Eng Ru
Отправить письмо

Триггер Шмитта на транзисторах. Триггер шмитта на ne555

$direct1

RS-триггер на основе таймера NE555

Триггер - это радиоэлектронный элемент, который может находиться в двух стабильных состояния. Переход его из одного состояния в другое осуществляется по причине изменения входных сигналов. Триггеры составляют основу счетчиков импульсов, различных делителей частоты и других составляющих большинства микросхем.

Ознакомившись с конструктивной схемой таймера NE555, можно заметить, что он имеет внутри RS-триггер. Управление им можно осуществлять  посредством  трех выводов. К тому же  вход Е (вывод таймера 4) является первостепенным и может применяться для остановки работы и сброса RS-триггера. Альтернативное представление микросхемы при таком ее применении изображено на следующем рисунке.

 RS-триггер на основе таймера NE555. №1

 

Таблица истинности RS-триггера

 RS-триггер на основе таймера NE555

Х - любое состояние; * - запрещенное состояние.

При использовании для кнопки коротких проводов, сопротивление R2 устанавливать не обязательно. Для управления, электрические сигналы  на все три входа RS-триггера могут передаваться  прямо с выходов различных логических элементов. В таком случае потребность в добавочных резисторах отпадает.

Если же  на выводы 6 и 2 таймера NE555 подать постоянное напряжение 0,5 Uп, то появляется  возможность осуществлять управление RS-триггером с помощью входа 5.

RS-триггер на основе таймера NE555. №2

После непродолжительного нажатия на любую кнопку на выходе 3 таймера NE555 будет сохраняться соответствующий сигнал. Допустимо  также применение внеочередного сброса триггера путем подачей сигнала нулевого уровня на вывод 4.

www.joyta.ru

Примеры применение таймера NE555.

Продолжаем обзор таймера 555.  В данной статье рассмотрим примеры практического  применения данной микросхемы.

Пример №1  — Сигнализатор темноты.

Схема издает звуковой сигнал при наступлении темноты. Пока фоторезистор  освещен, на выводе №4 установлен низкий уровень, а значит, NE555 находится в режиме сброса. Но как только освещение падает, сопротивление фоторезистора возрастает и на выводе №4 появляется высокий уровень и как следствие таймер запускается, издавая звуковой сигнал.

Пример №2 — Модуль сигнализации.

Схема представляет один из модулей автосигнализации, который  подает сигнал при изменении угла наклона автомобиля. В качестве датчика применен  ртутный выключатель. В исходном состоянии датчик не замкнут и на выходе NE555 установлен низкий уровень. При изменении угла наклона автомобиля ртутная капля замыкает контакты, и низкий уровень на выводе №2 запускает таймер. В результате чего на выходе появляется высокий уровень, который управляет каким-либо исполнительным устройством. Даже после размыкания контактов датчика таймер все равно останется в активном состоянии. Отключить его  можно, если остановить работу таймера, подав на вывод №4 низкий уровень. C1 — керамический конденсатор емкостью 0.1мкФ.

Пример №3 — Метроном.

Метроном — устройство, используемое музыкантами.  Он отсчитывает необходимый ритм, который может быть отрегулирован переменным резистором. Схема построена по схеме генератора прямоугольных импульсов. Частота метронома определяется RC-цепочкой.

Пример №4 — Таймер.

Таймер на  10 минут. Таймер включается путем нажатия на кнопку «Пуск», при этом загорается светодиод HL1. По прошествии выбранного временного интервала загорается светодиод HL2. Переменным резистором  можно подстроить временной интервал.

Пример №5  — Триггер Шмитта.

Это очень простая, но эффективная схема. Схема позволяет, подавая на вход зашумленный аналоговый сигнал, получить чистый прямоугольный сигнал на выходе

Пример №6  — Точный генератор.

Генератор повышенной точности и стабильности. Частота подстраивается резистором R1. Диоды — любые германиевые. Можно также применить диоды Шоттки.

pencho.my.contact.bg

Триггер Шмитта на транзисторах | joyta.ru

Триггер Шмитта на транзисторах, так же как и триггер Шмитта на  ОУ,  является системой двух устойчивых состояний, переход которого из одного состояния в другое связан с амплитудой запускающего импульса.

Подобные триггеры широко используются, в вычислительной технике и всевозможных промышленных приборах, где нужно менять форму сигнала, преобразовывать прямоугольные импульсы из синусоиды колебаний и регистрировать завышение сигнала определенного порога. Стандартная схема триггера Шмитта на двух биполярных транзисторах n-p-n   приводится ниже.

Для правильного уяснения работы триггера Шмитта сперва допустим, что на входе транзистора VT1 нет сигнала. Сопротивления R1, R2 и R3, подключены к минусу и плюсу питания, и создают своеобразный делитель напряжения. По отношению к эмиттеру транзистора VT2, падение напряжения на сопротивлении R3 окажется положительным, по причине этого данный транзистор будет открыт.

Схема триггера Шмитта на биполярных транзисторах

От источника питания на коллектор транзистора VT2 через резистор R4 идет положительный потенциал. Когда транзистор открыт, ток эмиттера, протекающий через R4, создает на нем падение напряжения. Сквозь вторичную обмотку трансформатора Тр1, имеющего малое сопротивление,  потенциал на резисторе R5 оказывается между базой и эмиттером VT1 и формирует обратное смещение на переходе Б-Э. В связи с этим VT1 закрыт. Данное устойчивое состояние схемы Шмитта является одним из двух вероятных состояний.

Вследствие падения напряжения на R4 по причине протекания через него тока, потенциал коллектора VT2 будет намного ниже напряжения питания. При поступлении на вход сигнала, он не окажет никакого воздействия на устойчивость триггера Шмитта, если его амплитуда будет меньше напряжения смещения между эмиттером и базой транзистора VT1, идущего с сопротивления R5.

В том случае если входной сигнал будет по амплитуде больше этого смещения, то произойдет открытие VT1. Из-за снижения потенциала на коллекторе VT1 снижается смещение на базе VT2, и в итоге его эмиттерный ток также снизится.

Из-за этого снизится падение напряжения на сопротивлении R5, а смещение на базе VT1 увеличится и инициирует последующий рост тока через VT1. Падение напряжения на R1 также значительно повысится, что в свою очередь уменьшит смещение на базе VT2 и снизит падения напряжения на R5. Этот алгоритм будет длиться до тех пор, пока VT1 до конца не откроется, а  транзистор VT2, не закроется.

Как только ток коллектора VT2 достигнет нуля и на сопротивлении R4  начнет падать напряжение, потенциал же на его коллекторе станет увеличиваться, который пройдя через конденсатор С2 становится выходным сигналом.

Величина и форма сигнала на выходе триггера Шмитта  находятся в прямой зависимости от постоянной времени (R4+Rн)C2 и сопротивления нагрузки Rн. Устойчивое положение, которое отвечает закрытому транзистору VT2 и открытому VT1, является вторым состоянием триггера Шмитта, и оно длится, пока есть входной сигнал. И как только входной сигнал пропадет, триггер Шмитта переходит в первоначальное состояние.

Если постоянная времени (R4+Rн)С2 существенно превышает продолжительность входного сигнала, то амплитуда сигнала на выходе триггера Шмитта практически оказывается стабильной, без изменений.

Источник: "200 избранных схем электроники",  Мэндел М.

www.joyta.ru

Принцип работы триггера Шмитта на ОУ

Триггер Шмитта -  это компонент электронного устройства, функция  которого  является формирование постоянно изменяющегося сигнала на входе в серию прямоугольных импульсов на выходе. Применяется  в аналого-цифровых преобразователях, фильтрах, линиях связи.

Триггер Шмитта имеет свое отличие от других видов триггеров тем, что он имеет единственный вход и один выход и не имеет свойства памяти. Триггер Шмитта состоит из двух инверторов, имеющих положительно-обратную связь (ПОС), в результате чего состояние выхода триггера может меняться лавинообразно.

Описание работы схемы

Триггер Шмитта  это компаратор, имеющий ПОС.  В данной схеме доля выходного электрического сигнала ОУ поступает на прямой вход и устанавливает уровень, при котором схема будет переключаться.

Принципиальная схема работы триггера Шмитта на ОУ изображена ниже.

Схема работы триггера Шмитта на ОУ

ОУ подключен к двухполярному блоку питания на 5 вольт. На инверсный вход DA1 поступает синусоидный  сигнал равный амплитуде 2 В. Сопротивления R1 и R2 имеют значения 25 кОм и 10 кОм. Напряжение на прямом выводе DA1 поступает с делителя напряжения построенного на резисторах R1 и R2, который подключен к выходу ОУ.  Формула расчета для определения напряжения насыщения:

  1. Uвх1 = +U*R2/(R1+R2) = 3,5*10/35 = 1 В
  2. Uвх1 = -U*R2/(R1+R2) = -3,5*10/35 = -1 В 

Когда на выходе ОУ напряжение с положительным потенциалом насыщения – на прямом входе напряжение равно  1 вольту. Предположим, входной электрический сигнал постепенно увеличивается с нуля. Пока потенциал входного сигнала не превышает напряжения на прямом входе – схема находится в стабильном состоянии. Чуть только входной электрический сигнал превзойдет величину в  1 вольт, напряжение на входе ОУ сменит свою полярность на отрицательное напряжение  насыщения. Это поменяет напряжение на прямом входе ОУ, и оно будет равно -1 вольт.

Входной электрический сигнал постепенно будет увеличиваться до максимума, а затем начнет уменьшаться. После того как амплитуда сигнала на входе станет менее 1 вольта, то на выходе ОУ будет так же отрицательный потенциал насыщения. Как только сигнал на входе пройдет величину -1В, напряжение на выходе   поменяется и будет равным положительному потенциалу насыщения.

На графике можно наблюдать зависимость выходного напряжения триггера Шмитта от входного.

График работы триггера Шмитта на ОУ

В результате такой работы схемы шумы входного сигнала не будут влиять на выходной сигнал.

www.joyta.ru

Триггер Шмитта | HomeElectronics

Всем доброго времени суток! В прошлом посте я сказал, что рассматриваю последний логический элемент. Есть ещё один специфический логический элемент, специально рассчитанный на работу с входными аналоговыми сигналами. Такой элемент называется триггером Шмита.

Что же привело к появлению таких микросхем? Цифровые сигналы, которые проходят по линиям связи очень часто далеки от идеального импульсного сигнала, у таких импульсов фронты и срезы оказываются пологими, в результате форма импульса может стать похожей на треугольную или синусоидальную. К тому же любая ключевая схема (которыми являются логические элементы), при переключении некоторое время будет находиться в усилительном режиме, в результате чего помехи и шумы, которые накладываются на цифровой сигнал, окажутся усиленными. В результате такой цифровой сигнал с зашумлённым и пологим фронтом и срезом непригоден для переключения входов триггеров, регистров, счётчиков. Для того чтобы восстановить форму импульса цифрового сигнала и избавиться от влияния помех и начали использовать триггер Шмита.

Что же представляет собой триггер Шмита? Логические элементы со свойствами триггера Шмита имеют внутреннюю положительную обратную связь, глубина которой подобрана таким образом, чтобы получить передаточную характеристику со значительным гистерезисом. Давайте здесь остановимся поподробнее. Во-первых передаточной характеристикой называется зависимость выходного напряжения от напряжения на входе. Понятие гистерезиса довольно сложное поэтому проще всего объяснить его графически. Ниже представлены передаточные характеристики обычного инвертора и триггера Шмита.

Передаточная характеристикаПередаточные характеристики обычного инвертора (слева) и триггера Шмита (справа).

Передаточная характеристика обычного инвертора ТТЛ имеет входной порог UПОР = 1,3 В. Передаточная характеристика триггера Шмита двух пороговая. Если входное напряжение элемента триггера Шмита UВХ = 0 В (точка А), то выходное напряжение UOH = UВЫХ = 2,4 В (напряжение высокого логического уровня ТТЛ). При повышении UВХ до 1,7 В выходной сигнал скачком уменьшится (переходит от точки Б к В), где UOL = UВЫХ #gr; 0,3 В (напряжение низкого логического уровня ТТЛ). В этот момент входное напряжение становится равным напряжению срабатывания UВЫХ = UСРБ = UT+ = 1,7 В. Если входное напряжение теперь постепенно уменьшать (от точки Г), то при UВХ = 0,9 В выходное напряжение скачком перейдёт от низкого уровня к высокому (линия Д – Е). Это напряжение порога отпускания UОТП (UT-). При дальнейшем снижением UВХ до нуля возвращаемся в точку А передаточной характеристики. Таким образом, логический элемент, построенный на основе триггера Шмита, имеет пороги срабатывания и отпускания, между которыми существует зона гистерезиса UСРБ – UОТП = 800 мВ. Эта зона симметрична относительно порогового напряжения обычного элемента ТТЛ.

Наличие гистерезиса приводит к тому, что любые помехи цифрового сигнала с амплитудой, меньшей величины UСРБ – UОТП = 800 мВ, отсекаются, а любые фронты и срезы, даже самые пологие, преобразуются в крутые фронты и срезы выходного сигнала.

Обозначение триггера Шмитта

Для чёткого распознавания элементов с триггерами Шмитта, их включили в отдельную серию ТЛ цифровых микросхем. В данной серии представлены три вида триггеров Шмита, представляющие собой инверторы (ТЛ2 – 6 инверторов), элементы 2И-НЕ (ТЛ3 – 4 элемента) и элементы 4И-НЕ (ТЛ1 – 2 элемента). Графическое обозначение триггера Шмита имеет вид показанный ниже.

графическое обозначение триггеров ШмитаУсловное графическое обозначение триггеров Шмита (инвертор и 2И-НЕ): DIN (слева) и ANSI (справа).

Применение триггера Шмитта

Наиболее часто триггер Шмита применяют в качестве формирователя сигнала начального сброса и установки при включении питания схемы. Такой сигнал необходим для приведения в исходное состояние микросхем имеющих внутреннюю память (регистры счётчики, микроконтроллеры). Схема такого формирователя приведена ниже

Схема формирователя импульса начального сбросаСхема формирователя импульса начального сброса и установки

Опишем работу данной схемы. Для формирования сигнала сброса и установки используется простая RC-цепочка. Напряжение на конденсаторе нарастает медленно и в результате на выходе триггера формируется положительный импульс.

Второе частое применение триггеров Шмита – это построение генераторов импульсов. В отличие от простых инверторов схема генераторов на триггере Шмита получается проще, так как используется всего один элемент, один конденсатор и один резистор, а использование двухвходового триггера Шмита позволяет реализовать управляемый генератор, когда на управляющий вход поступает лог. 1 генерация идёт, когда лог. 0 – отсутствует.

Схема управляемого генератора на триггере ШмиттаСхема управляемого генератора на триггере Шмитта.

И наконец, последнее применение триггера Шмитта, которое мы здесь рассмотри, состоит в подавлении так называемого дребезга контактов. Дребезг контактов состоит в том, что при замыкании и размыкании любого механического контакта формируются несколько паразитных коротких импульсов, которые могут нарушить работу цифровой схемы. Триггер Шмитта с RC-цепочкой на входе позволяет устранить эффект дребезга контактов, данная схема изображена ниже.

Схема подавления дребезга контактов на триггере ШмиттаСхема подавления дребезга контактов на триггере Шмитта

Данная схема работает следующим образом, конденсатор заряжается довольно медленно, в результате чего короткие импульсы подавляются и не проходят на выход триггера Шмитта. Номинал верхнего резистора должен быть в 6 – 7 раз больше нижнего. Сопротивления выбираются порядка сотен Ом – единиц кОм. А ёмкость конденсатора зависит от того, какова продолжительность дребезга контактов.

Теория это хорошо, но теория без практики - это просто сотрясание воздуха. Перейдя по ссылке всё это можно сделать своими руками

Скажи спасибо автору нажми на кнопку социальной сети

www.electronicsblog.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта