Eng Ru
Отправить письмо

Зачем нужен трансформатор напряжения. Напряжение трансформатор


Понижающие трансформаторы. Виды и работа. Особенности

Большинство электрических бытовых устройств работает от сети питания 220 В. Иногда необходимо понизить это напряжение до определенного значения, чтобы подключить низковольтные потребители нагрузки. Такими потребителями могут быть галогенные светильники, низковольтные нагреватели, светодиодные ленты и множество других.

Такое снижение напряжение могут выполнить понижающие трансформаторы, которые приобретают в магазине, или изготавливают самостоятельно. Такие трансформаторы популярны в электротехнике и радиоэлектронике, а также в бытовых условиях.

Особенности конструкции

Основной частью трансформатора выступает ферромагнитный сердечник, на котором расположены две обмотки, намотанные медным проводником. Эти обмотки разделяют на первичную и вторичную, в зависимости от принципа действия. На первичную обмотку подается сетевое напряжение, а с вторичной – снимается пониженное напряжение для потребителей нагрузки.

Обмотки связаны между собой переменным магнитным потоком, который наводится в ферромагнитном сердечнике. Между обмотками нет электрического контакта. Первичная обмотка имеет большее количество витков, чем вторичная. Поэтому напряжение на выходе понижено.

Обычно понижающие трансформаторы со всеми элементами находятся в корпусе. Однако не все модели его имеют. Это зависит от фирмы изготовителя, а также назначения понижающего трансформатора.

Обозначение на схеме

Принцип действия

Работу понижающего трансформатора можно описать следующим образом. Действие трансформатора основывается на принципе электромагнитной индукции. Напряжение, подключенное на первичную обмотку, образует в ней магнитное поле, которое пересекает витки вторичной обмотки. В ней образуется электродвижущая сила, под действием которой возникает напряжение, отличное от входного напряжения.

Разница в количестве витков первичной и вторичной обмоток определяет разницу между входным и выходным напряжением понижающего трансформатора. В процессе функционирования трансформатора возникают некоторые потери электроэнергии, которые неизбежны, и составляют около 3% мощности.

Чтобы вычислить точные величины параметров трансформатора, нужно сделать определенные расчеты его конструкции. Электродвижущая сила может возникать при подключении трансформатора только к переменному току. Поэтому большинство бытовых электрических устройств работает от сети переменного тока.

Понижающие трансформаторы входят в состав многих блоков питания, стабилизаторов и других подобных устройств. Некоторые модели трансформаторов могут содержать несколько выводов на вторичной обмотке для разных групп соединений. Такие виды приборов стали популярными, так как являются универсальными, и обладают многофункциональностью.

Разновидности

Модификации моделей трансформаторов имеют различные исполнения, в зависимости от конструкции и принципа действия.

• Тороидальные. Такой вариант модели трансформатора (рисунок «а») также применяется для незначительных мощностей, имеет сердечник формы в виде тора. Он отличается от других моделей малым весом и габаритами. Применяется в радиоэлектронных устройствах. Его конструкция позволяет достичь более высокой плотности тока, так как обмотка хорошо охлаждается на всем сердечнике, показатели тока намагничивания самые низкие.

• Стержневые. На рисунке «б» изображен стержневой вид трансформатора, в конструкции которого обмотки охватывают сердечники магнитопровода. Такие модели чаще всего выполняют для средней и большой мощности приборов. Их устройство довольно простое и дает возможность легче изолировать и ремонтировать обмотки. Их преимуществом является хорошее охлаждение, вследствие чего требуется меньше проводников для обмоток.

• Броневые. В этом виде трансформатора (рисунок «в») магнитопровод охватывает обмотки в виде брони. Остальные параметры идентичны стержневому виду, за исключением того, что броневые трансформаторы в основном выполняют маломощными, так как они имеют меньший вес и цену в сравнении с предыдущим вариантом, из-за простой сборки и меньшего количества катушек.

• Многообмоточные. Наиболее популярными являются двухобмоточные 1-фазные понижающие трансформаторы.

Для получения нескольких различных величин напряжений от одного трансформатора применяют несколько вторичных обмоток на сердечнике. Эти обмотки разные по числу витков и выдаваемому напряжению.

• Трехфазные. Такая модель применяется для понижения напряжения трехфазной сети. Такие понижающие трансформаторы применяются не только в промышленности, но и для бытовых нужд.

Они могут быть изготовлены из 3-х однофазных трансформаторов на общем сердечнике. Магнитные потоки всех фаз в сумме равны нулю. Промышленные образцы проходят испытания по определенным параметрам. Результаты испытаний сравнивают с документацией. Если нет соответствия, то трансформатор подлежит выбраковке. 3-фазный трансформатор имеет соединение обмоток по схеме треугольника или звезды. Схема звезды характерна общим узлом выводов всех фаз. Соединение треугольником выполняется последовательной схемой фаз в кольцо.

• Однофазные. Такие трансформаторы имеют подключение питания от однофазной сети, фаза и ноль поступают на одну первичную обмотку. Принцип их работы аналогичен всем остальным видам трансформаторов. Это наиболее популярный вид устройств.

Основные свойства

Маркировка трансформаторов зависит от его свойств. Основными свойствами понижающих трансформаторов являются:

  • Мощность.
  • Напряжение выхода.
  • Частота.
  • Габаритные размеры.
  • Масса.

Частота тока для разных моделей трансформаторов будет одинаковой, в отличие от других перечисленных характеристик. Габаритные размеры и масса будут больше при повышении мощности модели. Максимальная величина мощности у промышленных образцов понижающих трансформаторов, так же как габаритные размеры и масса.

Напряжение на выходе вторичных обмоток может быть различным, и зависит от назначения прибора. Модели трансформаторов для бытовых нужд имеют малые габариты и вес. Их легко устанавливать и перевозить.

Обмотки трансформатора

Обмотки находятся на магнитопроводе прибора. Ближе к сердечнику располагают низковольтную обмотку, так как ее легче изолировать. Между обмотками укладывают изоляционные прокладки и другие диэлектрики, например электротехнический картон.

Первичная обмотка соединяется с сетью питания переменного напряжения. Вторичная обмотка выдает низкое напряжение и подключается к потребителям электроэнергии.  К одному трансформатору можно подключать сразу несколько бытовых устройств.

Для намотки катушек применяют изолированные провода, с изоляцией каждого слоя кабельной бумагой. Проводники бывают различных форм сечения:

  • Круглая.
  • Прямоугольная (шина).

По способу намотки обмотки делят:

  • Концентрические, на стержне.
  • Дисковые, намотанные чередованием.
Достоинства и недостатки

Достоинства

  • Применение понижающих трансформаторов, как в промышленности, так и в домашних условиях можно объяснить необходимостью уменьшения рабочего напряжения до 12 вольт для создания безопасности человека.
  • Другой причиной применения низкого напряжения является нетребовательность трансформаторов к значению входного напряжения, так как они могут функционировать, например, при 110 В, при этом обеспечивая стабильное напряжение на выходе.
  • Компактные размеры.
  • Малая масса.
  • Удобство транспортировки и монтажа.
  • Отсутствие помех.
  • Плавная регулировка напряжения.
  • Незначительный нагрев.

Недостатки

  • Недолгий срок службы.
  • Незначительная мощность.
  • Высокая цена.
Как выбрать понижающие трансформаторы

Торговая сеть электротехнических изделий предлагает модели бытовых понижающих трансформаторов на все случаи жизни. При выборе конкретного устройства, рекомендуется воспользоваться следующими критериями выбора:

• Величина напряжения на входе. На корпусе устройства обычно есть маркировка входного напряжения 220, либо 380 вольт. Для бытовой сети подходит модель на 220 В.• Величина напряжения выхода. Зависит от назначения и применения устройства. Обычно это 12 или 36 вольт, о чем также должна быть маркировка.• Мощность устройства. Чтобы правильно подобрать стабилизатор по мощности, нужно сложить мощности всех планируемых к подключению потребителей, и добавить резервное значение 20%.

Эксплуатация и ремонт

Основным условием правильной и надежной эксплуатации понижающего трансформатора является специально оборудованное место для его монтажа и функционирования.

Трансформатор необходимо содержать в чистоте, сухом виде, защищать от пыли и влаги. В домашних бытовых условиях для трансформатора используют специальный шкаф или металлический корпус. Заземление для понижающего трансформатора является обязательным условием.

Трансформатор требует периодического обслуживания и ухода, в зависимости от выполняемых им задач и условий эксплуатации.

Чаще всего обслуживание включает в себя следующие работы:

  1. Наружный осмотр, очистка от пыли и грязи.
  2. Осмотр деталей уплотнения, колец, прокладок, подтяжка клемм.
  3. Проверка изоляции на пробой.

В трансформаторе могут появиться неисправности и повреждения обмоток в виде трещин секций катушек. При этом не требуется демонтировать трансформатор. На поврежденную изоляцию накладывают лакоткань. При серьезных неисправностях, связанных с обрывом или коротким замыканием, осуществляют снятие трансформатора и его ремонт в электромастерской.

Похожие темы:

 

electrosam.ru

Трансформаторы тока и напряжения: виды, конструкция, принцип действия!

Без электроснабжения невозможно представить нашу жизнь. Чтобы электрическая система работала без сбоев или не пришла в негодность из-за неисправности в кабеле или в силовом оборудовании, её параметры необходимо контролировать, замерять. Диагностика, заключающаяся в проведении электрических измерений, способна выявить причины сбоев и вовремя устранить их. Для этого применяются приборы, измеряющие величины токов, напряжений, мощности.

Но если в электроустановках с низким напряжением возможно подключение измерительных приборов напрямую, непосредственно к измеряемому узлу, то в высоковольтных цепях проблематично отследить параметры без применения измерительных трансформаторов. В электроустановках напряжение доходит до 750 кВ и выше, а токи устанавливаются в десятки килоампер и более. Для «прямого» измерения потребовались бы громоздкое и дорогое оборудование, а иногда измерения вообще не возможно было бы произвести. Также, при обслуживании приборов, напрямую подключенных к сети высокого напряжения, персонал подвергался бы опасности поражения током.

Измерительные трансформаторы тока (ТТ) и напряжения (ТН) способствуют расширению пределов измерений обычных измерительных устройств и одновременно изолируют их от цепей высокого напряжения. Измерительные трансформаторы создаются с высоким классом точности. Во время эксплуатации их метрологические характеристики подлежат первичной и периодической поверке на правильность работы.

Наиболее часто в сетях переменного тока применяются электромагнитные трансформаторы. Они состоят из магнитопровода, первичной и одной или нескольких вторичных обмоток. ТТ преобразовывает замеряемый высокий ток в малый, а ТН — измеряемое высшее напряжение в низшее. Измерительные трансформаторы включаются в цепи между высоковольтным оборудованием и контрольно-измерительными приборами: амперметрами, вольтметрами, ваттметрами, приборами релейной защиты, телемеханики и автоматики, счетчиками энергии.

Зачем нужны измерительные трансформаторы напряжения

Содержание статьи

Измерительные ТН относятся к преобразователям электрической энергии, которые:

  • трансформируют напряжение участка сети или установки в напряжение приемлемой величины для осуществления измерений с помощью стандартных измерительных устройств, питания релейной защиты, устройств сигнализации, автоматики, телемеханики;
  • изолируя вторичные приборы и цепи, защищают оборудование от высокого напряжения и персонал, имеющего доступ к обслуживанию электроустановок, от поражения током.

Подключение ТН к высоковольтной части электроустановки осуществляется соединением его первичной обмотки «в параллель» к цепи высокого напряжения. Номинал вторичных обмоток трансформатора напряжения составляет обычно 100 В. Так как сопротивление измерительных приборов, подключаемых к вторичной обмотке, велико, током можно пренебречь. Поэтому основной режим работы ТН подобен режиму холостого хода типового силового трансформатора.

Трансформаторы напряжения и их конструкция

Трансформаторы напряжения подразделяются:

  • по числу фаз: на одно- и трехфазные;
  • по числу вторичных обмоток: двухобмоточный ТН имеет одну вторичную обмотку, трехобмоточный — две: основную и дополнительную;
  • по назначению вторичных обмоток: с основной вторичной обмоткой, с дополнительной, со специальной компенсационной — для контроля изоляции цепи;
  • по особенностям исполнений — на трансформаторы защищенного типа, водозащищенного типа (защита от капель и влаги), герметичные, со встроенным предохранителем и с антирезонансной конструкцией;
  • по принципу действия и особенностям конструкций: на каскадные, ёмкостные, заземляемые и не заземляемые.

У каскадного ТН первичная обмотка разделена на несколько поочередно соединенных секций, передача энергии от которых к вторичным обмоткам происходит посредством связующих и выравнивающих обмоток. У ёмкостного ТН в конструкции имеется ёмкостный делитель. Заземляемый однофазный ТН — устройство, у которого один конец первичной обмотки должен быть заземлен. У заземляемого трехфазного ТН должна быть заземлена нейтраль первичной обмотки. Все части первичной обмотки не заземляемого ТН изолированы от земли.

Зачем нужны трансформаторы тока

Трансформатор тока — базовый измерительный аппарат в электроэнергетике, применяемый для преобразования тока первичной сети во вторичный стандартный ток величиной 5 А или 1 А. Первичная обмотка соединяется непосредственно с цепью высокого напряжения последовательным способом подключения. Вторичная обмотка включается во вторичные цепи измерений, защиты и учета. 5А — часто встречающийся номинал вторичной обмотки.

Принцип действия и конструкция трансформаторов тока

Первичная обмотка ТТ включается в разрез линейного провода (последовательно с нагрузкой), в котором измеряется сила тока. Вторичная обмотка замкнута на измерительное устройство с малым сопротивлением. Поэтому, в отличие от силового трансформатора, для которого режим короткого замыкания является аварийным, нормальным режимом для измерительного ТТ являются условия, близкие к КЗ, так как сопротивление во вторичной цепи у него мало.

Через первичную обмотку, имеющую определённое количество витков, течет ток. Вокруг катушки наводится магнитный поток, который улавливается магнитопроводом. Пересекая перпендикулярно ориентированные витки вторичной обмотки, магнитный поток формирует электродвижущую силу. Под влиянием последней возникает ток, протекающий по катушке и нагрузке на выходе. Одновременно на зажимах вторичной цепи образуется падение напряжения.

По конструктиву и применению ТТ условно подразделяются на несколько разновидностей:

    • Опорные монтируются на опорной плоскости.
    • Проходные используются в качестве ввода и устанавливаются в металлических конструкциях, в проемах стен или потолков.
    • Встраиваемые размещаются в полости оборудования: электрических выключателей, генераторов и других электроаппаратов и машин.
    • Разъемные не имеют своей первичной обмотки. Их магнитопроводы из двух половинок, стягиваемых болтами, можно размыкать и закреплять вокруг проводников под током. Эти проводники исполняют роль первичных обмоток.
    • Шинные изготавливаются тоже без первичных обмоток — их роль выполняют пропущенные сквозь окна магнитопроводов ТТ токоведущие шины распредустройств.
    • Накладные надеваются сверху на проходной изолятор.
    • Переносные предназначаются для лабораторных и контрольных измерений.

По выполнению первичной обмотки ТТ подразделяются на одновитковые и многовитковые, а по числу вторичных обмоток — на устройства с одной обмоткой и с несколькими вторичными обмотками (до четырёх, пяти). По числу ступеней трансформации — на одноступенчатые и каскадные.

К общей классификации трансформаторов обоих типов относятся: количество коэффициентов трансформации (однодиапазонные и многодиапазонные), критерии по материалу диэлектрика между первичной и вторичной обмотками и по материалу внешней изоляции — маслонаполненные, газонаполненные, сухие, с литой, фарфоровой и прессованной изоляцией, с вязкими заливочными компаундами, комбинированные бумажно-масляные. ТТ и ТН устанавливаются на открытом воздухе, в закрытых и в подземных установках, на морских и речных судах, внутри оболочек электроустановок и связываются контрольными проводами и кабелями с оборудованием вторичных цепей. По диапазону рабочего напряжения выделяют трансформаторы, функционирующие в устройствах до 1000 В и выше 1000 B. Трансформаторы также классифицируются по классу точности.

Видео про трансформаторы тока

Кратко о назначении трансформатора тока, составе и особенностях конструкции, о схеме и принципе работы. Почему нельзя допускать размыкание вторичных цепей трансформатора тока без предварительного их замыкания накоротко? Почему на напряжение выше 330 кВ изготавливаются ТТ каскадного типа? Об этом и об измерительном трансформаторе тока для подстанции 750 кВ вы узнаете из видео.

Похожие статьи

electricity-help.ru

Где и для чего применяется трансформатор напряжения, разбираем подробно

Электричество, впервые этот термин ввел Уильям Гилберт. В одном из своих трудов он описал опыты с наэлектризованным телом. С тех пор прошло много лет, в течении которых не прекращались исследования в этой отрасли. В них принимали участие лучшие ученые умы различных эпох. В итоге появились электрические станции, все населенные пункты опутывает сеть линий электропередач. И сложно представить себе, что еще относительно недавно человек обходился без электроэнергии.

Ведь сегодня она является необходимым условием для жизни и деятельности людей. Но чтобы все современное оборудование обеспечить электроэнергией необходимо осуществлять ее передачу на дальние расстояния. Сделать это можно, используя трансформатор напряжения. Этот прибор позволил уменьшить потери в проводах, а также адаптировать параметры сети под конкретного потребителя. Чтобы понять, как небольшое устройство сумело справиться со столь сложными задачами, рассмотрим его конструктивные особенности.

Назначение и сфера применения трансформаторов

Функция электрических сетей заключается как в выработке энергии, так и ее передаче на большие расстояния, а затем и распределении между потребителями. Вот для чего нужен специальный электромагнитный аппарат или трансформатор напряжения. Такие приборы находят широкое применение на электрических станциях. Они способны повышать или понижать напряжение.

Смотрим видео, немного о трансформаторах и их действии:

Применяется такое оборудование как в закрытых помещениях, так и уличных условиях. Благодаря использованию повышающих трансформаторов на таких объектах стало возможным передавать энергию на дальние расстояния с минимальными потерями в проводах. Это обеспечивается за счет уменьшения пощади сечения кабелей линий электропередачи.

Но так как поступающее со станции высокое напряжение не может использоваться потребителями, то на входе обычно устанавливаются понижающие трансформаторы. Они позволяют получить сравнительно небольшие значения, при которых возможна работа оборудования и бытовой техники.

Конструкция трансформатора

Устройство прибора

Простейший из таких приборов состоит из двух основных частей:

  • Магнитопровода, выполненного из стали;
  • Двух обмоток из проводов с изоляцией.

Одна из них называется первичной, так как на нее подается ток. Обмотка, к которой подключаются потребители называется вторичной.

Принцип работы трансформатора напряжения заключается в следующем. Подключение его к сети приводит к поступлению тока на первичную обмотку. Переменный поток, образованный им, проходит по магнитопроводу. При этом в витках обмоток индуцируются переменные ЭДС. Величина этой силы зависит от скорости изменения магнитного потока и того, как быстро он изменяется. А так как эти параметры являются постоянными для каждого прибора, то можно сделать вывод, что одинаковыми будут и индуцируемые в каждой обмотке ЭДС.

Виды и их особенности

Виды и типы приборов напряжения

Различные виды трансформаторов

Кроме рассмотренных выше понижающих и повышавших приборов выпускаются и другие модели:

  • Тяговые;
  • Лабораторные, в которых возможно регулировать напряжение;
  • Для выпрямительных установок;
  • Источники питания для радиоаппаратуры.

Все они относятся к одной большой группе трансформаторов – силовым. Есть еще одна разновидность такого оборудования. Это устройства, используемые для подключения к цепям высокого напряжения различных электроизмерительных приборов. Они получили название измерительных трансформаторов напряжения. Также эти приборы находят широкое применение при электросварке.

Имеют отличия и в конструктивном исполнении. В зависимости от этого различают двух и многообмоточные измерительные трансформаторы тока и напряжения. Такие приборы используются для проведения измерений и питания цепей автоматики, релейной защиты. Они могут быть одно- или трехфазные с масляным или воздушным охлаждением.

Смотрим видео классификация трансформаторов:

Влияет на классификацию и форма магнитопровода. Он может быть:

  1. Стержневой;
  2. Броневой;
  3. Тороидальный.

При этом различают два вида конструкции обмоток:

  • Концентрический;
  • Дисковый.

По классу точности устройства подразделяются на 4 категории:

Еще одним параметром, влияющим на специфику применения измерительных трансформаторов тока и напряжения, является способ установки. В зависимости от него изделия бывают следующих типов:

  • Внутренние;
  • Наружные;
  • Для КРУ.

Критерии выбора оборудования

Схема класификации приборов

Классификация приборов напряжения

Обычно приобретая оборудование ориентируются не его основные параметры. Для трансформатора таковыми являются:

  • Напряжения обмоток, которые указываются на щитке;
  • Коэффициент трансформации;
  • Угловой погрешности.

Необходимо также ориентироваться на условия эксплуатации. Поэтому самыми важными параметрами при выборе оказываются нагрузка, сфера применения и напряжение короткого замыкания трансформатора. На первом этапе необходимо убедиться в том, что мощности модели будет достаточно для того чтобы справиться не только с поставленной задачей, но и возможными перегрузками. Неплохо иметь прибор, параметры которого могут быть изменены в процессе эксплуатации.

Но ориентироваться только на эти характеристики недопустимо. Так как для эффективной работы трансформатора напряжения 110 кВ важны и его технические характеристики:

  1. Частота тока;
  2. Фазность;
  3. Способ установки;
  4. Место расположения;
  5. Нагрузка.

Кроме этого нужно определить подходит ли вам цена устройства, а также стоимость его дальнейшего обслуживания. Соответствуют ли они ожидаемым цифрам?

Но даже выбрав модель в соответствии со всеми перечисленными требованиями стоит учитывать возможность ее подключения к цепи измерительных приборов для трансформаторов соответствующего типа.

Если предполагается использовать устройство в качестве защитного, то можно ограничиться изделием со средними показателями точности. В случае проведения измерений с минимальными погрешностями выбирают лабораторные трансформаторы напряжения 10 кВ.

Обслуживание и эксплуатация

Приобретая приборы для бытового обслуживания стоит воспользоваться услугами профессиональных консультантов. Они, имея необходимые знания и опыт помогут выбрать оптимальную модель.

Смотрим видео, диагностика и обслуживание:

Но чтобы оборудование работало эффективно необходимо еще и правильно его эксплуатировать. Установка и использование трансформаторов выполняются в соответствии с нормативными документами. В них же оговаривается и порядок обслуживания приборов. Согласно этим документам после монтажа устройства необходимо проверить схемы включения и все элементы во вторичных цепях. Исходя из полученных результатов оценивают возможность включения трансформатора в работу.

Чтобы убедиться в исправности прибора следует измерить;

  • Сопротивление на обмотках;
  • Ток.

Уровень масла в трансформаторах должен поддерживаться в пределах шкалы в зависимости от температуры окружающей среды. Также периодически устройство проверяют на предмет отсутствия протекания масла и чистоту изоляции. Для этого используют специальный индикатор – силикагель. При насыщении влагой он приобретает розовый окрас, в то время как в нормальном состоянии он голубого цвета.

В процессе обслуживания прибора необходимо соблюдать меры безопасности. Они регламентируются нормативными документами. Осмотр трансформатора под напряжением допускается выполнять, находясь на безопасном расстоянии от токоведущих частей.

Что касается ремонтных работ, то для их проведения прибор должен быть отключен от сети. Запрещено эксплуатировать трансформатор с незаземленным цоколем, а все неисправности должны устраняться специалистами. Исправное оборудование в процессе работы издает равномерный звук без треска и резких шумов.

Кроме того, в сетях до 10 кВ случаются резонансные повышения напряжения. Причиной их появления считается многократные разряды емкости, получающиеся в результате дугового замыкания. Это в свою очередь приводит к образованию феррорезонанса в трансформаторе напряжения и выходу его из строя. Избежать этого можно при заземлении нейтрали через резистор.

generatorvolt.ru

Измерительные трансформаторы напряжения

tn6Измерительные трансформаторы напряжения (ТН) являются важными элементами любой высоковольтной сети. Основное назначение трансформаторов напряжения – это понижение высокого напряжения, необходимого для питания измерительных цепей, цепей релейной защиты, автоматики и учета (далее вторичных цепей). С помощью трансформаторов напряжения осуществляется измерение напряжения в высоковольтных сетях, питание катушек реле минимального напряжения, обмоток напряжения защит, ваттметров, фазометров, счетчиков, а также контроль состояния изоляции сети.

Трансформатор напряжения  понижает высокое напряжение до стандартного значения 100 или 100/v3 В. и для отделения цепей измерения и релейной защиты от первичных цепей высокого напряжения. Схема включения однофазного трансформатора напряжения показана на рис.1. первичная обмотка включена на напряжение сети U1, а к вторичной обмотке (напряжение U2) присоединены параллельно катушки измерительных приборов и реле. Трансформатор напряжения в отличие от трансформатора тока работает в режиме, близком к холостому ходу, так как сопротивление параллельных катушек приборов и реле большое, а ток, потребляемый ими, невелик.

tn1

Рис.1. Схема включения трансформатора напряжения: 1 — первичная обмотка; 2 — магнитопровод; 3 — вторичная обмотка

Для питания вторичных цепей трансформаторы напряжения могут устанавливаться как на шинах подстанции, так и на каждом присоединении. Прежде чем приступить к электромонтажу, следует провести осмотр ТН и проверить целостность изоляции, исправность швов армировки и уровень масла у масляных трансформаторов. При установке первичная и вторичная обмотки ТН в целях безопасности заворачиваются, поскольку случайное соприкосновении вторичной обмоток с проводами сварки, освещения и т.п. может привести к появлению на выводах первичной обмотки высокого напряжения, опасного для человеческой жизни. Чтобы обслуживание вторичных цепей при эксплуатации было безопасным, обязательно производится заземление вторичной обмотки трансформатора и его корпуса. Таким образом, устраняется возможность перехода высокого напряжения во вторичные цепи при пробое изоляции.

Номинальный коэффициент трансформации определяется следующим выражением:

tn2

где U1ном и U2ном - номинальные первичное и вторичное напряжения соответственно. Рассеяние магнитного потока и потери в сердечнике приводят к погрешности измерения

tn3

Так же как и в трансформаторах тока, вектор вторичного напряжения сдвинут относительно вектора первичного напряжения не точно на угол 180°. Это определяет угловую погрешность.

В зависимости от номинальной погрешности различают классы точности 0,2; 0,5; 1; 3.

Погрешность зависит от конструкции магнитопровода, магнитной проницаемости стали и от cosφ2, т.е. от вторичной нагрузки. В конструкции трансформаторов напряжения предусматривается компенсация погрешности по напряжению путем некоторого уменьшения числа витков первичной обмотки, а также компенсация угловой погрешности за счет специальных компенсирующих обмоток.

Суммарное потребление обмоток измерительных приборов и реле, подключенных к вторичной обмотке трансформатора напряжения, не должно превышать номинальную мощность трансформатора напряжения, так как в противном случае это приведет к увеличению погрешностей.

Подключая измерительные приборы и устройства защиты к ТН, следует учитывать тот факт, что включение большого количества электроприборов приводит к повышению значения тока во вторичной обмотке и увеличению погрешности измерения. Поэтому следите за тем, чтобы полная мощность подключенных приборов к трансформатору напряжения не превышала максимально допустимой мощности нагрузки ТН, указанной в паспорте. В случае если мощность нагрузки превышает номинальную мощность трансформатора для требуемого класса точности, необходимо установить еще один трансформатор напряжения и часть приборов присоединить к нему.

В зависимости от назначения могут применяться трансформаторы напряжения с различными схемами соединения обмоток. Для измерения трех междуфазных напряжений можно использовать два однофазных двухобмоточных трансформатора НОМ, НОС, НОЛ, соединенных по схеме открытого треугольника (рис. 2., а), а также трехфазные двухобмоточные трансформаторы НТМК, обмотки которых соединены в звезду (рис. 2., б). Для измерения напряжения относительно земли могут применяться три однофазных трансформатора, соединенных по схеме Y0 /Y0, или трехфазные трехобмоточные трансформаторы НТМИ или НАМИ (рис.2. б). В последнем случае обмотка, соединенная в звезду, используется для присоединения измерительных приборов, а к обмотке, соединенной в разомкнутый треугольник, присоединяется реле защиты от замыканий на землю. Таким же образом в трехфазную группу соединяются однофазные трехобмоточные трансформаторы типа ЗНОМ и каскадные трансформаторы НКФ.

tn4

Рис.2. Схемы соединения обмоток трансформаторов напряжения

По конструкции различают трехфазные и однофазные трансформаторы. Трехфазные трансформаторы напряжения применяются при напряжении до 18 кВ, однофазные — на любые напряжения. По типу изоляции трансформаторы могут быть сухими, масляными и с литой изоляцией.

Обмотки сухих трансформаторов выполняются проводом ПЭЛ, а изоляцией между обмотками служит электрокартон. Такие трансформаторы применяются в установках до 1000 В (НОС-0,5 - трансформатор напряжения однофазный, сухой, на 0,5 кВ).

Трансформаторы напряжения с масляной изоляцией применяются на напряжение 6 - 1150 кВ в закрытых и открытых распределительных устройствах. В этих трансформаторах обмотки и магнитопровод залиты маслом, которое служит для изоляции и охлаждения.

Следует отличать однофазные двухобмоточные трансформаторы НОМ-6, НОМ-10, НОМ-15, НОМ-35 от однофазных трехобмоточных ЗНОМ-15, ЗНОМ-20, ЗНОМ-35.

tn5Для обеспечения нормальной работы, измерительный трансформатор напряжения должен быть защищен от токов короткого замыкания со стороны нагрузки, поскольку они вызывают перегрев и повреждение изоляции обмоток ТН, а также приводят к возникновению короткого замыкания в самом трансформаторе. С этой целью во всех не заземленных проводах устанавливаются автоматические выключатели. Кроме этого во вторичных цепях трансформатора напряжения предусматривается установка рубильника, для создания видимого разрыва электрической цепи. Защита первичной обмотки от повреждений выполняется при помощи предохранителей.

 

malahit-irk.ru

Зачем нужен трансформатор напряжения

Зачем нужен трансформатор напряжения, они представляют огромный интерес для служб, по учёту электроэнергии. Следующий пункт, это определение земли на оборудовании и секции шин. Сейчас постараюсь, всё объяснить на пальцах. Трансформаторы напряжения, называют измерительными. Они необходимы для преобразования в низкое напряжение, более высокое, до нужного Вам значения. Подходящие для питания устройств измерения и релейной защиты силовых трансформаторов.  Ещё они защищают реле и приборы от высокого напряжения. Более важное условие, с точки безопасности, защищают обслуживающий персонал, работающий на вторичных цепях подстанции.

 

Где применяются и из чего состоят трансформаторы напряжения.

 

Трансформаторы напряжение, постоянно применяются в установках, 380 В и выше, переменного тока. Они понижают приложенное к первичной обмотке напряжение до 100 В, умнее говорят  100/ корень из трёх. Так же, как и все трансформаторы, у них есть свой коэффициент трансформации трансформатора напряжения. Зачем? Для безопасности людей и оборудования.

 

Зачем нужен трансформатор напряжения

 

Они имеют не сложную конструкцию, надёжны, и главное, обладают очень хорошей точностью. Состоит это приспособление из: двух обмоток, первичная и вторичная, стальной сердечник, набранный из пластин.  У них имеются вывода для подключения. Первичная обмотка, присоединяется к цепи силового напряжения, а с другой стороны, могут прикрепить реле, обмотку вольтметра или ваттметра и всякое разное.

По принципу своего действия, они идентичны силовому трансформатору. Есть у него потери от намагничивания, они в следствии дают некоторую погрешность. Для этого, есть разброс в классах точности.  Вот по этому случаю статья, классы точности электроизмерительных приборов.   У них бывают несколько вторичных обмоток, и разное число фаз. Кроме напряжения, есть и максимальная мощность, которую он способен обеспечить, при этом, правильно и длительно функционировать, от неблагоприятного перегрева внутренних обмоток. Способы их установки различны, внутренние и внешние.

 

Расшифровка аббревиатур трансформаторов напряжения.

 

Различаются и по способу изоляции, сухая, она же литая и масляной. У каждого свое, буквенное обозначение трансформатора. Есть на разные классы напряжения, такие как, нтми-10,  ном-10, зном-35, ном-35, нкф-110, нами-10. В предыдущем предложении, цифры означают номинальное напряжение.

Начнём с самой важной буквы, которая находится в самом начале практически всех аббревиатур, это буква Н. Она как раз и означает трансформатор напряжения. Кстати говоря, его сокращённо называют просто ТН.

Следующие по списку и по важности буква это, Т и О, которые означаю количество фаз. Трехфазный и однофазный соответственно. У буквы Т есть ещё одно значение, она означает что, трансформатор трёх обмоточный.

Следующие буквы, относятся к изоляции и способам охлаждения. Она может быть, литой (Л), С сухой, Естественное мысленно охлаждение, маркируется буквой М.

Следующие значения, можно отнести к дополнительным функциям. Для подключения измерительных приборов, наносится (И).  Если видим (К), следует понимать, что в трансформаторе напряжения есть дополнительная обмотка, которая уменьшает угловую погрешность или каскад.

«З» – наличие заземляющего вывода.

Активную часть, часто помещают в фарфоровую покрышку, поэтому присутствует символ «Ф».

(У) — относится к установки в умеренно климате. Д, Е – делитель, имеет определённую ёмкость.

 

 Земля на секции шин 10 кВ.

 

Теперь про землю на секциях шин. Под этим выражением надо понимать, что на ячейках, которые называются ТН, где собственно и ставится трансформатор напряжения, ставятся киловольтметр.  Подходя к нему, переключаем его ручку, во всех позициях фазного и линейного напряжения, должно показываться, примерно равное значение.

 

Зачем нужен трансформатор нтми

 

Если есть, перекос фаз, разбег в показаниях, это и означает что, на линии земля. Сейчас более точно, оборвался провод и лежит на земле, или сломался изолятор, и провод лёг на траверсу, это из оборудования воздушных линий электропередач. Схожие проблемы и с кабельными линиями.

energytik.net

Трансформатор напряжения Википедия

Антирезонансный трансформатор напряжения Трансформаторы напряжения для высоковольтных сетей

Трансформа́тор напряже́ния — одна из разновидностей трансформатора, предназначенная не для преобразования электрической мощности для питания различных устройств, а для гальванической развязки цепей высокого напряжения (6 кВ и выше) от низкого (обычно 100 В) напряжения вторичных обмоток.

Используется в измерительных цепях, преобразуя высокое напряжение линий электропередач генераторов в удобное для измерения низковольтное напряжение.

Кроме того, применение трансформатора напряжения позволяет изолировать низковольтные измерительные цепи защиты, измерения и управления от высокого напряжения, что, в свою очередь, позволяет использовать более дешёвое оборудование в низковольтных сетях и удешевляет их изоляцию.

Так как трансформатор напряжения не предназначен для передачи через него мощности, основной режим работы трансформатора напряжения — режим холостого хода.

Принцип действия

Измерительный трансформатор напряжения по принципу выполнения мало отличается от силового понижающего трансформатора. Он состоит из стального сердечника, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток. В результате изготовления должен быть достигнут необходимый класс точности: по амплитуде и углу. Трехфазные трансформаторы напряжения с выведенными нулевыми выводами выполняются на пятистержневом магнитопроводе, чтобы при коротком замыкании на стороне высокого напряжения суммарный магнитный поток замыкался по стали сердечника (при замыкании по воздуху возникает большой ток, приводящий к перегреву трансформатора). Трёхфазные трансформаторы с трёхстрежневым магнитопроводом исходя из вышеуказанных причин не имеют внешних нулевых выводов и не применяются для регистрации «замыканий на землю». Чем меньше нагружена вторичная обмотка трансформатора напряжения (то есть чем ближе режим к режиму холостого хода либо, другими словами, чем больше сопротивление цепи вторичной обмотки), тем фактический коэффициент трансформации Кт ближе к номинальному значению. Это особенно важно при подключении ко вторичной цепи измерительных приборов, так как коэффициент трансформации влияет на точность измерений. В зависимости от нагрузки один и тот же трансформатор напряжения может работать в разных классах точности: 0,5; 1; 3.

Виды трансформаторов напряжения

  • Заземляемый трансформатор напряжения — однофазный трансформатор напряжения, один конец первичной обмотки которого должен быть наглухо заземлён, или трёхфазный трансформатор напряжения, нейтраль первичной обмотки которого должна быть наглухо заземлена (трансформатор с ослабленной изоляцией одного из выводов — однофазный ТН типа ЗНОМ или трёхфазные ТН типа НТМИ и НАМИ).
  • Незаземляемый трансформатор напряжения — трансформатор напряжения, у которого все части первичной обмотки, включая зажимы, изолированы от земли до уровня, соответствующего классу напряжения.
  • Каскадный трансформатор напряжения — трансформатор напряжения, первичная обмотка которого разделена на несколько последовательно соединённых секций, передача мощности от которых к вторичным обмоткам осуществляется при помощи связующих и выравнивающих обмоток.
  • Ёмкостный трансформатор напряжения — трансформатор напряжения, содержащий ёмкостный делитель.
  • Двухобмоточный трансформатор — трансформатор напряжения, имеющий одну вторичную обмотку напряжения.
  • Трёхобмоточный трансформатор напряжения — трансформатор напряжения, имеющий две вторичные обмотки: основную и дополнительную.

Применение

При наличии нескольких вторичных обмоток в трехфазной системе основные соединяются «в звезду», образуя выходы фазных напряжений a, b, c и общую нулевую точку о, которая обязательно должна заземляться для предотвращения последствий пробоя изоляции со стороны первичной обмотки (на практике чаще всего заземляется фаза «b» обмотки НН трансформатора напряжения). Дополнительные обмотки обычно соединяются по схеме «разомкнутый треугольник» с целью контроля напряжения нулевой последовательности. В нормальном режиме это напряжение находится в пределах 1-3 В за счет погрешности обмоток, резко возрастая при аварийных ситуациях в цепях высокого напряжения, что дает возможность простого подключения быстродействующих устройств релейной защиты и автоматики (для цепей с изолированной нейтралью — обычно на сигнал). Для регистрации земли в сети необходимо заземление нулевого вывода обмотки ВН трансформатора напряжения (для прохождения гармоник нулевой последовательности).

Особенности работы трансформаторов напряжения регламентируются главой 1.5 Правил устройства электроустановок. Так, нагрузка вторичных обмоток измерительных трансформаторов, к которым присоединяются счетчики, не должна превышать номинальных значений. Сечение и длина проводов и кабелей в цепях напряжения расчетных счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25 % номинального напряжения при питании от трансформаторов напряжения класса точности 0,5 и не более 0,5 % при питании от трансформаторов напряжения класса точности 1,0. Для обеспечения этого требования допускается применение отдельных кабелей от трансформаторов напряжения до счетчиков. Потери напряжения от трансформаторов напряжения до счетчиков технического учета должны составлять не более 1,5 % номинального напряжения.

Особенности работы ТН в сетях с изолированной и заземлённой нейтралями

В сетях с заземлённой нейтралью при замыкании на землю напряжение повреждённой фазы около места замыкания уменьшается до нуля, вектор 3U0{\displaystyle 3U_{0}} получается сложением векторов фазных напряжений (сложение фазных векторов, расположенных 120° относительно друг от друга), и следовательно напряжение 3U0{\displaystyle 3U_{0}} возрастает до фазного напряжения.

В сетях с изолированной нейтралью при замыкании на землю все фазные напряжения (относительно нулевой точки) остаются без изменения, но относительно земли фазные напряжения увеличиваются до линейного, при этом трансформируясь во вторичную обмотку (при обязательном заземлении нулевой точки первичной обмотки ТН) они геометрически суммируются. При этом вектора этих напряжений расположены друг относительно друга на 60°, то 3U0=3Ub=3Uc{\displaystyle 3U_{0}={\sqrt {3}}U_{b}={\sqrt {3}}U_{c}}, где Ub{\displaystyle U_{b}},Uc{\displaystyle U_{c}} — напряжения неповреждённых фаз относительно земли. Поскольку напряжения неповреждённых фаз относительно земли увеличились до 3{\displaystyle {\sqrt {3}}}, то 3U0=3Uf{\displaystyle 3U_{0}=3U_{f}}, то есть 3U0{\displaystyle 3U_{0}} возрастает до утроенного значения фазного напряжения относительно нуля.

Исходя из вышеуказанных особенностей у ТН для работы в сетях с заземлённой нейтралью дополнительная обмотка выполняется на 100 В, а для сетей с изолированной нейтралью 100/3 В.

Явление феррорезонанса

Трансформаторы напряжения в сетях с изолированной нейтралью могут входить в феррорезонанс с паразитными ёмкостями распределительных сетей (особенно это нежелательное явление характерно для кабельных сетей), что может приводить к их отказу. Для предотвращения порчи трансформаторов напряжения в результате феррорезонанса разработаны антирезонансные трансформаторы напряжения типа НАМИ.

Параметры трансформатора напряжения

На шильдике трансформатора напряжения указываются следующие параметры:

  • Напряжение первичной обмотки.
  • Напряжение основной вторичной обмотки: для однофазных ТН равно 100 В, для трёхфазных фазное напряжение вторичной обмотки 100/3{\displaystyle {\sqrt {3}}} В.
  • Напряжение дополнительной вторичной обмотки: для сетей с заземлённой нейтралью 100 В, для сетей с изолированной нейтралью 100/3 В.
  • Номинальная мощность трансформатора, в ВА, в соответствии с классом точности.
  • Максимальная мощность трансформатора, в ВА.
  • Напряжение короткого замыкания, в процентах.

Обозначения ТН

Отечественные трансформаторы напряжения имеют следующее буквенные обозначения:

  • Н — трансформатор напряжения;
  • Т — трёхфазный;
  • О — однофазный;
  • С — сухой;
  • М — масляный;
  • К — каскадный либо с коррекцией;
  • А — антирезонансный;
  • Ф — в фарфоровой покрышке;
  • И — контроль Изоляции;
  • Л — в литом корпусе из эпоксида;
  • ДЕ — с ёмкостным делителем напряжения;
  • З — с заземляемой первичной обмоткой.

Литература

  • В. Н. Вавин Трансформаторы напряжения и их вторичные цепи М., «Энергия», 1977

Источники

  • ГОСТ 18685-73. Трансформаторы тока и напряжения. Термины и определения
  • Правила устройства электроустановок. Издание седьмое.

См. также

Трансформатор

wikiredia.ru

Выходное напряжение - трансформатор - Большая Энциклопедия Нефти и Газа, статья, страница 3

Выходное напряжение - трансформатор

Cтраница 3

Наиболее простым способом регулирования выходного напряжения трансформатора или автотрансформатора является изменение числа витков обмотки, для чего обмотка ( первичная или вторичная) выполняется с несколькими отводами. С помощью переключателя изменяется число витков обмотки и, следовательно, выходное напряжение трансформатора или автотрансформатора.  [31]

Наиболее существенными недостатками трансформаторной связи по сравнению с емкостной являются большие габариты и вес и меньшая надежность; трансформаторы чувствительны к внешним магнитным полям и во избежание увеличения уровня наводок требуют, как правило, тщательной экранировки. Кроме этого, сдвиг фазы выходного напряжения трансформатора относительно входного при жестких требованиях к габаритам и весу оказывается значительным, а его уменьшение до допустимой величины - не всегда возможным.  [32]

Сопротивление разветвления из С и R2, на котором падает напряжение U2; при этом имеет практически чисто емкостный характер. В результате согласно схеме рис. 5.24 выходное напряжение трансформатора находящееся в фазе с U 2, отстает от входного на угол, стремящийся к 180 при / - оо.  [33]

Магнитный усилитель МУ, включенный последовательно с первичной обмоткой трансформатора ТП, за счет изменения индуктивного сопротивления позволяет в достаточно широких пределах регулировать напряжение питания электрофильтра. При отключении питания обмотки управления индуктивное сопротивление МУ максимальное, а выходное напряжение трансформатора ТП - минимальное.  [34]

Рассмотренные в последней главе практические схемы представляют собой в основном довольно простые источники постоянного напряжения, работающие от сети переменного тока и содержащие сетевые трансформаторы. Поэтому при выборе трансформатора для того или иного источника следует ориентироваться на значение выходного напряжения трансформатора, указанного в описании каждого из источников.  [35]

В преобразователях с высоким выходным напряжением ( несколько киловольт ] выходной трансформатор вмеет сложную конструкцию и повышенную массу из-за необходимости усиленной изоляции обмоток. Кроме того, вследствие большого числа витков вторичной обмотки такой трансформатор имеет повышенные значения индуктивности рассеяния и распределенной емкости обмоток, что приводит к искажениям формы кривой выходного напряжения трансформатора ( увеличенная длительность фронта и высокочастотные колебания на переднем фронте), ухудшает режим переключения транзисторов и создает броски потребляемого тока.  [36]

БПЗ, а на три вторых входа этих блоков подано трехфазное напряжение с вторичных обмоток трансформатора TV, обмотки первичной стороны которого подключены к той же сети, что и роторные цепи МА. Поэтому на статорные обмотки первого сельсина 1C с выходов блоков произведения подаются три высокочастотных ( частоты коммутирующего напряжения) напряжения, амплитудные значения которых модулированы ( ограничены) выходными напряжениями трансформатора TV. В итоге токами трех ста-торных обмоток 1C создается результирующая высокочастотная магнитодвижущая сила, ось которой поворачивается в зазоре 1C с частотой сети, питающей трансформатор TV и ротор МА.  [37]

Вращающиеся трансформаторы применяются также для определения ( по значениям напряжений вторичных обмоток) гипотенузы прямоугольного треугольника по заданным его катетам или для определения одного катета по заданным гипотенузе и другому катету. Аналогично находится также значение некоторого вектора по его составляющим и наоборот. Выходные напряжения трансформатора подаются на входные элементы системы автомагического регулирования.  [39]

Электрическая схема установки состоит из следующих элементов. К резцу 4 и заготовке 1 подводится переменный ток от понижающего трансформатора 7, включенного в электроцепь напряжением 220 в с частотой 50 гц. Выходное напряжение трансформатора составляет 2, 4, 6 в. Во избежание искровых разрядов электроцепь включают после врезания резца в металл, а выключают перед окончанием резания.  [40]

Трансформаторы широко используются в источниках электропитания, поскольку они являются простыми и надежными преобразователями электрической энергии. Выходное напряжение трансформатора может быть меньше, больше или равно входному напряжению. Если уровень выходного напряжения меньше входного, то трансформаторы называют понижающими, если больше - повышающими. Трансформатор, у которого входное и выходное напряжения равны, можно назвать изолирующими или разделительным трансформатором, так как в нем входное и выходное напряжения электрически изолированы друг от друга. Основной выходной величиной, характеризующий работу трансформатора, является выходное напряжение.  [41]

Удивительно, но трансформатор сам по себе не может работать на постоянном токе. Выходное напряжение трансформатора - это всегда переменное напряжение, которое должно быть выпрямлено и стабилизировано с тем, чтобы на выходе устройства получить постоянное напряжение.  [42]

В ряде случаев требуется получить другой уровень выходного напряжения, чем обеспечивает тот или другой представленный источник напряжения. Помните, что при увеличении выходного напряжения трансформатора следует использовать компоненты, имеющие большие значения предельно допустимых напряжений. Аналогичное заключение справедливо в отношении к выходному току. Представляется очевидным, что если в схеме установлен резистор с номинальной мощностью 1 Вт, то вполне допустимо использовать вместо него резистор, рассчитанный на 2 Вт, тогда как установка резистора вдвое меньшей мощности недопустима.  [43]

Наиболее простым способом регулирования выходного напряжения трансформатора или автотрансформатора является изменение числа витков обмотки, для чего обмотка ( первичная или вторичная) выполняется с несколькими отводами. С помощью переключателя изменяется число витков обмотки и, следовательно, выходное напряжение трансформатора или автотрансформатора.  [44]

Схема работает следующим образом. При равновесном или, что то же самое, балансном состоянии системы результирующие ампер-витки на первичной стороне трансформатора Т равны нулю, поскольку обе половины ее обтекаются одинаковыми токами t и (, но эти токи направлены навстречу друг другу. Это объясняется тем, что при балансном состоянии схемы сопротивления двух контуров, подключенных к источнику переменного напряжения, одинаковы. Отсутствие намагничивающих ампер-витков приводит к тому, что выходное напряжение трансформатора равно нулю. При разбалансировке, когда сопротивления обмоток датчика отличаются друг от друга из-за различных коэффициентов самоиндукции, сила тока в какой-то из двух половин первичной обмотки больше, чем в другой. Это значит, что появляются разностные ампер-витки. В сердечнике трансформатора возникает переменный магнитный поток и во вторичной обмотке действует тем большая ЭДС, чем значительнее разностные ампер: витки. Поскольку между перемещением штока и выходным электрическим сигналом существует функциональная связь, индуктивные преобразователи широко используют для контроля малых линейных перемещений.  [45]

Страницы:      1    2    3    4

www.ngpedia.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта