода, бака и соседних обмоток.

Продольная изоляцияявляется изоляцией между различными точками данной обмотки, т. е. между витками, слоями и катушками, Изоляция между витками обеспечивается собственной изоляцией обмоточного провода.

Конструкция изоляции трансформатора усложняется с ростом напряжения обмотки ВН и существенно влияет на его стоимость.

Для выполнения обмоток трансформатора наряду с медными находят широкое применение алюминиевые провода.

В электронных устройствах используются трансформаторы с тороидальными сердечниками, которые наматываются из ленточной электротехнической стали или специальных магнитных сплавов. Их обмотки выполняются из медного провода, алюминиевой или медной фольги.

Основным типом силового трансформатора является масляный трансформатор. Сухие трансформаторы применяются в установках производственных помещений, жилых и служебных зданий, т.е. там, где применение масляных трансформаторов вследствие их взрыво- и пожароопасности недопустимо. В сухих трансформаторах охлаждающей средой служит проникающий к обмоткам и магнитопроводу атмосферный воздух.

У масляного трансформатора его выемная часть, являющаяся собственно трансформатором, погружается в бак с маслом (рис. 1.13). К выемной части относится остов с обмотками и отводами, а в некоторых конструкциях также и крышка бака. Масло, заполняющее бак, имеет двойное назначение. Оно имеет более высокую диэлектрическую прочность, чем воздух, благодаря чему можно уменьшить изоляционные расстояния между токоведущими и заземленными частями, а также между обмотками. Кроме того, трансформаторное масло является лучшей охлаждающей средой, чем воздух. Поэтому в трансформаторе, заполненном маслом, можно увеличить электрически и магнитные нагрузки. Все это приводит к уменьшению расхода обмоточных проводов и электротехнической стали на изготовление трансформатора и уменьшению его габаритов.

Иногда в целях пожарной безопасности бак трансформатора заполняется негорючим и не окисляющимся жидким диэлектриком – совтолом. Электрическая прочность и охлаждающие свойства этого диэлектрика практически не отличаются от таких же свойств масла. Применение совтола ограничивается более высокой по сравнению с маслом стоимостью и токсичностью его паров.

Бак трансформатора обычно имеет овальную форму и для удобства транспортировки располагается на тележке с катками.

У трансформаторов мощностью до 40 кВА применяются баки с гладкими стенками. При больших мощностях для увеличения поверхности охлаждения применяются специальные трубчатые охладители.

При мощностях свыше 10000 кВА для более интенсивного отвода от охладителей применяется их обдув с помощью вентиляторов. В мощных трансформаторах применяется форсированное охлаждение масла. Масло из бака откачивается насосом, прогоняется через водяной или воздушный теплообменник и охлажденное вновь возвращается в бак трансформатора.

Расширитель представляет собой цилиндрический резервуар, располагаемый выше крышки бака масляного трансформатора и соединяемый с баком трубкой и патрубком на крышке. Внутренний объем расширителя составляет примерно 10 % объема бака трансформатора, так что при всех возможных колебаниях температуры масло полностью заполняет бак. Кроме того, при наличии расширителя,открытая поверхность масла, соприкасающаяся с воздухом, уменьшается, что уменьшает его окисление и увлажнение. Этим достигается защита масла и изоляции трансформатора. Между расширителем и баком трансформатора устанавливается газовое реле, которое сигнализирует о повреждениях, приводящих к местному нагреву отдельных частей. В результате нагрева происходит разложение масла и изоляции, сопровождаемое выделением газов. Газы, поднимаясь в верхнюю часть бака по пути в расширитель, проходят через газовое реле, вытесняют из него масло и заставляют его сработать. Расширители устанавливаются во всех трансформаторах, начиная с мощности 25 кВА при напряжении от 6,3 кВ и выше. Для трансформаторов меньшей мощности допускается колебание уровня масла внутри бака.

Вводы представляют собой изоляторы, внутри которых располагаются токоведущие медные стержни. Внутри бака к стержню подсоединяются концы обмотки трансформатора, а вне бака – токоведущие части сети.

Вводы для трансформаторов, устанавливаемых внутри помещения, обычно имеют гладкую внешнюю поверхность, а дляустанавливаемых на открытом воздухе, снабжаются ребрами.

Контроль температуры масла в верхней части бака производится различного типа термометрами. Наибольшая температура масла — в верхних слоях (допускается равной 95°С).

Для изменения числа витков обмотки ВН в целях регулирования напряжения предусматривается переключатель, размещенный внутри бака. Рукоятка этого переключателявыводится на крышку или стенку бака трансформатора.

На крышке и стенках бака устанавливаются разные пробки и краны, предназначенные для заливки, спуска и отбора пробы масла.

 

 

Рис. 1.13. Масляный трансформатор:

1 – шихтованный магнитопровод; 2 — обмотка НН; 3 — обмотка BH; 4 — трубчатый бак; 5 — термометр; 6 — переключатель регулировочных отводов обмотки ВН; 7 – ввод обмотки НН: 8 —ввод обмотки ВН; 9 — расширитель

 

Похожие статьи:

poznayka.org

Конструкции трансформаторов | Техника и Программы

Основными типами конструкций трансформаторов являются броневая и стержневая. В однофазном исполнении они приведены на Рис. 7.6.

Рис. 7.6. Трансформаторывразрезе

Броневая конструкция больше подходит для больших и высоковольтных трансформаторов. Секции обмоток в них имеют плоскую форму и набираются в стопку перед монтажом с сердечником. В этой конструкции сердечник окружает большую часть обмоток, за исключением зоны расположения их выводов. Секции первичной и вторичной обмоток обычно чередуют между собой для уменьшения индуктивности рассеяния. С учетом возможности протекания больших токов при авариях секции должны быть надежно закреплены. Почти всегда трансформаторы броневой конструкции делают с масляным наполнением, а их мощность достигает 500 MBA.

В трансформаторах стержневой конструкции катушки надеты на сердечник в форме стержня, собранный из пластин трансформаторного железа. В этой конструкции по сути катушки окружают сердечник. В поперечном сечении катушки бывают прямоугольными и круглыми. Эта конструкция чаще используется для небольших трансформаторов сухого типа, обычно в диапазоне мощностей от 10 кВА до 20 MBA. Причина, по которой стержневая конструкция трансформаторов не применяется при больших мощностях, состоит в трудности обеспечения механической прочности их обмоток при авариях с коротким замыканием. Так как механическая сила пропорциональна квадрату тока, то при токе короткого замыкания, в 20 раз большем, чем номинальный рабочий ток, развиваются силы, в 400 раз большие, чем при нормальной работе. В основном механические силы направлены радиально. Внутренние обмотки при этом сжимаются, а внешние стремятся расшириться. Для защиты внутренних обмоток от механических повреждений при авариях сердечник (или по крайней мере его углы) покрывают стеклопластиком. Снаружи обмотки также зачастую закрывают стеклопластиковой защитой. Существуют также механические силы, стремящиеся вытолкнуть края обмоток наружу в аксиальном направлении. Но как бы там ни было, из-за того, что производство стержневых трансформаторов дешевле, чем броневых, в области средних напряжений и мощностей их великое множество.

Два варианта конструкций стержневых трансформаторов заслуживают упоминания. Обмотки могут быть покрыты защитным диэлектриком, часто эпоксидной смолой. При использовании воздушного охлаждения между первичной и вторичной обмотками делают воздушные зазоры. Эти трансформаторы обычно имеют весьма большие габариты для своих мощностей. Другой вариант конструкции предусматривает использование в обмотках пустотелых проводников с жидкостным охлаждением. Такое прямое охлаждение приобрело популярность в последние годы для трансформаторов класса до 15 кВ, при этом для исключения электролиза применялись деионизированные хладагенты. Для обеспечения устойчивости к замерзанию используют смесь пропиленгликоля с водой. Несмотря на то что системы с жидкостным охлаждением требуют применения деионизаторов, насосов и теплообменников, они также часто используются в силовой электронике и для охлаждения мощных полупроводниковых приборов. Трансформаторы, полупроводниковые приборы и шины могут охлаждаться общей жидкостной системой. Эта конструкция особенно удобна, если недоступен воздух для охлаждения нужного качества. Примерами таких условий могут быть литейные цеха, стекольные заводы, металлургические предприятия и подобные им производства, где использование жидкостного охлаждения электрооборудования позволяет отказаться от дорогих фильтров и громоздкой системы воздуховодов. Теплообменники бывают жидкостно-воздушными и жидкостно-водяными и могут быть частью заводской системы охлаждения. При использовании жидкостного охлаждения надо соблюдать некоторые предосторожности. Если используется смесь воды с гликолем, то последний должен быть химически чистым.

Имеющиеся в продаже антифризы на основе гликоля содержат ингибиторы ржавчины и другие присадки, увеличивающие их проводимость.

Основные характеристики трансформаторов с масляным наполнением и сухого типа приведены в Табл. 7.1. Митральное масло, используемое в первых, служит как для обеспечения электрической изоляции, так и для отвода тепла. Кроме того, для изоляции применяется картон или бумага, пропитанные маслом. Диэлектрические постоянные этих материалов очень близки к диэлектрической постоянной масла, так что не возникает неоднородностей электрического поля, связанных с изоляцией. При изготовлении горячее масло закачивается в нагретую конструкцию трансформатора под вакуумом, с тем чтобы исключить даже мельчайшие пузырьки воздуха в изоляции и масле. Нагрев масла уменьшает его вязкость и увеличивает проникающую способность. Изоляция должна быть полностью пропитана маслом, чтобы в ней не осталось воздушных пустот, в которых при работе может возникнуть коронный разряд, ведущий к повреждению изоляции. Следует отметить, что диэлектрические свойства масла позволяют зазоры между токоведущими частями в трансформаторах делать намного меньше, чем на воздухе. Рабочая температура масла ограничивается ухудшением его изоляционных свойств вследствие образования углеводородов, ускоряющегося при высокой температуре.

Таблица 7.1. Основные характеристики трансформаторов

Трансформаторы с масляным наполнением

Трансформаторы сухого типа

Неограниченное напряжение

Напряжение до 34.5 кВ

Изоляционный материал — картон

Твердые изоляционные материалы

Сварной корпус

Воздушное или жидкостное охлаждение

Обычно броневая конструкция

Обычно стержневая конструкция

Температура масла максимум 65°С

Температурадо 180°С и выше

Герметичные проходные изоляторы

Открытые выводы

Корпуса для трансформаторов с масляным наполнением делают сварными, из стали, при этом их конструкцию рассчитывают так, чтобы свести к минимуму нагрев вихревыми токами. Выводы обычно рассчитаны на ток до 2500 А, а при больших токах их соединяют параллельно. Для охлаждения к наружным стенкам корпуса приделывают трубчатые радиаторы, а внутри трансформатора масло циркулирует обычно за счет конвекции.

Трансформаторы сухого типа обычно используют внутри помещений, хотя иногда применяют их и снаружи. Для уменьшения размеров оборудования эти трансформаторы могут быть встроены в ту или иную установку. Для охлаждения используются как естественная конвекция воздуха, так и вентиляторы. Большое число трансформаторов сухого типа применяются в зданиях для питания локальной сети 120/208 В от высоковольтной распределительной сети. Еще одним привлекательным качеством этих трансформаторов является простота их подключения к сети.

В процессе изготовления собранную конструкцию из сердечника и катушек подвергают нескольким циклам вакуумного прессования, что позволяет удалить воздушные пузыри из изоляции. Обмотки обычно снабжены вентиляционными каналами, выполненными из стеклопластика или рифленого алюминия. Для трансформаторов сухого типа очень важно, чтобы пыль или какие-либо проводящие загрязнения не попадали в их систему вентиляции.

Источник: Сукер К. Силовая электроника. Руководство разработчика. — М.: Издательский дом «Додэка-ХХI, 2008. — 252 c.: ил. (Серия «Силовая электроника»).

nauchebe.net

Конструкция трансформатора | Техника и Программы

Существует три основных типа конструкции трансформаторов: броневой, стержневой и тороидальный трансформаторы (рис. 14). Каждый из них может иметь сердечник либо пластинчатый, либо ленточный разъемный, либо ленточный неразъемный. Наиболее распространенные варианты конструкции сердечника показаны на рис. 15. В разъемных и пластинчатых сердечниках после сборки остаются очень маленькие воздушные промежутки – зазоры, которые немного ухудшают их магнитные свойства.

На самом деле принципиальной разницы между трансформаторами нет, в усилителях можно использовать любые и отдавать предпочтение какому-либо определенному типу нет особого смысла. К сожалению, существует мнение, что трансформатор непременно должен быть тороидальным, типа, поставь тор, и звучание само по себе станет хорошим. Это не так. Главное не конструкция трансформатора, а качество его изготовления. Поэтому лучше поставить качественный броневой трансформатор, чем плохонький тороидальный.

Давайте рассмотрим особенности каждой из конструкций.

Броневой трансформатор

Технологичный в изготовлении, недорогой и популярный. Наиболее доступный для самостоятельного изготовления. Выпускаются на мощности, начиная от 0,5 ВА. При самостоятельном изготовлении или перемотке трансформатора с пластинчатым сердечником очень важно хорошо собрать сердечник, иначе он может гудеть или дребезжать. Броневой трансформатор имеет наихудшее охлаждение (в нормальном трансформаторе греется обмотка), поэтому меньше всех выдерживает длительные перегрузки. Иногда встречаются трансформаторы, каркас которых разделен на несколько секций, в каждой из которых намотана своя обмотка (при "традиционном" способе намотки обмотки наматываются по всей длине каркаса и располагаются одна поверх другой – сначала первичная, потом вторичные).

Такие трансформаторы наиболее удобны для перемотки, но имеют самые большие потоки рассеяния.

Стержневой трансформатор

Обычно выпускается на мощности от 40 ВА и больше. Часто использовался в отечественной аудиоаппа-

Рис. 15

ратуре 70-х…80-х годов XX века. Главная его особенность – каждая из обмоток состоит из двух половинок, намотанных на боковые стержни (поэтому у такого трансформатора много выводов). Эти полуобмотки должны быть правильно соединены между собой, поэтому если вы вынимаете такой трансформатор из аппаратуры, не удаляйте провода, соединяющие полуобмотки.

Если же у вас новый трансформатор, то подключать его надо очень внимательно и осторожно – не всегда на него есть документация по соединению обмоток, и иногда эта документация не очень понятна. Для стержневого трансформатора условные и реальные начала обмоток могут не совпадать! Поэтому при соединении вторичных обмоток последовательно или параллельно обя-

зательно производите измерения, как описано ниже.

И еще. Половинки вторичной обмотки, намотанные на разные стержни, можно вполне использовать как самостоятельные вторичные обмотки.

Тороидальный трансформатор

Довольно сложный в изготовлении (особенно самостоятельно) поэтому обычно более дорогой. Ленточный неразъемный сердечник вообще не имеет зазора, а тороидальная форма обеспечивает минимально возможную длину магнитной цепи, поэтому обмотки трансформатора содержат несколько меньшее число витков и имеют меньшее сопротивление. Отсутствие зазора и равномерное распределение обмоток по сердечнику заметно уменьшают потоки рассеяния, снижая как индуктивные сопротивления обмоток, так и создаваемые помехи. Кроме того, трансформатор охлаждается лучше других и лучше выдерживает перегрузки током.

С другой стороны, из-за отсутствия зазора трансформатор наиболее чувствителен к превышению напряжения питания и к подмагничиванию постоянным током (т.к. переход от линейного участка к насыщению более острый).

Главным преимуществом тороидального трансформатора являются наименьшие поля рассеяния, поэтому если вы делаете усилитель, где каждый канал собран на своей плате, причем там находится все полностью, вплоть до своего выпрямителя с трансформатором… Вот тогда вам нужен именно тор – от него помех намного меньше, поэтому его можно ставить близко к остальной схеме.

Номинальная и габаритная мощности. Номинальная мощность – это та мощность, с которой транс

форматор работает длительное время при допустимой величине нагрева. В паспортных данных на трансформатор она обозначается Бтр. Номинальная мощность трансформатора равна сумме номинальных мощностей вторичных обмоток через которые протекают номинальные токи. Номинальная мощность трансформатора должна быть не меньше, чем мощность, потребляемая от него нагрузкой.

Габаритная мощность относится к сердечнику – это такой оценочный параметр, показывающий какую долговременную максимальную мощность можно с этим сердечником получить при наилучшей конструкции обмоток, когда диаметры проводов обмоток максимальны, а числа витков – минимальны. Ее можно найти в справочных данных на сердечники. Идеальный трансформатор может быть любого размера – работа трансформатора не зависит от величины магнитного потока. В реальном трансформаторе приходится учитывать размер обмоток. Числа витков всегда определены однозначно величинами рабочих напряжений. А диаметр проводов обмоток определяется током этих обмоток. Чем больше напряжение и ток, тем больше число витков и диаметр провода. С другой стороны, напряжение и ток дают мощность. Поэтому обмотки определенной мощности имеют определенный объем, и размер сердечника должен быть таким, чтобы эти обмотки на нем поместились. Полностью эту мощность снять не удается: например некоторое место занимает экранная обмотка, межслойная и межобмоточная изоляция (особенно когда много вторичных обмоток), каркас, значит места для проводов становится меньше, снижается диаметр провода, а следовательно ток и мощность, отдаваемая трансформатором. Поэтому номинальная мощность трансформатора всегда оказывается меньше габаритной, это надо учитывать при его изготовлении.

Габаритная мощность полезна при оценке незнакомого трансформатора, измерив размеры магнитопро- вода, можно в справочнике найти его габаритную мощность, тогда номинальная мощность будет приблизительно 0,6…0,8 от габаритной.

Источник: Рогов И.Е. Конструирование источников питания звуковых усилителей. – Москва: Инфра- Инженерия, 2011. – 160 с.

nauchebe.net

Силовые трансформаторы. Виды и устройство. Работа и применение

Трансформатором называется электрическое устройство, которое передает электроэнергию от одного контура на другой с помощью магнитной индукции. Трансформаторы стали наиболее применяемыми электрическими устройствами, применяющимися в быту и промышленности. Эти устройства используются для повышения или понижения напряжения, а также в схемах блоков питания для преобразования входящего переменного тока в постоянный ток на выходе.

Способность трансформаторов передавать электроэнергию применяется для передачи мощности между разными схемами несогласованных электрических цепей. Рассмотрим различные виды и типы силовых трансформаторов, их установку и технические свойства.

Устройство трансформатора

Конструкции трансформаторов имеют различное строение. В зависимости от этого ведется расчет номинального напряжения, либо между фазой и землей, либо между двумя фазами.

1 — Первичная обмотка 2 — Вторичная обмотка 3 — Сердечник магнитопровода 4 — Ярмо магнитопровода

Конструкция обычного стандартного трансформатора состоит из двух обмоток с общим ярмом, для создания электромагнитной связи между обмотками. Сердечник изготавливают из электротехнической стали. Катушка, на которую входит электрический ток, является первичной обмоткой. Катушка на выходе называется вторичной.

Существует такой вид трансформаторов, как тороидальный. У такого трансформатора катушки индуктивности являются пассивными компонентами, состоящими из магнитного сердечника в виде кольца. Сердечник имеет повышенную магнитную проницаемость, изготовлен из феррита. Вокруг кольца намотана катушка. Тороидальные фильтры и катушки применяются для трансформаторов высокой частоты. Они используются для испытаний мощности.

Переменный ток поступает на первичную обмотку трансформатора, образуется электромагнитное поле, которое развивается в магнитном потоке сердечника. По принципу электромагнитной индукции во вторичной обмотке образуется переменная ЭДС, которая образует напряжение на клеммах выхода трансформатора.

Силовые трансформаторы, имеющие две обмотки, не рассчитаны на постоянный ток. Однако, в момент подключения их к постоянному току, они образуют короткий импульс напряжения на выходе.

Вид уличного силового трансформатора

Конструкция силового трансформатора подобна обычному бытовому трансформатору.

Виды

Существует множество факторов, по которым можно классифицировать силовые трансформаторы. При общем рассмотрении этих устройств, можно сказать, что они преобразуют электрическую энергию одного размера напряжения в электроэнергию с большим или меньшим размером напряжения.

В зависимости от различных факторов силовые трансформаторы делятся на виды:

1. По выполняемой задаче. Понижающие трансформаторы. Применяются для получения низкого напряжения из высоковольтных линий питания. Повышающие, используются для увеличения значения напряжения.2. По числу фаз. Трансформаторы 3-фазные, 1-фазные. Широко применяются в трехфазной сети питания. Оптимальным вариантом будет в трехфазной сети установить три однофазных трансформатора на каждую отдельную фазу.3. По количеству обмоток. Двухобмоточные и трехобмоточные.4. По месту монтажа. Наружные и внутренние.

Существует много других разных факторов, по которым можно разделять силовые трансформаторы. Например, по способу охлаждения или соединения обмоток, и т.д. При установке оборудования важную роль играют условия климата, что также разделяет трансформаторы на классы.

Трансформаторное оборудование бывает универсальным, и специального назначения мощностью до 4000 кВт напряжением 35000 вольт. Конкретную модель выбирают по возлагаемой на трансформатор задаче.

Принцип действия

Трансформатором называется электромагнитное статическое устройство, у которых имеется 2 или больше обмоток, связанных индуктивно. Они предназначены для изменения одного переменного тока в другой. Вторичный ток может различаться любыми свойствами: значением напряжения, количеством фаз, формой графика тока, частотой. Широкое использование в электроустановках, а также в распределительных системах получили силовые трансформаторы.

С помощью таких устройств преобразуют размер напряжения и тока. При этом количество фаз, форма графика тока, частота не изменяются. Элементарный силовой трансформатор имеет магнитопровод из ферромагнитного материала, две обмотки на стержнях. Первая обмотка подключена к линии питания переменного тока. Ее называют первичной. Ко второй обмотке подсоединена нагрузка потребителя. Ее назвали вторичной. Магнитопровод вместе с катушками обмоток располагается в баке, наполненном трансформаторным маслом.

Принцип работы заключается в электромагнитной индукции. При включении питания на первичную обмотку в виде переменного тока в магнитопроводе образуется переменный магнитный поток. Он замыкается на магнитопроводе и образует сцепление с двумя обмотками, в результате чего в обмотках индуцируется ЭДС. Если к вторичной обмотке подключить какую-либо нагрузку, то под действием ЭДС в цепи этой обмотки образуется ток и напряжение.

В повышающих силовых трансформаторах напряжение на вторичной обмотке всегда выше, чем напряжение в первичной обмотке. В понижающих трансформаторах напряжения первичной и вторичной обмоток распределяются в обратном порядке, то есть, на первичной напряжение выше, а на вторичной ниже. ЭДС обеих обмоток отличаются по количеству обмоток.

Поэтому, используя обмотки с необходимым соотношением количества витков, можно получить конструкцию трансформатора для получения любого напряжения. Силовые трансформаторы имеют свойство обратимости. Это значит, что трансформатор можно применить как повышающий прибор, или понижающий. Но, чаще всего, трансформатор предназначен для определенной задачи, то есть, либо он должен повышать напряжение, либо снижать.

Сфера использования

Энергетика в современное время не обходится без устройств, преобразующих электроэнергию в сетях и магистралях, а также принимающих и распределяющих ее. Когда появились такие устройства, то произошло снижение расхода использования цветных металлов, а также уменьшились потери энергии.

Для эффективной работы оборудования нужно рассчитать потери в силовом трансформаторе. Для этого необходимо обратиться к специалистам. Мощные трансформаторы нашли применение на линиях высокого напряжения и станциях распределения энергии. Без них не обходится ни одна отрасль промышленности, где необходимо преобразование энергии. Вот некоторые области применения силовых трансформаторов:

  • В сварочном оборудовании.
  • Для электротермических устройств.
  • В схемах электроизмерительных устройств и приборов.
Свойства и расчет трансформатора

Чаще всего основные свойства устройства указаны в инструкции в его комплекте. Для силовых трансформаторов такими основными свойствами являются:

  • Номинальное значение напряжения и мощности.
  • Наибольший ток обмоток.
  • Габаритные размеры.
  • Вес устройства.

Мощность трансформатора по номиналу определяется изготовителем, и выражается в кВА (киловольт-амперы). Номинальное значение напряжения указывается первичное, для соответствующей обмотки, и вторичное, на клеммах выхода. Размеры этих значений могут не совпадать на 5% в ту или иную сторону. Чтобы ее вычислить, нужно сделать простой расчет.

Номинальный ток и мощность устройства должны удовлетворять стандартам. На сегодняшний день производятся модели сухих трансформаторов, которые имеют такие данные мощности от 160 до 630 кВА. Обычно мощность трансформатора обозначена в его паспорте. По ее значению определяют номинальный размер тока. Для расчета применяют формулу:

I = S х √3U, где S и U – это мощность по номиналу, и напряжение.

Для каждой обмотки в формулу входят свои значения величин. Чтобы рассчитать мощность силового трансформатора при работе с потребляющей энергию нагрузкой, необходимо проводить довольно сложные расчеты, которые могут сделать специалисты. Такие расчеты необходимы во избежание негативных моментов, которые могут возникнуть при функционировании трансформатора.

Номинальное напряжение – это линейная величина напряжения холостого хода на обмотках. Они вычисляются, исходя из мощности трансформатора.

Установка и эксплуатация

Многие варианты исполнения силовых трансформаторов имеют большую массу. Поэтому на место монтажа их доставляют на специальных транспортных платформах. Их привозят в собранном готовом к подключению виде.

Установка устройства производится на специальном фундаменте, либо в определенном для этого помещении. При массе трансформатора до 2 тонн установка производится на фундамент. Корпус трансформатора в обязательном порядке заземляют.

Перед монтажом трансформатор подвергают лабораторным испытаниям, в ходе которых измеряется коэффициент трансформации, проверяется качество всех соединений, проверяется изоляция повышенным напряжением, производится контроль качества масла.

Перед установкой трансформатор необходимо тщательно осмотреть. Нужно обратить особое внимание на наличие утечек масла, проконтролировать состояние изоляторов, соединений контактов.

После ввода в эксплуатацию нужно периодически производить измерение температуры нагрева специальными стеклянными термометрами. Температура должна быть не более 95 градусов.

Во избежание аварий при эксплуатации силового трансформатора нужно периодически производить замеры нагрузки. Это дает информацию о перекосах фаз, искажающих напряжение питания. Осмотр силового трансформатора производится два раза в год. Периоды осмотра могут изменяться в зависимости от состояния устройства.

Похожие темы:

 

electrosam.ru

Элементы конструкции силовых трансформаторов



Мощный трансформатор высокого напряжения представляет собой сложное устройство, состоящее из большого числа конструктивных элементов, основными из которых являются: магнитная система (магнитопровод), обмотки, изоляция, выводы, бак, охлаждающее устройство, механизм регулирования напряжения, защитные и измерительные устройства, тележка.

Магнитная система

В магнитной системе проходит магнитный поток трансформатора (отсюда название «магнитопровод»). Магнитопровод является конструктивной и механической основой трансформатора. Он выполняется из отдельных листов электротехнической стали, изолированных друг от друга. Качество электротехнической стали влияет на допустимую магнитную индукцию и потери в магнитопроводе.

В течение многих лет применялась горячекатаная сталь ЭЧ1, ЭЧ2 с толщиной листов 0,5-0,35 мм, допускающая индукцию 1,4-1,45 Тл, с удельными потерями 2,5-3,5 Вт/кг. В настоящее время применяется холоднокатаная текстурованная сталь марок 3405, 3406, т.е. сталь с определенной ориентировкой зерен, допускающая индукцию до 1,7 Тл, с удельными потерями 0,9-1,1 Вт/кг. Применение такой стали позволило значительно уменьшить сечение магнитопровода за счет большей допустимой магнитной индукции, уменьшить диаметр витков обмотки, уменьшить массу и габариты трансформаторов. Масса трансформаторов на единицу мощности в 1930г. достигала 3,33 т/(МВА), а в настоящее время 0,74 т/(МВА).

Уменьшение удельных потерь в стали, тщательная сборка магнитопровода, применение бесшпилечных конструкций, соединение стержней с ярмом с помощью косой шихтовки позволяют уменьшить потери холостого хода и ток намагничивания трансформатора. В современных мощных трансформаторах ток намагничивания составляет 0,5-0,6% Iном, тогда как в трансформаторе с горячекатаной сталью ток достигал 3%; потери холостого хода уменьшились вдвое.

Листы трансформаторной стали должны быть тщательно изолированы друг от друга. Первоначально применялась бумажная изоляция - листы оклеивались с одной стороны тонким слоем специальной бумаги. Бумага создает потную электрическую изоляцию между листами, но легко повреждается при сборке и увеличивает размеры магнитопровода. Широко применяется изоляция листов лаком с толщиной слоя 0,01 мм. Лаковая пленка создает достаточно надежную изоляцию между листами, обеспечивает хорошее охлаждение магнитопровода, обладает высокой нагревостойкостью и не повреждается при сборке. Последнее время все шире применяется двустороннее жаростойкое покрытие листов стали, наносимое на металлургическом заводе после проката. Толщина покрытия меньше 0,01 мм, что обеспечивает лучшие свойства магнитной системы. Стяжка стержней осуществляемся стеклобандажами, ярм - стальными полу бандажами или бандажами.

Магнитопровод и его конструктивные детали составляют остов трансформатора. На остове устанавливают обмотки и крепят проводники, соединяющие обмотки с вводами, составляя активную часть.

Обмотки трансформатора

Рис.1. Обмотки трансформатора: а - концентрическая, б - чередующаяся

Обмотки трансформаторов

Обмотки трансформаторов могут быть концентрическими и чередующимися. В первом случае обмотки НН и ВН выполняют в виде цилиндров и располагают на стержне концентрически одна относительно другой (рис.1,а). Такое выполнение принято в большинстве силовых трансформаторов. Во втором случае обмотки ВН и НН выполняются в виде невысоких цилиндров с одинаковыми диаметрами и располагаются на стержне одна над другой (рис.1,б). В такой обмотке значительное число паек, она менее компактна и применяется для специальных электропечных трансформаторов или для сухих трансформаторов, так как обеспечивает лучшее охлаждение обмоток.

Обмотки трансформаторов должны обладать достаточной электрической и механической прочностью. Изоляция обмоток и отводов от нее должна без повреждений выдерживать коммутационные и атмосферные перенапряжения. Обмотки должны выдерживать электродинамические усилия, которые появляются при протекании токов КЗ. Необходимо предусмотреть надежную систему охлаждения обмоток, чтобы не возникал недопустимый перегрев изоляции.

Для проводников обмотки используются медь и алюминий. Как известно, медь имеет малое электрическое сопротивление, легко поддается пайке, механически прочна, что и обеспечило широкое применение меди для обмоток трансформаторов. Алюминий дешевле, обладает меньшей плотностью, но большим удельным сопротивлением, требует новой технологии выполнения обмоток. В настоящее время трансформаторы с алюминиевой обмоткой изготовляются на мощность до 6300 кВА.

В современных трансформаторах для обмотки применяется транспонированный провод, в котором отдельные проводники в параллельном пучке периодически изменяют свое положение. Это выравнивает сопротивление элементарных проводников, увеличивает механическую прочность, уменьшает толщину изоляции и размеры магнитопровода.

Изоляция трансформатора

Изоляция трансформатора является ответственной частью, так как надежность работы трансформатора определяется в основном надежностью его изоляции.

В масляных трансформаторах основной изоляцией является масло в сочетании с твердыми диэлектриками: бумагой, электрокартоном, гетинаксом, деревом (маслобарьерная изоляция).

Значительный эффект дает применение изоляции из специально обработанной бумаги (стабилизированной), которая менее гигроскопична, имеет более высокую электрическую прочность и допускает большой нагрев. В сухих трансформаторах широко применяются новые виды изолирующих материалов повышенной нагревостойкости на основе кремнийорганических материалов.

Активную часть трансформатора вместе с отводами и переключающими устройствами для регулирования напряжения помещают в бак. Основные части бака - стенки, дно и крышка. Крышку используют для установки вводов, выхлопной трубы, крепления расширителя, термометров и других деталей. На стенке бака укрепляют охладительные устройства - радиаторы.

В трансформаторах небольшой мощности бак выполняется с верхним разъемом: при ремонтах необходимо снять крышку трансформатора, а затем поднять активную часть из бака.

Если масса активной части более 25т, то она устанавливается на донную часть бака, а затем накрывается колоколообразной верхней частью бака и заливается маслом. Такие трансформаторы с нижним разъемом не нуждаются в тяжелых грузоподъемных устройствах для выемки активной части, так как при ремонтах после слива масла поднимается верхняя часть бака, открывая доступ к обмоткам и магнитопроводу.

Для уменьшения потерь от потоков рассеяния стальные баки экранируются с внутренней стороны пакетами из электротехнической стали или пластинами из немагнитных материалов (медь, алюминий).

Расширитель трансформатора

Расширитель трансформатора представляет собой цилиндрический сосуд, соединенный с баком трубопроводом и служащий для уменьшения площади соприкосновения масла с воздухом. Бак трансформатора полностью залит маслом, изменение объема масла при нагреве и охлаждении приводит к колебанию уровня масла в расширителе; при этом воздух вытесняется из расширителя или всасывается в него. Масло очень гигроскопично, и если расширитель непосредственно связан с атмосферой, то влага из воздуха поступает в масло, резко снижая его изоляционные свойства. Для предотвращения этого расширитель связан с окружающей средой через силикагелевый воздухоосушитель. Силикагель поглощает влагу из всасываемого воздуха. При резких колебаниях нагрузки силикагелевый фильтр полностью не осушает воздух, поэтому постепенно влажность воздуха в расширителе повышается. Для предотвращения этого применяются герметичные баки с газовой подушкой из инертного газа или свободное пространство в расширителе заполняется инертным газом (азотом), поступающим из специальных эластичных емкостей. Возможно применение специальной пленки - мембраны на границе масло-воздух. Осушение воздуха в расширителе осуществляют термовымораживателями.

К баку трансформатора крепится термосифонный фильтр, заполненный силикагелем или другим веществом, поглощающим продукты окисления масла. При циркуляции масла через фильтр происходит непрерывная регенерация его.

Трансформатор трехфазный трехобмоточный ТДТН-16000-110-80У1

Рис.2. Трансформатор трехфазный трехобмоточный ТДТН-16000-110-80У1 1 - бак, 2 - шкаф автоматического управления дутьем, 3 - термосифонный фильтр, 4 - ввод ВН, 5 - ввод НН, 6 - ввод СН, 7 - установка трансформаторов тока 110 кВ, 8 - установка трансформаторов тока 35 кВ, 9 - ввод 0 ВН, 10 - ввод 0 СН, 11 - расширитель, 12 - маслоуказатель стрелочный, 13 - клапан предохранительный, 14 - привод регулятора напряжения, 15 - электродвигатель системы охлаждения, 16 - радиатор, 17 - каретка с катками

Для контроля за работой трансформатора предусматриваются контрольно-измерительные и защитные устройства. К контрольным устройствам относятся маслоуказатель и термометры. Маслоуказатель устанавливается на расширителе, термометр - на крышке бака. К защитным устройствам относятся реле понижения уровня масла и газовое реле.

На мощных трансформаторах 330-750 кВ дополнительно применяются устройства контроля изоляции вводов (КИВ) и манометры, контролирующие давление масла в герметичных вводах ВН. Основные конструктивные узлы трансформаторов показаны на рис.2.



www.gigavat.com

Конструкция и принцип действия трёхфазного силового трансформатора

Министерство Образования и Науки Украины

Донецкий Национальный Технический Университет

Каф. Электромеханики и ТОЭ

РЕФЕРАТ

по электрическим машинам на тему:

Конструкция и принцип действия трёхфазного силового трансформатора

Выполнил: ст. гр. АУП-05а

Максимчук Н. И.

Проверил: Солёный С. В.

Донецк 2007

Содержание

ВВЕДЕНИЕ 3

ПРИНЦИП ДЕЙСТВИЯ ТРАНСФОРМАТОРА 4

КОНСТРУКЦИЯ ТРАНСФОРМАТОРА 6

МАРКИРОВКА ТРАНСФОРМАТОРОВ 9

ЗАКЛЮЧЕНИЕ 11

ПРИЛОЖЕНИЕ 12

СПИСОК ССЫЛОК 13

Введение

Трансформатором называют статическое электромагнитное устройство, имеющее две или большее число индуктивно свя­занных обмоток и предназначенное для преобразования по­средством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока.

С помощью трансформаторов повышается или понижается напряжение, изменяется число фаз, а в некоторых случаях преобразуется частота переменного тока. Возможность пере­дачи электрических сигналов от одной обмотки к другой посредством взаимоиндукции была открыта М. Фарадеем в 1831 г.; при изменении тока в одной из обмоток, намотан­ной на стальной магнитопровод, в другой обмотке индуциро­валась ЭДС. Однако первый практически работающий транс­форматор создал известный изобретатель П. Н. Яблочков в содружестве с И. Ф. Усагиным в 1876 г. Это был двухобмо-точный трансформатор с разомкнутым магнитопроводом.

В настоящее время для высоковольтных линий электропередачи применяют силовые трансформаторы с масляным охлаждением напряжением 330, 500 и 750 кВ, мощностью до 1200—1600 МВА

В последнее время для возбуждения мощных турбо-и гидрогенераторов, электропривода и других целей все шире начинают применять трансформаторы с естественным воздушным охлаждением напряжением 3-24 кВ и мощностью 133-6300 кВА. Благодаря использованию в этих трансфор­маторах новой теплостойкой изоляции удается повысить их нагрузочную способность и в 1,3 — 1,5 раза сократить массо-габаритные показатели по сравнению с применявшимися ранее трансформаторами с масляным охлаждением.

ПРИНЦИП ДЕЙСТВИЯ ТРАНСФОРМАТОРА

Электромагнитная схема однофазного двухобмоточного трансформатора состоит из двух обмоток, разме­щенных на замкнутом магнитопроводе, который выполнен из ферромагнитного материала, применение ферромагнитного магнитопровода позволяет усилить электромагнитную связь между обмотками, т. е. уменьшить магнитное сопротивление контура, по которому проходит магнитный поток машины. Первичную обмотку подключают к источнику переменного тока электрической сети с напряжением U1. Ко вторичной обмотке присоединяют сопротивление нагрузки U Н .

Обмотку более высокого напряжения называют обмоткой высшего напряжения (ВН), а низкого напряжения — обмоткой низшего напряжения (НН). Начала и концы обмотки ВН обозначают буквами А и X ; обмотки НН - буквами а и х.

При подключении к сети в первичной обмотке возникает переменный ток I и который создает переменный магнитный поток Ф, замыкающийся по магнитопроводу. Поток Ф индуцирует в обеих обмотках переменные ЭДС - ех и е2 , пропорциональные, согласно закону Максвелла, числам витков и соответствующей обмотки и скорости изменения потока.

В системах передачи и распределения энергии в ряде случаев применяют трехобмоточные трансформаторы, а в устрой­ствах радиоэлектроники и автоматики — многообмоточные трансформаторы. В таких трансформаторах на магнитопроводе размещают три или большее число изолированных друг от друга обмоток, что дает возможность при питании одной из обмоток получать два или большее число различных напряжений (u2 , u3 , u4 и т. д.) для электроснабжения двух или большего числа групп потребителей. в трехобмоточных силовых трансформаторах различают обмотки высшего, низшего и среднего (СН) напряжений.

В трансформаторе преобразуются только напряжения и токи. Мощность же остается приблизительно постоянной (она несколько уменьшается из- за внутренних потерь энергии в трансформаторе).При увеличении вторичного напряжения трансформатора в к раз по сравнению с первичным, ток г2 во вторичной обмотке соответственно уменьшается в к раз.

Трансформатор может работать только в цепях перемен­ного тока. Если первичную обмотку трансформатора под­ключить к источнику постоянного тока, то в его магнитопроводе образуется магнитный поток, постоянный во времени по величине и направлению. Поэтому в первичной и вторич­ной обмотках в установившемся режиме не индуцируются ЭДС, а следовательно, не передается электрическая энергия из первичной цепи во вторичную. Такой режим опасен для трансформатора, так как из-за отсутствия ЭДС Ег в первичной обмотке ток 11 = U 1/ R 1 - весьма большой.

Важным свойством трансформатора, используемым в устройствах автоматики и радиоэлектроники, является способ­ность его преобразовывать нагрузочное сопротивление.Если к источнику переменного тока подключить сопротивление R через трансформатор с коэффициентом трансформации K , то для цепи источника

R= K 2 R

Таким образом, трансформатор изменяет значение сопротивления R в к2 раз. Это свойство широко используют при разработке различных электрических схем для согласования сопротивлений нагрузки с внутренним сопротивлением источ­ников электрической энергии.

КОНСТРУКЦИЯ ТРАНСФОРМАТОРА

Трехфазные трансформаторы обычно выполняют на магнитопроводе стержневого типа с тремя стержнями.

По способу соединения стержней с ярмами различают магнитопроводы стыковые и шихтованные. В стыковых магнитопроводах стержни и ярма собирают раздельно, а затем соединяют посредством крепежных частей. Такая конструкция магнитопровода облегчает посадку обмоток на стержни, так как для этого достаточно снять только верхнее ярмо. Но при шихтовой сборке магнитопровода, когда листы собирают «внахлестку», воздушный зазор в месте стыка стержней и ярем может быть сделан минимальным, что значительно снизит магнитное сопротивление и соответственно уменьшит потери холостого хода. Кроме того, механическая прочность шихтованного магнитопровода намного выше, чем стыкового. Все это привело к тому, что шихтованные магнитопроводы получили в России основное применение. Листы магнитопровода стягивают посредством ярмовых балок, бандажей из стеклоленты и шпилек, изолированных от листов изоляционными шайбами и трубками.

Форма поперечного сечения стержней обычно многоступенчатая, причем число ступеней зависит от мощности трансформатора. Ступенчатое сечение стержней обеспечивает лучшее использование площади внутри обмотки, так как периметр ступенчатого стержня приближается к окружности. В трансформаторах большой мощности для улучшения теплоотдачи между пакетами стали магнитопровода устраивают вентиляционные каналы.

Обмотки трансформаторов выполняют из проводов круглого и прямоугольного сечения, которые, как указывалось выше, изолируются кабельной бумагой.

Наиболее распространены концентрические катушечные (непрерывные, винтовые) обмотки.

При этом обычно ближе к стержню располагают обмотку низкого напряжения (НН), так как она требует меньшей электрической изоляции от заземленного стержня, а затем обмотку высокого напряжения (ВН). Между обмотками делается вертикальный канал, в котором располагается изоляционный цилиндр из электрокартона, а также происходит циркуляция масла.

В комплект обмотки входят также отводы для присоединения к вводам, размещаемым на крышке трансформатора, ответвления для регулирования напряжения, емкостные кольца и электростатические экраны емкостной зашиты от перенапряжений.

Непрерывная обмотка состоит из катушек, соединенных между собой последовательно. Катушки наматываются прямоугольным проводом, располагаемым «плашмя».

Характерной особенностью непрерывной обмотки является выполнение так называемых перекладных катушек.

Между катушками размещаются прокладки из электрокартона, создающие горизонтальные каналы для охлаждения обмотки. Эти прокладки укрепляются на вертикальных рейках посредством специального выреза в виде «ласточкина хвоста».

Трехфазный силовой двухобмоточный трансформатор схематично можно представить следующим образом.

Магнитопровод трехфазного трансформатора образует как бы два «окна», которые так и принято называть. Для упрощения обычно ограничиваются представлением расположения в окне только одной фазы, предполагая, что другая фаза в этом окне располагается симметрично, а в соседнем — аналогично.

Силовой трансформатор может иметь несколько обмоток. Обычно речь идет о трехобмоточных трансформаторах, когда кроме обмоток НН и ВН появляется еще обмотка СН среднего напряжения. Эти обмотки считаются основными, и именно по их количеству определяется вид трансформатора: двухобмоточный или трехобмоточный. Кроме основных в трансформаторе могут быть регулировочные обмотки, с помощью которых обеспечивается регулирование напряжения под нагрузкой (схема РПН). В основных обмотках СН или ВН могут быть участки, посредством которых обеспечивается регулирование напряжения с отключением трансформатора. Это так называемая схема ПБВ — переключение без возбуждения.

Кроме обмоток и магнитопровода, которые в совокупности образуют активную часть трансформатора, в его состав входят другие узлы и блоки: бак, система охлаждения, вводы и др.

mirznanii.com

Конструкция и техническая характеристика силовых трансформаторов 6-10 кВ

силовые трансформаторы

Конструкция масляных трансформаторов.

Силовые трансформаторы предназначены для преобразования (трансформирования) переменного тока одного напряжения в переменный ток другого напряжения — более низкого или более высокого. Трансформаторы, понижающие напряжение, называют понижающими, а повышающие напряжение — повышающими.Трансформаторы изготовляют двухобмоточные и трехобмоточные. Последние кроме обмотки НН и ВН имеют обмотку СН (среднего напряжения). Трехобмоточный силовой трансформатор позволяет снабжать потребителей электроэнергией разных напряжений. Обмотка, включенная в сеть источника электроэнергии, называется первичной, а обмотка, к которой присоединены электроприемники,— вторичной.В рассматриваемых распределительных устройствах и подстанциях промышленных предприятий применяют трехфазные двухобмоточные понижающие трансформаторы, преобразующие напряжение 6 и 10 кВ в 0,23 и 0,4 кВ.В зависимости от изолирующей и охлаждающей среды различают трансформаторы масляные ТМ и сухие ТС. В масляных основной изолирующей и охлаждающей средой являются трансформаторные масла, в сухих — воздух или твердый диэлектрик. В специальных случаях применяют трансформаторы с заполнением баков негорючей жидкостью — совтолом.Основой конструкции трансформатора служит активная часть, состоящая из магнитопровода 4 (рис. 1) с расположенными на нем обмотками низшего напряжения 3 и высшего напряжения 2 отводов и переключающего устройства. Магнитопровод, набранный из отдельных тонких листов специальной трансформаторной стали, изолированных друг от друга покрытием, состоит из стержней, верхнего и нижнего ярма. Такая конструкция способствует уменьшению потерь на нагрев от перемагничивания (гистерезис) и вихревых токов.Соединительные провода, идущие от концов обмоток и их ответвлений, предназначенные для регулирования напряжения, называют отводами, которые изготовляют из неизолированных медных проводов или проводов, изолированных кабельной бумагой либо гетинаксовой трубкой.Переключающие устройства обмоток трансформатора служат для ступенчатого изменения напряжения в определенных пределах, поддерживания номинального напряжения на зажимах вторичной обмотки при изменении напряжения на первичной или вторичной обмотке. С этой целью обмотки ВН трансформаторов снабжают регулировочными ответвлениями, которые подсоединяют к переключателям.

Активная часть трансформатора ТМРис. 1. Активная часть трансформатора серии ТМ: 1 — ярмо, 2 и 3 — обмотки ВН и НН, 4 — магнитопроводНеобходимость регулирования вызвана тем, что в электросистемах возможны различные отклонения от нормального режима электроснабжения, приводящие к неэкономичной работе приемников, преждевременному износу и сокращению сроков их службы. Особенно чувствительны к повышению напряжения электролампы, радиолампы и лампы телевизоров: срок их службы резко сокращается при систематическом увеличении напряжения.В трансформаторах могут быть два вида переключений ответвлений: под нагрузкой — РПН (регулирование под нагрузкой) и без нагрузки после отключения трансформатора — ПБВ (переключение без возбуждения). С помощью ПБВ и РПН можно поддерживать напряжение, близким к номинальному во вторичных обмотках трансформаторов.Переключение осуществляют изменением числа витков с помощью регулировочных ответвлений обмоток, т. е. изменением коэффициента трансформации, который показывает, во сколько раз напряжение обмотки ВН больше напряжения обмотки НН или во сколько раз число витков обмотки ВН больше числа витков обмотки НН. Пределы регулирования вторичных напряжений для разных трансформаторов различны: на ±10% 12 ступенями по 1,67% или 16 ступенями по 1,25% с помощью РПН; на ±5% четырьмя ступенями по 2,5% с помощью ПБВ.Бак трансформатора, в который погружена активная часть, представляет собой стальной резервуар овальной формы, заполненный трансформаторным маслом. Масло, являясь охлаждающей средой, отводит теплоту, выделяющуюся в обмотках и магнитопроводе, и отдает ее в окружающую среду через стенки и крышку бака. Кроме охлаждения активной части трансформатора масло повышает степень изоляции между токоведущими частями и заземленным баком.Для увеличения поверхности охлаждения трансформатора баки изготовляют ребристыми, вваривают в них трубы или снабжают съемными радиаторами (только у трансформаторов мощностью до 25 кВ-А стенки бака гладкие). Радиаторы присоединяют к стенкам бака патрубками со специальными радиаторными кранами. У верхнего торца бака к его стенкам приваривают раму из угловой или полосовой стали, к которой крепят крышку на прокладках из маслоупорной резины.В нижней части бака всех типов трансформаторов имеется кран для взятия пробы и слива масла, а в его днище (в трансформаторах мощностью выше 100 кВ-А) — пробка для спуска осадков после слива масла через кран. Второй кран устанавливают на крышке бака, через который заливают в него масло. Оба крана служат одновременно для присоединения к ним маслоочистительных аппаратов.К дну баков трансформаторов массой выше 800 кг приваривают тележку с поворотными катками, конструкция крепления которых позволяет изменять направление передвижения трансформаторов с поперечного на продольное. Для подъема трансформатора на баке имеется четыре кольца-рыма. Активная часть поднимается за скобы в верхних консолях магнитопровода.На крышке бака размещены вводы, расширитель и защитные устройства (выхлопная предохранительная труба, реле давления, газовое реле, пробивной предохранитель). К стенкам бака приваривают подъемные крюки, прикрепляют манометрический сигнализатор (у трансформаторов мощностью свыше 1000 кВ- А) и устанавливают фильтры. Трансформатор серии ТМ-1000-10 показан на рис. 2.

Трансформатор ТМ-1000-10Рис. 2. Трехфазный силовой трансформатор мощностью 1000 кВ А с масляным охлаждением:1 — бак, 2 и 5 — нижняя и верхняя ярмовые балки магнитопровода, 3 — обмотка ВН, 4 — регулировочные отводы к переключателю, 6 — магнитопровод, 7 — деревянные планки, 8 — отвод от обмотки ВН, 9 — переключатель, 10 — подъемная шпилька, 11 — крышка бака, 12 — подъемное кольцо (рым), 13 и 14 — вводы ВН и НН, 15 — предохранительная труба, 16 — расширитель (консерватор), 17 — маслоуказатель, 18 — газовое реле, 19 — циркуляционные трубы, 20 — маслоспускной кран, 21 — катки

Вводы 14 и 15 представляют собой фарфоровые проходные изоляторы, через которые выводы обмоток трансформатора присоединяются к электрическим сетям.Большинство трансформаторов оборудовано расширителями (рис. 3), обеспечивающими постоянное заполнение бака маслом и уменьшающими поверхность соприкосновения масла с воздухом, следовательно, защищающими масло от увлажнения и окисления. У расширителя есть отверстие для всасывания и вытеснения воздуха при изменении уровня содержащегося в нем масла (дыхательная пробка).

Рис. 3. Расширитель:Расширитель1 — бак расширителя, 2 — маслоуказатель, 3 — маслоуказательное стекло, 4 — угольник, 5 — запирающий болт, 6 — крышка трансформатора, 7 — газовое реле, 8 — плоский кран, 9 — трубопровод, 10— опорная пластина

Расширитель имеет цилиндрическую форму, закрепляется на кронштейне, установленном на крышке 6 трансформатора, и сообщается с баком трансформатора трубопроводом, не выступающим ниже внутренней поверхности крышки трансформатора и заканчивающимся внутри расширителя выше его дна во избежание попадания осадков масла в бак 1. Внутренняя поверхность расширителя имеет защитное покрытие, предохраняющее масло от соприкосновения с металлической поверхностью и расширитель от коррозии. В нижней части расширителя имеется пробка для слива масла из него.Объем расширителя определяют так, чтобы уровень масла оставался в его пределах как летом при 35 °С и полной нагрузке трансформатора, так и зимой при минимальной температуре масла и отключенном трансформаторе. Обычно объем расширителя составляет 11 —12% объема масла в баке трансформатора. Для наблюдения за уровнем масла на боковой стенке расширителя устанавливают маслоуказатель 2, выполненный в виде стеклянной трубки в металлической оправе.Емкость расширителя должна обеспечивать постоянное наличие в нем масла при всех режимах работы трансформатора от отключенного состояния до номинальной нагрузки и при колебаниях температуры окружающего воздуха, причем при допустимых перегрузках масло не должно выливаться.В герметичных масляных трансформаторах и трансформаторах с жидким негорючим диэлектриком поверхность масла защищают сухим азотом, а в заполненных совтолом -10 — сухим воздухом. Негерметичные масляные трансформаторы мощностью 160 кВ- А и более, в которых масло в расширителе соприкасается с окружающим воздухом, имеют термосифонный или адсорбционный фильтр, а трансформаторы мощностью 1 мВ • А и более с естественным масляным охлаждением и азотной подушкой — термосифонный фильтр (кроме трансформаторов с жидким негорючим диэлектриком).Масляные трансформаторы мощностью 1 мВ * А и более с расширителем снабжают защитным устройством, предупреждающим повреждение бака при внезапном повышении внутреннего давления более 50 к Па. К защитным устройствам относят выхлопную трубу со стеклянной диафрагмой и реле давления. Масляные трансформаторы и трансформаторы с жидким диэлектриком с азотной подушкой без расширителя имеют реле давления, срабатывающее при повышении внутреннего давления более 75 кПа.Нижний конец выхлопной трубы соединяют с крышкой бака, а на верхний ее конец устанавливают тонкую стеклянную мембрану (от 2,5 до 4 мм) диаметром 150, 200 и 250 мм, которая разрушается при определенном давлении и дает выход газу и маслу наружу раньше, чем произойдет деформация бака. Реле давления размещают на внутренней стороне крышки трансформатора. Основными его элементами являются ударный механизм и стеклянная диафрагма. При достижении определенного давления в баке механизм срабатывает, разбивает диафрагму и обеспечивает свободный выход газам.Трансформаторы мощностью 1 мВ * А и более, имеющие расширитель, снабжают газовым реле, которое реагирует на повреждения внутри бака трансформатора (электрический пробой изоляции, витковое замыкание, местный нагрев магнитопровода), сопровождающиеся выделением газа или резким увеличением скорости перетекания масла из бака в расширитель. Выделение газообразных продуктов происходит в результате разложения масла и других изоляционных материалов под действием высокой температуры, возникающей в месте повреждения. На этом явлении основана работа газовой защиты трансформатора от внутренних повреждений, сопровождающихся выделением газов при их утечке, утечке масла и попадании воздуха в бак. Основной элемент этой защиты — газовое реле, устанавливаемое обычно на трубопроводе, который соединяет расширитель с баком, имеющим наклон к горизонтали от 2 до 4 В газовом реле имеются две пары контактов для работы на сигнал или отключение.Пробивные предохранители служат для защиты от пробоя обмоток ВН на обмотки НН. Устанавливают их на крышке бака и подсоединяют к нулевому вводу НН, а при напряжении 690 В — к линейному вводу.При пробое изоляции между обмотками ВН и НН промежуток между контактами, в котором проложены тонкие слюдяные пластины с отверстиями, пробивается и вторичная обмотка оказывается соединенной с землей.Для заземления трансформаторов служит специальный заземляющий контакт с резьбой не менее Ml2, расположенный в доступном месте нижней части бака со стороны НН и обозначенный четкой несмывающейся надписью «Земля» или знаком заземления. Поверхность заземляющего контакта должна быть гладкой и зачищенной; заземление осуществляют подсоединением стальной шины сечением не менее 40><4 мм.Для измерения температуры масла на трансформаторах монтируют ртутные термометры со шкалой от 0 до 150° С или термометрические сигнализаторы ТС со шкалой от 0 до 100° С. Последние снабжены двумя передвижными контактами, которые можно установить на любую температуру в пределах шкалы. Первый контакт, будучи включенным в сигнальную цепь, при определенной температуре масла дает сигнал; в случае дальнейшего повышения температуры масла второй контакт, соединенный с реле, отключает трансформатор. На трансформаторах мощностью 6300 кВ * А и выше установлены термометры сопротивления.Для сушки и очистки увлажненного и загрязненного воздуха, поступающего в расширитель при температурных колебаниях масла, все трансформаторы снабжены воздухоочистительным фильтром — воздухоосушителем (рис. 4), который представляет собой цилиндр, заполненный силикагелем и размещенный на дыхательной трубке 1 расширителя.

Воздухоочистительный фильтр - воздухоосушительРис. 4. Воздухоочистительный фильтр (воздухоосушитель):1 — дыхательная трубка, 2 — соединительная муфта, 3 — смотровое окно, 4 — бак трансформатора, 5 — масляный затвор, 6 — указатель уровня масла в затворе, 7— кронштейнВ нижней части цилиндра расположен масляный затвор 5 для очистки засасываемого воздуха, в верхней части — патрон с индикаторным силикагелем, который при увлажнении меняет свою окраску с голубой на розовую.Для поддержания изоляционных свойств масла, а следовательно, продления срока его службы предназначен термосифонный фильтр (рис. 5), представляющий собой цилиндрический аппарат, заполненный активным материалом — сорбентом (поглотителем продуктов старения масла).

Термосифонный фильтрРис. 5. Термосифонный фильтр:1 — радиаторные краны, 2 — загрузочный люк, 3 — пробка с отверстием для выпуска воздуха, 4 — силикагель, 5 — сетка, 6 — дно с отверстиями, 7,8 — пробки для отбора пробы масла и его слива, 9 — корпус фильтра, 10 — стенка бака трансформатораФильтр присоединяют к баку трансформатора двумя патрубками и промежуточными плоскими кранами. Работа фильтра основана на термосифонном принципе: более нагретое масло верхних слоев, проходя через охлаждающее устройство, опускается вниз. Параллельно радиаторам подсоединен термосифонный фильтр. Следовательно, через фильтр масло проходит сверху вниз и непрерывно очищается. Фильтры устанавливают на трансформаторах мощностью 160 кВ * А и выше.Особенности конструкции сухих трансформаторов. Масляный трансформатор взрыво- и пожароопасен, поэтому, когда из-за пожарной безопасности недопустимы масляные трансформаторы, используют сухие или трансформаторы с негорючим заполнителем (совтолом, пиранолом, кварцевым песком). Поскольку отсутствует масло, сухие трансформаторы можно устанавливать непосредственно в цехах промышленных предприятий без устройства специальных трансформаторных камер.Силовые трехфазные сухие трансформаторы ТСЗ (рис. 6) в защищенном исполнении изготовляют мощностью от 160 до 1600 кВ * А, обмотки которых имеют класс напряжения 6—10 кВ для ВН и 0,23; 0,4 и 0,69 кВ для НН. Применяют также сухие трансформаторы мощностью менее 160 кВ- А (25, 40, 66, 100 кВ- А).Условное обозначение трансформаторов. Обозначения типов трансформаторов построены по определенной системе, отражающей конструкцию (буквы) и основные электрические параметры (цифры). Буквенные обозначения следующие: первая буква — число фаз (О — однофазный, Т — трехфазный), вторая или две — вид охлаждения (М — естественное масляное, С — сухое без масла, Д — дутьевое, Ц — циркуляционное, ДЦ — принудительное циркуляционное с дутьем), третья — число обмоток (Т — трехобмоточный). В условном обозначении могут быть другие буквы, указывающие конструктивные особенности трансформатора. Силовой трехфазный сухой трансформатор ТСЗРис. 6. Силовой трехфазный сухой трансформатор ТСЗ:I — активная часть, 2 — ввод ВН, С, 9 — коробки ввода ВН и НН, 4 — крышка люка, 5 — кожух, 6 и 8 — кольцо и пластина для подъема трансформатора, 7 — шины НН, 10 — тележка, 11 — катокПервая цифра, стоящая после буквенного обозначения трансформатора, показывает номинальную мощность (кВ- А), вторая — номинальное напряжение обмотки ВН (кВ). В последнее время добавляют еще две цифры, означающие год разработки трансформатора данной конструкции, например обозначение трансформатора ТМ-1000/10—93 расшифровывается так: трехфазный, двухобмоточный с естественным масляным охлаждением, мощностью 1000 кВ • А и напряжением обмотки ВН 10 кВ, конструкции 1993 г.

Ещё по теме:

silovoytransformator.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта