Синтез термоядерный. Проблемы термоядерного синтеза. Термоядерная энергия этоТермоядерная энергия – Энергия термоядерной реакции синтезаХолодно или жарко в нашем мире? На первый взгляд, материя Вселенной не так уж горяча. Дышим мы прохладным воздухом, пьем холодную воду, катаемся по льду, лепим снежки. Нас не греет черное ночное небо. Чтобы согреться, приходится зажигать костры и топить печи. Между тем, подавляющая масса вещества в мире испепеляюще горяча. Те десятки градусов в ту или другую сторону от точки таяния льда (0 град Ц), в которых мы живем и к которым привыкли, — редкое исключение, крошечный уголок природы. Типичная же, наиболее распространенная температура вещества — это, как ни странно, миллионы, десятки миллионов, даже сотни миллионов градусов. До таких грандиозных температур нагреты звезды. Астрономы доказали, что именно в них сосредоточена львиная доля вещества нашего мира. Вот красноречивый пример. Солнце — ближайшая к нам звезда — раскалено в недрах до 10—13 млн. градусов. А вещества в Солнце в тысячи раз больше, чем во всех планетах солнечной системы. Что же происходит в жарких глубинах звезд? Какие процессы поддерживают там огромную температуру? Современная наука доказала: там, под ослепительным наружным покровом, непрерывно идут превращения атомных ядер, и это сопровождается колоссальным выделением энергии. Это и есть термоядерная энергия – энергия, выделяющаяся благодаря реакции термоядерного синтеза. В раскаленном веществе Солнца очень много водорода. Но не обычного газа, а водородной плазмы: она состоит не из целых атомов, а из атомных осколков—ядер и электронов. При колоссальной температуре солнечных глубин частицы водородной плазмы испытывают весьма быстрое и энергичное беспорядочное движение. Ядра при этом с разгона налетают друг на друга. Иногда столкновение бывает таким сильным, что ядра преодолевают взаимное электрическое отталкивание (они ведь все заряжены положительно), тесно сближаются и сливаются воедино. Тогда из двух ядер обычного («легкого») водорода, т. е. из двух протонов, получается ядро тяжелого водорода — дейтрон. Вместе с тем вылетают прочь отходы реакции — электрон и нейтрино. Так в результате реакции синтеза освобождается термоядерная энергия. Слияние двух протонов — маленький взрыв. Но он сопровождается не разрушением, а созиданием – созданием нового ядра, которое более сложное и тяжелое, чем исходные ядра. Этот взрыв — одна из самых сокровенных тайн природы. Вот что удивительно. Если бы мы попробовали истолковать синтез дейтрона из прото-нов, руководствуясь только классической физикой, то пришли бы к выводу, что такой синтез невозможен: слишком сильно протоны отталкиваются друг от друга. Тем не менее, на Солнце эти протоны сливаются, а значит, пробивают-таки «непробиваемую» стену электрического отталкивания. Лишь квантовая механика — наука о микрочастицах и микропроцессах — объяснила, почему это происходит. Квантовая механика выяснила очень характерную для микромира закономерность: многое из того, что в классической физике строго-настрого запрещено, в квантовой механике лишь почти запрещено, т. е. не невозможно, а только очень маловероятно. Сколько бы ни билась муха об оконное стекло, она никогда не проникнет сквозь него — так утверждает классическая физика, и утверждает совершенно верно, ибо речь идет о событии в мире больших тел, в макромире. Иначе будет в микромире. Допустим, что муха — это протон, а стекло — непробиваемый барьер электрического поля. В редчайших случаях, с какой-нибудь стомиллиардной «попытки», эта муха — протон — очутится вдруг по ту сторону стекла. И, что примечательно, стекло при этом не будет разбито, в нем не будет проткнуто никакой дырочки. Просто с ничтожной вероятностью происходит почти невероятное событие. Сущность этого явления — глубочайшая физико-философская проблема, поныне еще не решенная до конца. Ученые сходятся на том, что секрет парадокса скрыт в специфике микрочастиц: это вовсе не предметы, подобные, скажем, бильярдным шарикам, это скорее волновые вероятностные процессы, некий вид взаимодействия на самых нижних этажах всеобъемлющего здания материи. Выделение термоядерной энергии – невероятно удивительно, поскольку очень маловероятной является сама реакция синтеза. Где-то в недрах Солнца соединяются протоны. О редчайшей случайности такого синтеза можно судить по тому, что даже при температуре и плотности глубин Солнца протон должен проблуждать в среднем 14 млрд. лет, непрерывно сближаясь с другими протонами, пока не произойдет это долгожданное событие — образование дейтрона. Но протонов в глубинах Солнца бесчисленно много, и поэтому все время то тут, то там происходят «чудеса»: в крошечных микровзрывах рождается тяжелый водород. И все новые порции термоядерной энергии освобождаются, вливаясь в звездный жар светила. Но почему же при синтезе дейтронов выделяется термоядерная энергия? Казалось бы, наоборот, энергия должна поглощаться: из простого строится сложное, на сближение двух упрямо отталкивающихся протонов затрачивается работа. Да, работа затрачивается, и немалая. Пока протоны сблизятся друг с другом, они полностью затормозятся. Но если к этому моменту они окажутся друг от друга на расстоянии около 10-13 см, вступят в действие могучие силы ядерного притяжения. Протоны как бы «падают» друг на друга, захватывая друг друга в мощные «объятия». В этом «падении» и выделяется термоядерная энергия, так же как, скажем, выделяется энергия при падении метеорита на Землю. Разница в том, что, хотя ядерные силы действуют на очень малом расстоянии, они в миллиарды миллиардов раз больше сил тяготения, поэтому и энергия термоядерного синтеза колоссальна. Она с лихвой окупает работу, затраченную протонами на преодоление электрического отталкивания, и, вырываясь наружу, вливается в величайшее тепловое богатство Солнца. Одним из фундаментов физики стал сейчас эйнштейновский принцип эквивалентности массы и энергии: масса любого тела, дважды помноженная на скорость света, соответствует энергии этого тела. Поэтому изменение массы тела или системы тел должно сопровождаться либо выделением, либо поглощением энергии. Зная это, нетрудно подсчитать, сколько энергии дает термоядерный синтез дейтрона из протонов. Масса протона равна 1,007825, значит, два протона имеют массу 2,01565, но масса дей-трона равна 2,01410, т. е. меньше массы двух протонов на 0,00155 (физики эту разность называют дефектом массы). По принципу эквивалентности она соответствует энергии в 0,46 млн. электрон-вольт (электрон-вольт — энергия, которую приобретает электрон, когда он преодолевает разность потенциалов в один вольт). Вот это количество энергии и выделяется при образовании дейтрона. Слияние протонов — только начало цепочки термоядерных реакций, происходящих в Солнце. Каждый возникший дейтрон очень скоро (в среднем через 5,7 сек) присоединяет к себе еще один протон, превращаясь в ядро легкого гелия и выделяя энергию 5,5 Мэв. Затем, в среднем через миллион лет, ядра легкого гелия сливаются попарно — тут образуется конечный продукт, ядро обычного гелия. При этом выбрасываются два протона, а энергия выделяется очень значительная — 12,89 Мэв. Так, через несколько термоядерных реакций, водородные ядра преобразуются в ядра гелия — газа, который ученые сначала обнаружили на Солнце и только потом на Земле. В этой статье указан только главный цикл термоядерного синтеза; есть и другой, в котором участвуют ядра углерода, кислорода, азота. И энергия, освобождающаяся во всех этих превращениях, титанически огромна. Ежесекундно миллионы тонн вещества превращает Солнце в лучистые потоки. Но водород настолько концентрированное ядерное горючее, что за миллион лет Солнце теряет всего лишь миллионную долю своей массы! Подобные ядерные процессы могут происходить лишь при очень высокой температуре, и названы они термоядерными. Чем выше температура, тем сложнее и тяжелее синтезирующиеся ядра, тем больше выделяется энергии. И именно благодаря термоядерным реакциям так сильно нагрето звездное вещество, пылающее в вечном, неутихающем пожаре. Поняв жизнь Солнца, разгадав энергетические источники звезд, ученые наметили себе цель: зажечь такой же могучий звездный огонь и на Земле! Воссоздать в земной промышленной установке управляемый, послушный человеческой воле термоядерный процесс. Добиться этого — значит получить практически неиссякаемый источник термоядерной энергии. Ведь водородом наша планета очень богата (этот элемент входит в состав воды). Даже если научиться сжигать в термоядерных реакторах менее распространенный в природе тяжелый водород (на Солнце тяжелый водород воспламе-няется особенно легко), то и тогда каждая кружка обычной воды станет равноценна бочке бензина! Наконец, есть еще одно замечательное термоядерное горючее — так называемый сверхтяжелый водород. В природе его, правда, почти нет, но его можно получать методами современной «алхимии» — в ядерных реакторах из легкого изотопа лития, которого немало в земной коре. Смесь тяжелого водорода и сверхтяжелого будет, видимо, наиболее подходящим горючим для получения термоядерной энергетики будущего. Как же решается эта великая проблема? Сейчас главная задача ученых — устроить «звездную спичку», нагреть вещество до таких сверхвысоких температур, при которых начнется энергетически выгодная термоядерная реакция. Как рассчитали физики, в земных условиях для этого потребуется куда более высокая температура, чем в недрах Солнца. Причем термоядерное горючее надо «поджечь» без взрыва, иначе процесс выйдет из-под контроля. (Неконтролируемый, неуправляемый ядерный синтез уже осуществлен в водородной бомбе, где соединения изотопов водорода воспламеняются самым грубым способом — взрывом атомной бомбы.) Проще всего нагреть тело, передав ему тепло от другого тела, нагретого сильнее. Например, вода в чайнике закипает, черпая тепло от более горячего — огня. Специфика нашей задачи заключается в том, что здесь этот простой способ (примененный, кстати, в водородной бомбе) не годится. При передаче тепла от горячего тела к холодному, беспорядочно движущиеся атомы горячего тела как бы расталкивают атомы тела холодного. Беспорядок здесь готов, он только распространяется (ведь именно хаотическое движение частиц создает нагрев тел, причем средняя его энергия и соответствует температуре). А если у нас нет заранее данного энергичного беспорядка, которым можно было бы «заразить» холодное вещество, то надо каким-то способом заново создать этот беспорядок. Только так удастся нагреть холодное тело, не имея горячего.Вообразите, что две группы бегунов стремительно несутся навстречу. Вот они столкнулись, перемешались — какая началась толчея, неразбериха! Отличный беспорядок! Примерно так же физики пытались получить высокую температуру, сталкивая газовые струи большого давления. Действительно, из прямолинейного движения атомов получалось беспорядочное, и температура газа поднималась довольно значительно. Такая система нагрева давала до 10 тыс. градусов, в свое время это был рекорд нагрева вещества в лаборатории: температура получалась выше, чем на поверхности Солнца. Но это еще очень далеко до температуры прохождения реакции термоядерного синтеза и выделения энергии. Какими мощными ни делали газовые струи, как быстро ни сшибали их, за пределы 10 тыс. градусов не ушли. Происходило это потому, что тепловой беспорядок на редкость «заразителен»: он мгновенно убегает от области максимального нагрева, «заражая» собой газ, расширяющийся во все стороны после столкновения струй. Система грела окружающую среду, как греет печка воздух в комнате. Она не была изолирована. Вспомним снова Солнце. Этот невероятно горячий шар идеально изолирован от окружающих тел — висит в пустоте мирового пространства и ни с чем не соприкасается. Правда, Солнце отдает тепло своими лучистыми потоками, но они ничтожно малы по сравнению с полной энергией светила. Значит, если мы хотим изолировать наше искусственное солнце, его надо как-то «подвесить в пустоте», иначе его не удастся как следует разжечь. Физики нашли путь, как осуществить эту идею. Они воспользовались тем, что компоненты термоядерной реакции при сверхвысокой температуре будут, как и водородное топливо Солнца, не в твердом, не в жидком, не в газообразном, а в плазменном состоянии, поскольку при миллионах градусов, атомы неминуемо расщепятся на ядра и электроны. Но ядра и электроны, как электрически заряженные частицы, подвержены действию электрических и магнитных полей. Это-то свойство плазмы физики и использовали. Работы над управляемой термоядерной реакцией синтеза начались еще в 50-х годах прошлого века, и на сегодняшний день практически вплотную подошли к созданию энергетически выгодного и надежного термоядерного реактора, производящего, а не потребляющего энергию. Первый термоядерный реактор выглядел как закрытая трубка с электродами в торцах, из которой был тщательно откачан весь воздух. В нее вводили разреженный газ и через газ пропускали сильный электрический разряд. В газе возникало нечто похожее на молнию — разрядный шнур плазмы. Вокруг шнура, как вокруг любого тока, появляется магнитное поле, силовые линии кото-рого можно изобразить в виде колечек, охватывающих шнур. По мере нарастания тока это поле усиливается, колечки силовых линий сжимаются, стискивая шнур плазмы. В результате плазменные частицы несутся к оси шнура, и там возникает невообразимая толчея заряженных частиц. Это ведет к резкому повышению температуры. В подобных опытах температуру плазмы удалось поднять примерно до 2 млн. градусов. Так был достигнут новый рекорд наивысшей лабораторной температуры. Но и этого было мало для термоядерной реакции. К тому же разряды получались практически мгновенными, похожими на взрывы, а шнуры плазмы — неустойчивыми, да и не очень хорошо они были изолированы от стенок трубки: концы шнура непосредственно касались электродов, и те отсасывали тепло. Тогда родилась другая мысль: приготовить не горячую, а холодную плазму, собрать ее в быструю струю и впрыснуть в магнитное поле особой конфигурации, в так называемую магнитную бутылку. Там струя плазмы должна задержаться, частицы ее — запутаться, закружиться. Из прямого, упорядоченного движения частиц создастся хаос, беспорядок, а это-то и требуется, чтобы повысить температуру. Холодная плазма, кстати говоря, знакома всем: это она светится в трубках неоновых рек-лам, работает в газоразрядных и люминесцентных лампах. Холодную плазму можно в электрическом поле ускорить, собрать в достаточно быструю струю. Сложнее создать магнитную ловушку. Вот в общих чертах принцип ее устройства. Его основа — цилиндрический соленоид, витки которого наложены неравномерно: по-середине цилиндра — реже, у концов — гуще. Когда по катушке течет ток, внутри нее возникает магнитное поле, как в любом электромагните. Из-за неравномерности витков магнитное поле в катушке также неравномерно: у концов оно сильнее, чем на середине. Силовые линии идут подобно волокнам луковицы: сначала густо, потом реже, потом опять густо. Магнитное поле такой формы и есть простейшая магнитная бутылка. Усиленные краевые области этого поля называются зеркалами или пробками. Электрически заряженные частицы, попавшие в бутылку, могут задержаться в ней, словно рыба в сети. Ведь магнитное поле всегда отклоняет движущийся заряд — искривляет его траекторию. Если поле достаточно сильно, заряженная частица будет, не вылетая из бутылки, двигаться по спирали, как бы наматывая свой путь на силовую линию поля. А вблизи пробки, где силовые линии сгущены, частица не может пробиться сквозь их чащу (для этого ей нужна была бы дополнительная энергия) и поворачивает обратно; пролетев по спирали к противоположной пробке, частица опять будет отражена и снова направится внутрь бутылки и т. д. Предполагалось, что так можно уловить плазму. К сожалению, поведение плазмы в магнитной бутылке оказалось значительно сложнее предположенного. Первые же эксперименты показали, что плазма ловится в магнитную ловушку, увы, очень неохотно. Физически магнитная бутылка, или пробкотрон выглядит так. На прочном высоком фундаменте лежит камера — широкий цилиндр, охваченный крепежными поясами и облицованный текстолитовыми блоками. С обоих торцов цилиндр закрыт, к нему подведены трубы вакуумных насосов. А вокруг цилиндра проложены трубчатые витки обмотки, в них течет охлаждающая вода. Внутри камеры размещены датчики приборов, от них идет множество проводов к пульту управления. К одному из торцов камеры присоединен инжектор плазмы: из него в камеру, где заранее подготовлен вакуум, впрыскивается плазменная струя. Электрическое питание установки столь обильно, что ее обслуживает специальный энергетический сектор — с трансформаторами, выпрямителями, конденсаторными батареями. Идет эксперимент. Огромной силы электрические импульсы обрушиваются в обмотку — токи в сотни тысяч ампер. Одновременно электронное автоматическое устройство впрыскивает в камеру струю водородной плазмы. Годы кропотливой работы потратили ученые на опыты в пробкотронах. Изучали особенности плазмы, ее капризы, которые на первых порах выглядели непреодолимыми, не поддающимися никакому укрощению. Эфемерное облачко плазмы было неустойчивым и существовало миллионные доли секунды. Плазма не держалась в ловушке, касалась стенок камеры и неминуемо гибла. И все-таки опыт накапливался. Наряду с бесчисленными наблюдениями велись теоретические исследования. Предлагались новые режимы воздействия на плазму, новые структуры обмоток и магнитных полей в ловушке. И мало-помалу упорство ученых начало побеждать. В 1962 г. в Институте атомной энергии пробкотрон снабдили дополнительной продольной стабилизирующей обмоткой, и водородную плазму удалось нагреть до сверхзвездной температуры —40—50 млн. градусов. Особенно ценно то, что такая горячая плазма была задержана в ловушке на тысячные, даже на сотые доли секунды. Жизнь плазмы удлинили таким образом в сотни тысяч раз, вплотную подойдя к получению энергии термоядерного синтеза. Правда, плотность нагретой плазмы была сравнительно небольшой — 1010 частиц на 1 см3. Затем последовали новые успехи. Стремясь постичь тонкие свойства плазмы, физики далеко продвинули теоретические исследования этого своеобразного состояния вещества. На службу удалось поставить так называемые коллективные взаимодействия в плазме, т.е. взаимные влияния ее сгущений, комков, неоднородностей, в тот короткий период, когда в ней еще не произошли парные столкновения частиц. В Институте атомной энергии правели, например, такой эксперимент. В магнитную ловушку впрыснули встречные потоки холодной плазмы. В момент, когда они пронзили друг друга, на них обрушили мощный и очень короткий удар магнитного поля. Непосредственно на ядра этот удар почти не подействовал: они слишком массивны. Зато в электронных потоках тотчас нарушилась однородность, возникли вихри, «толпы» частичек. От электронов это групповое хаотическое движение тут же передалось ядрам, и их температура подскочила до десятков миллионов градусов. Так, в сравнительно небольшой лабораторной установке плазму удалось нагреть обходным путем, используя коллективные взаимодействия. При этом с пользой применили ту самую склонность к неустойчивости, которая в других аппаратах обычно разрушала плазменное облачко. Иначе поступили ученые Института ядерной физики Сибирского отделения Академии наук в Новосибирске. На плазму, пойманную пробкотроном, они обрушили такой сильный и резкий удар магнитного поля, что в плазме произошло опрокидывание ударной волны. Получилось нечто похожее на морской бурун. Примерно так же опрокидываются крутые водяные волны, образуя пенистые гребни — барашки, в которых частицы беспорядочно мечутся в разные стороны. В результате опрокидывания ударной волны температура ядер в плазме тяжелого водорода (плотностью 1013 частиц на 1 см3) поднялась до рекордной величины — 100 млн. градусов. На десятки микросекунд в установке зажглась физическая термоядерная реакция синтеза. Она заявила о себе ней-тронами, освободившимися при «звездном» синтезе ядер легкого гелия. В физической лаборатории на мгновение вспыхнула искра искусственного солнца! Однако, не смотря на то, что уже несколько десятилетий ученые разных стран зажигают в реакторах маленькие «солнца», лабораторные реакции не дают пока ни джоуля энергии, наоборот, они ее довольно жадно поглощают. Чтобы возбудить энергетически выгодный термоядерный процесс (с положительным выделением энергии), ядра в плазме тяжелого водорода (плотностью 1014—1015 частиц на 1 см3) нужно экономно нагреть до 500 миллионов и даже до миллиарда градусов и удержать в течение секунды. Эти требования варьируются: при большей плотности плазмы ее температура и время удержания могут быть уменьшены. Однако невозможно достичь цели, если, скажем, заботиться только о повышении температуры. Задача должна быть решена комплексно. Даже при исполнении всех этих требований, остаются еще и другие технические трудности. Нужно создавать гигантские (в сотни тысяч эрстед) магнитные поля, высокий вакуум в достаточном объеме (ведь термоядерное горючее в сотни миллионов раз разреженнее комнатного воздуха), получать жаропрочные, но не загрязняющие вакуум материалы для внутренних частей камер и т. п. Таким образом, энергетически выгодный реактор термоядерного синтеза – это результат работы на стыке множества наук и направлений научной мысли. Исследования проводились не только в пробкотронах. Были поставлены опыты в так называемых тороидальных камерах. Там плазма находится в кольцевой трубе, вроде полого бублика, и представляет собой как бы замкнутый виток мощного понижающего трансформатора. Раскаляется она мощным импульсом электрического тока. Есть камеры, где плазма, схваченная в магнитную ловушку, резко сжимается нарастающим магнитным полем; тогда она нагревается по тому же закону, по которому греется воздух под поршнем велосипедного насоса. Есть камеры и в форме восьмерки и другие сложные конструкции. Они тоже дают надежду получить устойчивую горячую плазму. Несмотря на огромные трудности (и принципиальные и технические), физики и инженеры уверенно продвигаются по пути к искусственному солнцу. Промышленный, управляемый термоядерный реактор будет самой замечательной энергетической установкой из всех изобретенных человеком. Научившись «сжигать воду» в искусственном солнце, мы получим источник топлива, равноценный 500 океанам, в которых вместо воды была бы нефть! Трудно даже вообразить себе, к какому бурному прогрессу приведет это индустрию, сельское хозяйство, науку. Получив изобилие термоядерной энергии, человек сможет осуществить самые дерзкие мечты, вплоть до кардинального преобразования Земли, ее природы, ее климата. Всюду, где потребуется, люди пошлют воду в пустыни, согреют холодные моря, осушат болота, обнажат запасы полезных ископаемых. Сказочное энергетическое богатство откроет новую эру в истории, эру невиданного изобилия и поистине фантастического умножения человеческого могущества. Просто о сложном – Термоядерная энергия
greensource.ru Термоядерная энергияПосмотрев на таблицу Менделеева, мы видим, что она начинается водородом, а кончается ураном. Начинается с легких элементов, кончается тяжелыми. Есть еще другой способ освобождения и использования внутриядерной энергии. Этот путь основан на преобразовании ядер легких элементов, расположенных в начале таблицы Менделеева. Только энергия, выделяющаяся при этих преобразованиях, называется не ядерной, а термоядерной. Приставка «термо» определяет способ освобождения этой энергии. «Термос» по-гречески означает тепло. Термоядерная энергия — это энергия, получаемая при помощи тепла. Оказывается, если два ядра атомов легких элементов сблизить между собой вплотную, то между ними произойдет ядерная реакция. В результате этой реакции из двух легких ядер образуется более тяжелое ядро и выделяется энергия; причем этой энергии на единицу массы выделяется значительно больше, чем при делении тяжелых ядер. Такая ядерная реакция называется реакцией синтеза (т.е. слияния), а энергия — энергией синтеза ядер. Это и есть термоядерная энергия. Для выделения заметной энергии нужно, чтобы термоядерная реакция происходила во всем объеме вещества. И чтоб разогнать все ядра вещества надо воспользоваться нагреванием. Ведь при нагревании тела скорость движения атомов (следовательно, и ядер) увеличивается. Значит, если нагреть вещество, состоящее из ядер легких элементов, до достаточно высокой температуры, то начнется термоядерная реакция. Энергии, выделяющейся при этой реакции, хватит и для поддержания реакции, и для полезного использования. А энергия выделится огромная. Если при делении одного грамма урана выделяется энергия, эквивалентная энергии, получаемой при сгорании двух с половиной тонн угля, то при синтезе одного грамма легких ядер выделится энергия, эквивалентная энергии уже десятков тонн каменного угля. Чтобы реакция пошла достаточно интенсивно нужны десятки миллионов градусов, а достигнутые в технике температуры очень малы. Они не превышают пяти-шести тысяч градусов. Но в 1950 г. двое советских ученых — академики Сахаров и Тамм — впервые предложили один из способов получения сверхвысоких температур в земных условиях. Их идея заключалась в том, чтобы через плазму пропускать электрический ток очень большой силы — в десятки тысяч ампер. Пропускать такой ток можно только импульсами длительностью в доли секунды. Ведь никакие проводники не выдержат такого тока, они сразу расплавятся. Но в момент пропускания тока под действием возникающих электродинамических сил плазма сожмется в тонкий шнур, имеющий огромную температуру. Таким образом, если плазма получена из атомов легких элементов, то можно ожидать возникновения термоядерной реакции при пропускании через нее электрического тока. Именно об этих опытах большого коллектива советских ученых и рассказал в 1956 г. в Харуэлле Игорь Васильевич Курчатов. Но неимоверные трудности стоят на пути осуществления контролируемой термоядерной реакции. Именно контролируемой, потому что неконтролируемая, взрывная термоядерная реакция происходит при взрыве водородной бомбы. Проблема использования термоядерной энергии по праву считается проблемой №1 современной науки. Ее решение позволит навсегда избавить человечество от угрозы энергетического голода. Ведь моря и океаны содержат огромные запасы тех самых легких ядер, которые необходимы для термоядерной реакции. Каким же громадным и «неисчерпаемым» источником энергии располагает человек! Заставить служить эту энергию людям — что может быть благороднее и почетнее! www.wikidocs.ru Синтез термоядерный. Проблемы термоядерного синтезаИнновационные проекты с использованием современных сверхпроводников в ближайшее время позволят осуществить управляемый термоядерный синтез – так утверждают некоторые оптимисты. Эксперты, однако, предсказывают, что практическое применение займет несколько десятилетий. Почему так сложно?Энергия термоядерного синтеза считается потенциальным источником энергии будущего. Это чистая энергия атома. Но что же она собой представляет и почему ее так сложно добиться? Для начала следует разобраться с различием между классическим делением ядра и термоядерным синтезом. Деление атома состоит в том, что радиоактивные изотопы – уран или плутоний – расщепляются и превращаются в другие высокорадиоактивные изотопы, которые затем должны быть захоронены или переработаны. Реакция термоядерного синтеза заключается в том, что два изотопа водорода – дейтерий и тритий – сливаются в единое целое, образуя неядовитый гелий и единственный нейтрон, не производя радиоактивных отходов. Проблема контроляРеакции, которые происходят на Солнце или в водородной бомбе, – это синтез термоядерный, и перед инженерами стоит грандиозная задача – как контролировать этот процесс на электростанции? Это то, над чем ученые работают начиная с 1960-х годов. Очередной экспериментальный реактор термоядерного синтеза под названием Wendelstein 7-X начал работу в северном немецком городе Грайфсвальде. Пока еще он не предназначен для создания реакции – это просто особая конструкция, которая проходит испытания (стелларатор вместо токамака). Высокоэнергетичная плазмаВсе термоядерные установки обладают общей чертой – кольцеобразной формой. В ее основе лежит идея использования мощных электромагнитов для создания сильного электромагнитного поля, имеющего форму тора – надутой велосипедной камеры. Это электромагнитное поле должно быть настолько плотным, что, когда оно нагревается в микроволновой печи до одного миллиона градусов по Цельсию, в самом центре кольца должна появиться плазма. Затем она зажигается, чтобы синтез термоядерный мог начаться. Демонстрация возможностейВ Европе в настоящее время проводится два подобных эксперимента. Одним из них является Wendelstein 7-X, который недавно сгенерировал свою первую гелиевую плазму. Другой – ITER – огромная экспериментальная установка термоядерного синтеза на юге Франции, которая все еще находится в стадии строительства и будет готова к запуску в 2023 году. Предполагается, что на ITER будут происходить настоящие ядерные реакции, правда, лишь в течение короткого периода времени и уж точно не дольше 60 минут. Этот реактор является лишь одним из многих шагов на пути к тому, чтобы на практике осуществить ядерный синтез. Термоядерный реактор: меньше и мощнееНедавно несколько конструкторов объявили о создании нового дизайна реактора. По словам группы студентов из Массачусетского технологического института, а также представителей компании – производителя вооружений «Локхид Мартин», термоядерный синтез можно осуществить в установках, которые гораздо мощнее и меньше, чем ITER, и они готовы сделать это в течение десяти лет. Идея новой конструкции заключается в использовании в электромагнитах современных высокотемпературных сверхпроводников, которые проявляют свои свойства при охлаждении жидким азотом, а не обычных, для которых необходим жидкий гелий. Новая, более гибкая технология позволит полностью изменить конструкцию реактора. Клаус Хеш, отвечающий за технологии ядерного синтеза в Технологическом институте Карлсруэ на юго-западе Германии, настроен скептически. Он поддерживает использование новых высокотемпературных сверхпроводников для новых конструкций реакторов. Но, по его словам, что-то разработать на компьютере с учетом законов физики недостаточно. Необходимо принять во внимание вызовы, которые возникают при воплощении идеи на практике. Научная фантастикаПо словам Хеша, модель студентов MIT показывает лишь возможность осуществления проекта. Но на самом деле в ней много научной фантастики. Проект предполагает, что серьезные технические проблемы термоядерного синтеза решены. Но современная наука не имеет ни малейшего представления о том, как их решить. Одной из таких проблем является идея разборных катушек. Для того чтобы попасть внутрь кольца, удерживающего плазму, в модели MIT-дизайна электромагниты могут быть разобраны. Это было бы очень полезно, потому что можно бы было иметь доступ к объектам во внутренней системе и заменять их. Но в действительности сверхпроводники выполнены из керамического материала. Сотни их должны быть переплетены изощренным способом, чтобы сформировать правильное магнитное поле. И здесь возникают более фундаментальные трудности: соединения между ними не так просты, как соединения медных кабелей. Никто еще даже не задумывался о концепциях, которые бы помогли решить подобные проблемы. Слишком горячоВысокая температура также представляет собой проблему. В сердцевине термоядерной плазмы температура достигнет около 150 миллионов градусов по Цельсию. Эта экстремальная жара остается на месте – прямо в центре ионизированного газа. Но даже вокруг нее все еще очень жарко – от 500 до 700 градусов в зоне реактора, являющейся внутренним слоем металлической трубы, в которой будет «воспроизводиться» тритий, необходимый для того, чтобы происходил ядерный синтез. Термоядерный реактор имеет еще большую проблему – так называемый выпуск мощности. Это часть системы, в которую из процесса синтеза поступает использованное топливо, в основном гелий. Первые металлические компоненты, в которые попадает горячий газ, называются «дивертор». Он может нагреваться свыше 2000 °C. Проблема дивертораЧтобы установка могла выдерживать такие температуры, инженеры пытаются использовать металлический вольфрам, применяемый в старомодных лампах накаливания. Температура плавления вольфрама около 3000 градусов. Но есть и другие ограничения. В ITER это можно сделать, потому что нагрев в ней происходит не постоянно. Предполагается, что реактор будет работать лишь 1–3 % времени. Но это не вариант для электростанции, которая должна работать в режиме 24/7. И, если кто-то утверждает, что способен построить меньший реактор с такой же мощностью, как ITER, можно уверенно сказать, что у него нет решения проблемы дивертора. Электростанция через несколько десятилетийТем не менее ученые с оптимизмом смотрят на развитие термоядерных реакторов, правда, оно будет не таким быстрым, как предсказывают некоторые энтузиасты. ITER должен показать, что управляемый термоядерный синтез на самом деле может произвести больше энергии, чем будет затрачено на нагрев плазмы. Следующим шагом будет строительство совершенно новой гибридной демонстрационной электростанции, которая бы на самом деле вырабатывала электроэнергию. Инженеры уже сейчас работают над ее дизайном. Они должны будут извлечь уроки из ITER, запуск которой запланирован на 2023 г. Принимая во внимание время, необходимое для проектирования, планирования и строительства, кажется маловероятным, что первая термоядерная электростанция будет запущена намного раньше середины XXI века. Холодный термоядерный синтез РоссиВ 2014 году независимый тест реактора E-Cat пришел к выводу, что устройство в течение 32 дней в среднем производило 2800 Вт выходной мощности при потреблении 900 Вт. Это больше, чем способна выделить любая химическая реакция. Результат говорит либо о прорыве в термоядерном синтезе, либо об откровенном мошенничестве. Отчет разочаровал скептиков, которые сомневаются в том, была ли проверка действительно независимой и предполагают возможную фальсификацию результатов тестирования. Другие занялись выяснением «секретных ингредиентов», которые позволяют осуществить термоядерный синтез Росси, чтобы воспроизвести эту технологию. Росси – мошенник?Андреа импозантен. Он издает воззвания к миру на уникальном английском в разделе комментариев своего веб-сайта, претенциозно названного «Журнал ядерной физики». Но его предыдущие неудачные попытки включали итальянский проект превращения мусора в топливо и термоэлектрический генератор. Petroldragon, проект переработки отходов в источник энергии, не удался отчасти потому, что нелегальное захоронение отходов контролируется итальянской организованной преступностью, которая возбудила против него уголовное дело о нарушении правил обращения с отходами. Также он создал термоэлектрическое устройство для Инженерного корпуса сухопутных войск США, но во время тестирования гаджет произвел лишь часть заявленной мощности. Многие не доверяют Росси, а главный редактор New Energy Times прямо назвал его уголовником, за плечами которого череда неудачных энергетических прожектов. Независимая проверкаРосси заключил контракт с американской компанией Industrial Heat на проведение годичных секретных испытаний 1-МВт установки холодного термоядерного синтеза. Устройство представляло собой транспортировочный контейнер, упакованный десятками E-Cat. Эксперимент должен был контролироваться третьей стороной, которая бы могла подтвердить, что действительно имеет место генерация тепла. Росси утверждает, что провел большую часть прошлого года, практически живя в контейнере, и наблюдал за операциями в течение более 16 ч в сутки, чтобы доказать коммерческую жизнеспособность E-Cat. Тест завершился в марте. Сторонники Росси с нетерпением ждали отчета наблюдателей, надеясь на оправдание своего героя. Но в итоге они получили судебный процесс. Судебное разбирательствоВ своем заявлении в суд Флориды Росси утверждает, что тест прошел успешно и независимый арбитр подтвердил, что реактор E-Cat производит в шесть раз больше энергии, чем потребляет. Он также утверждал, что компания Industrial Heat согласилась заплатить ему 100 млн долларов США – 11,5 млн авансом после 24-часового испытания (якобы за права лицензирования, чтобы компания могла продавать эту технологию в США) и еще 89 млн после успешного завершения расширенного испытания в течение 350 дней. Росси обвинял IH в проведении «мошеннической схемы», целью которой была кража его интеллектуальной собственности. Он также обвинил компанию в незаконном присвоении реакторов E-Cat, незаконном копировании инновационных технологий и продуктов, функциональных возможностей и конструкций и неправомерной попытке получить патент на его интеллектуальную собственность. Золотая жилаВ другом месте Росси утверждает, что на фоне одной из его демонстраций компания IH получила от инвесторов 50–60 млн долларов и еще 200 млн от Китая после воспроизведения с участием китайских должностных лиц высшего уровня. Если это правда, то на кону намного больше ста миллионов долларов. Industrial Heat отвергла эти претензии как безосновательные и собирается активно защищаться. Что еще более важно, она утверждает, что «в течение более трех лет работала над подтверждением результатов, которых якобы добился Росси со своей E-Cat-технологией, и все безуспешно». IH не верит в работоспособность E-Cat, и журнал New Energy Times не видит причин, чтобы в этом сомневаться. В июне 2011 года представитель издания посещал Италию, взял интервью у Росси и заснял демонстрацию его E-Cat. Через сутки он сообщил о своих серьезных опасениях относительно способа измерения тепловой мощности. Через 6 дней журналист выложил свое видео на YouTube. Эксперты со всего мира присылали ему анализы, которые были опубликованы в июле. Стало ясно, что это был обман. Экспериментальное подтверждениеТем не менее ряду исследователей – Александру Пархомову из Российского университета дружбы народов и Проекту памяти Мартина Флейшмана (MFPM) – удалось воспроизвести холодный термоядерный синтез Росси. Отчет MFPM назывался «Конец углеродной эры близок». Причиной такого восхищения стало обнаружение всплеска гамма-излучения, которое невозможно объяснить иначе, как термоядерной реакцией. По мнению исследователей, у Росси есть именно то, о чем он говорит. Жизнеспособный открытый рецепт холодного ядерного синтеза способен вызвать энергетическую «золотую лихорадку». Могут быть найдены альтернативные методы, которые позволят обойти патенты Росси и оставить его в стороне от многомиллиардного энергетического бизнеса. Так что, возможно, Росси предпочел бы избежать этого подтверждения. fb.ru Термоядерная энергия | Блог об энергетикеЕсли в атомной энергетике используется реакция деления тяжелых ядер, то в термоядерной энергетике используется реакция синтеза легких ядер с образованием более тяжелых. Топливом для термоядерной энергетики могут служить ядра изотопов водорода, в первую очередь тяжелого водорода — дейтерия, а также сверхтяжелого водорода — трития. В результате термоядерного синтеза образуется гелий, а высвобождается в 7-8 раз больше энергии, чем при ядерной реакции деления. Дейтерий входит в состав тяжелой воды, которая содержится в любой воде. В 1 литре природной воды его содержится около 0,04 г, но количество энергии, которое может быть получено при реакции синтеза, эквивалентно тепловой энергии, получаемой при сжигании 500 кг нефти или 700 кг высококачественного угля. Осуществить реакцию синтеза легких ядер значительно труднее, чем реакцию деления тяжелых ядер. Реакция синтеза происходит при сближении ядер на расстояние порядка 10-13 см. Ядра дейтерия несут положительный заряд и взаимно отталкиваются, следовательно, они должны обладать очень большой кинетической энергией, чтобы преодолеть электростатические силы отталкивания и сблизиться. Такие условия можно обеспечить, если нагреть вещество до астрономических температур. Выделяющаяся при слиянии ядер энергия еще выше будет поднимать температуру вещества, участвующего в реакции синтеза, возникает ускоряющаяся термоядерная реакция. Для осуществления термоядерной реакции нужно нагреть тяжелый водород-дейтерий примерно на 100 млн градусов Кельвина. При таких температурах вещество находится в состоянии плазмы. Основное препятствие в осуществлении управляемого термоядерного синтеза — удержание высокотемпературной плазмы. Одним из методов удержания плазмы является использование сильного магнитного поля, силовые линии которого обволакивают ее со всех сторон. В результате можно получить «клубок» высокотемпературной плазмы, «подвешенный» в вакууме и не взаимодействующий со стенками реактора. Принципиальная схема реактора типа «ТОКАМАК» со стационарными условиями протекания реакции синтеза показана на рис.1. Установка имеет тороидальную замкнутую камеру, надетую на ярмо трансформатора. Внутрь камеры выпускается газообразный дейтерий при сравнительно невысоком давлении. С помощью трансформатора в камере наводится ток индукции, который ионизирует газ, превращая его в плазму. Силовые линии, охватывая плазменный виток, сжимают его, а проходящий по витку плазмы ток нагревает ее. Плазма, разогретая током и сжатая магнитным полем в шнур, удерживается внутри рабочей камеры в результате того, что силовые линии магнитного поля направлены перпендикулярно току индукции и охватывают плазменный виток. Чтобы плазменный виток был устойчивым, на поверхность рабочей камеры надевают магнитные катушки, создающие сильное поле, силовые линии которого направлены параллельно току в плазме. Рис. 1. Принципиальная схема термоядерного реактора «ТОКАМАК»:1- ярмо трансформатора; 2 — магнитные катушки; 3 — рабочая камера; 4 — виток плазмы; 5 — теплоизоляция; 6 — обмотка трансформатора; 7 — кольцевая камера; 8 — парогенератор В результате взаимодействия двух магнитных полей образуется коаксиальное магнитное поле со спиральными линиями, охватывающими шнур плазмы. Энергия реакции термоядерного синтеза (около 80 %) выделяется в виде кинетической энергии образующихся нейтронов и используется для нагрева первичного теплоносителя (лития или гелия) в кольцевой камере, окружающей виток плазмы. Около 20 % общего энерговыделения составляет энергия заряженных частиц. Эту часть энергии используют для получения электроэнергии методами прямого преобразования. Воспринятая в кольцевой камере теплота передается в парогенераторе рабочему телу — воде; полученный пар второго контура, как и в двухконтурных атомных электростанциях, направляется в паровые турбины для выработки электроэнергии. Следует отметить, что синтез легких ядер в отличие от реакций деления тяжелых ядер не сопровождается образованием долгоживущих радиоактивных осколков, как в атомном реакторе. Подробнее о реакторе можно почитать на Википедии. Источник: Полещук И.З., Цирельман Н.М. Введение в теплоэнергетику: Учебное пособие пособие / Уфимский государственный авиационный технический университет. – Уфа, 2003. Поделись с друзьями
Похожееenergoworld.ru Термоядерная энергетика ВикипедияУправляемый термоядерный синтез (УТС) — синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который, в отличие от взрывного термоядерного синтеза (используемого в термоядерных взрывных устройствах), носит управляемый характер. Управляемый термоядерный синтез отличается от традиционной ядерной энергетики тем, что в последней используется реакция распада, в ходе которой из тяжёлых ядер получаются более лёгкие ядра. В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий (2H) и тритий (3H), а в более отдалённой перспективе гелий-3 (3He) и бор-11 (11B).[источник не указан 320 дней] История проблемыВпервые задачу по управляемому термоядерному синтезу в Советском Союзе сформулировал и предложил для неё некоторое конструктивное решение советский физик Олег Лаврентьев[1][2]. Кроме него важный вклад в решение проблемы внесли такие выдающиеся физики, как Андрей Сахаров и Игорь Тамм[1][2], а также Лев Арцимович, возглавлявший советскую программу по управляемому термоядерному синтезу с 1951 года[3]. Исторически вопрос управляемого термоядерного синтеза на мировом уровне возник в середине XX века. Известно, что Игорь Курчатов в 1956 году высказал предложение о сотрудничестве учёных-атомщиков разных стран в решении этой научной проблемы. Это произошло во время посещения Британского ядерного центра «Харуэлл» (англ.). Физика процессаЗависимость энергии связи нуклона от числа нуклонов в ядреАтомные ядра состоят из двух типов нуклонов — протонов и нейтронов. Их удерживает вместе так называемое сильное взаимодействие. При этом энергия связи каждого нуклона с другими зависит от общего количества нуклонов в ядре, как показано на графике. Из графика видно, что у лёгких ядер с увеличением количества нуклонов энергия связи растёт, а у тяжёлых падает. Если добавлять нуклоны в лёгкие ядра или удалять нуклоны из тяжёлых атомов, то эта разница в энергии связи будет выделяться в виде разницы между затратами на осуществление реакции и кинетической энергией высвобождающихся частиц. Кинетическая энергия (энергия движения) частиц переходит в тепловое движение атомов после соударения частиц с атомами. Таким образом ядерная энергия проявляется в виде нагрева.[источник не указан 320 дней] Изменение состава ядра называется ядерным превращением или ядерной реакцией. Ядерная реакция с увеличением количества нуклонов в ядре называется термоядерной реакцией или ядерным синтезом. Ядерная реакция с уменьшением количества нуклонов в ядре именуют ядерным распадом или делением ядра.[источник не указан 320 дней] Протоны в ядре имеют электрический заряд, а значит, испытывают кулоновское отталкивание. В ядре это отталкивание компенсируется сильным взаимодействием, удерживающим нуклоны вместе. Но сильное взаимодействие имеет радиус действия гораздо меньше кулоновского отталкивания. Поэтому для слияния двух ядер в одно требуется сначала их сблизить, преодолевая кулоновское отталкивание. Известно несколько таких способов. В недрах звёзд это гравитационные силы. В ускорителях — кинетическая энергия разогнанных ядер или элементарных частиц. В термоядерных реакторах и термоядерном оружии — энергия теплового движения ядер атомов. В наше время гравитационные силы не подконтрольны человеку. Ускорение частиц настолько энергозатратно, что не имеет никаких шансов на положительный энергобаланс. И только тепловой метод выглядит пригодным для управляемого синтеза с положительным выходом энергии.[источник не указан 320 дней] Типы реакцийРеакция синтеза заключается в следующем: два или более относительно лёгких атомных ядра в результате теплового движения сближаются настолько, что короткодействующее сильное взаимодействие, проявляющееся на таких расстояниях, начинает преобладать над силами кулоновского отталкивания между одинаково заряженными ядрами, в результате чего образуются ядра других, более тяжёлых элементов. Система нуклонов потеряет часть своей массы, равную энергии связи, и по известной формуле E=mc² при создании нового ядра освободится значительная энергия сильного взаимодействия. Атомные ядра, имеющие небольшой электрический заряд, легче свести на нужное расстояние, поэтому тяжёлые изотопы водорода являются лучшим видом топлива для управляемой реакции синтеза.[источник не указан 320 дней] Установлено, что смесь двух изотопов, дейтерия и трития, требует меньше энергии для реакции синтеза по сравнению с энергией, выделяемой во время реакции. Однако, хотя смесь дейтерия и трития (D-T) является предметом большинства исследований синтеза, она в любом случае не является единственным видом потенциального горючего. Другие смеси могут быть проще в производстве; их реакция может надёжнее контролироваться, или, что более важно, производить меньше нейтронов. Особенный интерес вызывают так называемые «безнейтронные» реакции, поскольку успешное промышленное использование такого горючего будет означать отсутствие долговременного радиоактивного загрязнения материалов и конструкции реактора, что, в свою очередь, могло бы положительно повлиять на общественное мнение и на общую стоимость эксплуатации реактора, существенно уменьшив затраты на вывод из эксплуатации и утилизацию. Проблемой остаётся то, что реакцию синтеза с использованием альтернативных видов горючего намного сложнее поддерживать, потому реакция D-T считается только необходимым первым шагом.[источник не указан 320 дней] Управляемый термоядерный синтез может использовать различные виды термоядерных реакций в зависимости от вида применяемого топлива.[источник не указан 320 дней] Реакция дейтерий + тритий (Топливо D-T)Схема реакции дейтерий-тритийРеакция, осуществимая при наиболее низкой температуре — дейтерий + тритий[5]: 12H+13H→24He+01n+17,6 MeV.{\displaystyle {}_{1}^{2}{\mbox{H}}+{}_{1}^{3}{\mbox{H}}\rightarrow {}_{2}^{4}{\mbox{He}}+{}_{0}^{1}{\mbox{n}}+17,6{\mbox{ MeV}}.}Два ядра: дейтерия и трития сливаются, с образованием ядра гелия (альфа-частица) и высокоэнергетического нейтрона. Такая реакция даёт значительный выход энергии. Недостатки — высокая цена трития, выход нежелательной нейтронной радиации.[источник не указан 320 дней] Реакция дейтерий + гелий-3Существенно сложнее, на пределе возможного, осуществить реакцию дейтерий + гелий-3 2H + 3He = 4He + p при энергетическом выходе 18,4 МэВ[5].Условия её достижения значительно сложнее. Гелий-3, кроме того, является редким и чрезвычайно дорогим изотопом. В промышленных масштабах в настоящее время не производится[уточнить]. Однако может быть получен из трития, получаемого в свою очередь на атомных электростанциях[6]; или добыт на Луне[7][8]. Сложность проведения термоядерной реакции можно характеризовать тройным произведением nTτ (плотность на температуру на время удержания). По этому параметру реакция D-3He примерно в 100 раз сложнее, чем D-T. Реакция между ядрами дейтерия (D-D, монотопливо)Также возможны реакции между ядрами дейтерия, они идут немного труднее реакции с участием гелия-3: D+D → p+T+4,032MeV.{\displaystyle \mathrm {D} +\mathrm {D} \ \rightarrow \ \mathrm {p} +\mathrm {T} +4{,}032\;\mathrm {MeV} .}D+D → n+3He+3,268MeV.{\displaystyle \mathrm {D} +\mathrm {D} \ \rightarrow \ \mathrm {n} +{}^{3}\!\,\mathrm {He} +3{,}268\;\mathrm {MeV} .}В дополнение к основной реакции в ДД-плазме также происходят: p+D → 3He+γ+5,4MeV.{\displaystyle \mathrm {p} +\mathrm {D} \ \rightarrow \ {}^{3}\!\,\mathrm {He} +\gamma +5{,}4\;\mathrm {MeV} .} p+T → 4He+γ+19,814MeV.{\displaystyle \mathrm {p} +\mathrm {T} \ \rightarrow \ {}^{4}\!\,\mathrm {He} +\gamma +19{,}814\;\mathrm {MeV} .} D+T → n+4He+17,589MeV.{\displaystyle \mathrm {D} +\mathrm {T} \ \rightarrow \ \mathrm {n} +{}^{4}\!\,\mathrm {He} +17{,}589\;\mathrm {MeV} .} D+3He → p+4He+18,353MeV.{\displaystyle \mathrm {D} +\!^{3}\mathrm {He} \ \rightarrow \ \mathrm {p} +{}^{4}\!\,\mathrm {He} +18{,}353\;\mathrm {MeV} .} 3He+3He → 2p+4He+12,86MeV.{\displaystyle {}^{3}\!\,\mathrm {He} +\!^{3}\mathrm {He} \ \rightarrow \ 2\,\mathrm {p} +\,{}^{4}\!\,\mathrm {He} +12{,}86\;\mathrm {MeV} .} T+T → 2n+4He+11,332MeV.{\displaystyle \mathrm {T} +\mathrm {T} \ \rightarrow \ 2\,\mathrm {n} +{}^{4}\!\,\mathrm {He} +11{,}332\;\mathrm {MeV} .}Эти реакции медленно протекают параллельно с реакцией дейтерий + гелий-3, а образовавшиеся в ходе них тритий и гелий-3 с большой вероятностью немедленно реагируют с дейтерием. Другие типы реакцийВозможны и некоторые другие типы реакций. Выбор топлива зависит от множества факторов — его доступности и дешевизны, энергетического выхода, лёгкости достижения требующихся для реакции термоядерного синтеза условий (в первую очередь, температуры), необходимых конструктивных характеристик реактора и т. д. «Безнейтронные» реакцииНаиболее перспективны так называемые «безнейтронные» реакции, так как порождаемый термоядерным синтезом нейтронный поток (например, в реакции дейтерий-тритий) уносит значительную часть мощности и порождает наведенную радиоактивность в конструкции реактора. Реакция дейтерий + гелий-3 является перспективной в том числе и по причине отсутствия нейтронного выхода. D+3He → p+4He+18,353MeV.{\displaystyle \mathrm {D} +\!^{3}\mathrm {He} \ \rightarrow \ \mathrm {p} +{}^{4}\!\,\mathrm {He} +18{,}353\;\mathrm {MeV} .} D+6Li → 24He+22,4MeV.{\displaystyle \mathrm {D} +\!^{6}\mathrm {Li} \ \rightarrow \ 2\,{}^{4}\!\,\mathrm {He} +22{,}4\;\mathrm {MeV} .} p+6Li →4He+3He+4,0MeV.{\displaystyle \mathrm {p} +\!^{6}\mathrm {Li} \ \rightarrow {}^{4}\!\,\mathrm {He} +{}^{3}\!\,\mathrm {He} +4{,}0\;\mathrm {MeV} .} 3He+6Li → p+24He+16,9MeV.{\displaystyle {}^{3}\!\,\mathrm {He} +\!^{6}\mathrm {Li} \ \rightarrow \ \mathrm {p} +2\,{}^{4}\!\,\mathrm {He} +16{,}9\;\mathrm {MeV} .} 3He+3He → 2p+4He+12,86MeV.{\displaystyle {}^{3}\!\,\mathrm {He} +\!^{3}\mathrm {He} \ \rightarrow \ 2\,\mathrm {p} +\,{}^{4}\!\,\mathrm {He} +12{,}86\;\mathrm {MeV} .} p+7Li → 24He+17,2MeV.{\displaystyle \mathrm {p} +\!^{7}\mathrm {Li} \ \rightarrow \ 2\,{}^{4}\!\,\mathrm {He} +17{,}2\;\mathrm {MeV} .} p+11B → 34He+8,7MeV.{\displaystyle \mathrm {p} +\!^{1}\!^{1}\mathrm {B} \ \rightarrow \ 3\,{}^{4}\!\,\mathrm {He} +8{,}7\;\mathrm {MeV} .}Реакции на лёгком водородеСтоит отметить, что протон-протонные реакции синтеза, идущие в звёздах, не рассматриваются как перспективное термоядерное горючее. Протон-протонные реакции идут через слабое взаимодействие с излучением нейтрино, и по этой причине требуют астрономических размеров реактора для сколь-либо заметного энерговыделения. p + p → ²D + e+ + νe + 0.4 МэвУсловияЯдерная реакция лития-6 с дейтерием 6Li(d,α)αУправляемый термоядерный синтез возможен при одновременном выполнении двух условий:
где n — плотность высокотемпературной плазмы, τ — время удержания плазмы в системе. От значения этих двух критериев в основном зависит скорость протекания той или иной термоядерной реакции. Управляемый термоядерный синтез пока не осуществлён в промышленных масштабах. Наиболее трудная задача, стоящая на пути осуществления управляемого термоядерного синтеза, заключается в изоляции плазмы от стенок реактора[9]. Строительство международного экспериментального термоядерного реактора (ITER) находится в начальной стадии. Конструкции реакторовТокамак (ТОроидальная КАмера с МАгнитными Катушками) — тороидальная установка для магнитного удержания плазмы. Плазма удерживается не стенками камеры, которые не способны выдержать её температуру, а специально создаваемым магнитным полем. Особенностью токамака является использование электрического тока, протекающего через плазму для создания тороидального поля, необходимого для равновесия плазмы.Существуют две принципиальные схемы осуществления управляемого термоядерного синтеза, разработки которых продолжаются в настоящее время (2017):
Первый вид термоядерных реакторов намного лучше разработан и изучен, чем второй. В ядерной физике, при исследованиях термоядерного синтеза, для удержания плазмы в некотором объёме используется магнитная ловушка — устройство, удерживающее плазму от контакта с элементами термоядерного реактора. Магнитная ловушка используется в первую очередь как теплоизолятор. Принцип удержания плазмы основан на взаимодействии заряженных частиц с магнитным полем, а именно на спиральном вращении заряженных частиц вдоль силовых линий магнитного поля. Однако намагниченная плазма очень нестабильна. В результате столкновений заряженные частицы стремятся покинуть магнитное поле. Поэтому для создания эффективной магнитной ловушки используются мощные электромагниты, потребляющее огромное количество энергии или применяются сверхпроводники.[источник не указан 2828 дней] Радиационная безопасностьТермоядерный реактор намного безопаснее ядерного реактора в радиационном отношении. Прежде всего, количество находящихся в нём радиоактивных веществ сравнительно невелико. Энергия, которая может выделиться в результате какой-либо аварии, тоже мала и не может привести к разрушению реактора. При этом в конструкции реактора есть несколько естественных барьеров, препятствующих распространению радиоактивных веществ. Например, вакуумная камера и оболочка криостата должны быть герметичными, иначе реактор просто не сможет работать. Тем не менее, при проектировании ITER большое внимание уделялось радиационной безопасности как при нормальной эксплуатации, так и во время возможных аварий. Есть несколько источников возможного радиоактивного загрязнения:
Для того, чтобы предотвратить распространение трития и пыли, если они выйдут за пределы вакуумной камеры и криостата, необходима специальная система вентиляции, которая должна поддерживать в здании реактора пониженное давление. Поэтому из здания не будет утечек воздуха, кроме как через фильтры вентиляции. При строительстве реактора, например ITER, где только возможно, будут применяться материалы, уже испытанные в ядерной энергетике. Благодаря этому наведённая радиоактивность будет сравнительно небольшой. В частности, даже в случае отказа систем охлаждения естественной конвекции будет достаточно для охлаждения вакуумной камеры и других элементов конструкции. Оценки показывают, что даже в случае аварии радиоактивные выбросы не будут представлять опасности для населения и не вызовут необходимости эвакуации. Цикл топливаРеакторы первого поколения будут, вероятнее всего, работать на смеси дейтерия и трития. Нейтроны, которые появляются в процессе реакции, поглотятся защитой реактора, а выделяющееся тепло будет использоваться для нагревания теплоносителя в теплообменнике, и эта энергия, в свою очередь, будет использоваться для вращения генератора. 36Li + 01n → 13T + 24He{\displaystyle {}_{3}^{6}\mathrm {Li} \ +\ _{0}^{1}\mathrm {n} \ \rightarrow \ _{1}^{3}\mathrm {T} \ +\ _{2}^{4}\mathrm {He} }.37Li + 01n → 13T + 24He+ 01n{\displaystyle {}_{3}^{7}\mathrm {Li} \ +\ _{0}^{1}\mathrm {n} \ \rightarrow \ _{1}^{3}\mathrm {T} \ +\ _{2}^{4}\mathrm {He} +\ _{0}^{1}\mathrm {n} }.Реакция с 6Li является экзотермической, обеспечивая получение небольшой энергии для реактора. Реакция с 7Li является эндотермической — но не потребляет нейтронов[11]. По крайней мере, некоторые реакции 7Li необходимы для замены нейтронов, потерянных в реакции с другими элементами. Большинство конструкций реактора используют естественные смеси изотопов лития. Это топливо имеет ряд недостатков:
Существуют, в теории, альтернативные виды топлива, которые лишены указанных недостатков. Но их использованию препятствует фундаментальное физическое ограничение. Чтобы получить достаточное количество энергии из реакции синтеза, необходимо удерживать достаточно плотную плазму при температуре синтеза (108 K) на протяжении определённого времени. Этот фундаментальный аспект синтеза описывается произведением плотности плазмы n на время содержания нагретой плазмы τ, что требуется для достижения точки равновесия. Произведение nτ зависит от типа горючего и является функцией температуры плазмы. Из всех видов горючего дейтерий-тритиевая смесь требует самого низкого значения nτ, по меньшей мере на порядок, и самую низкую температуру реакции, по меньшей мере в 5 раз. Таким образом, реакция D-T является необходимым первым шагом, однако использование других видов горючего остаётся важной целью исследований.[источник не указан 2828 дней] Реакция синтеза в качестве промышленного источника электроэнергииЭнергия синтеза рассматривается многими исследователями в качестве «естественного» источника энергии в долгосрочной перспективе. Сторонники коммерческого использования термоядерных реакторов для производства электроэнергии приводят следующие аргументы в их пользу:
Стоимость электроэнергии в сравнении с традиционными источникамиКритики указывают, что вопрос о рентабельности ядерного синтеза в производстве электроэнергии в общих целях остаётся открытым. В том же исследовании, проведённом по заказу Бюро науки и техники британского парламента, указывается, что себестоимость производства электроэнергии с использованием термоядерного реактора будет, вероятно, в верхней части спектра стоимости традиционных источников энергии. Много будет зависеть от доступной в будущем технологии, структуры и регулирования рынка. Стоимость электроэнергии напрямую зависит от эффективности использования, длительности эксплуатации и стоимости утилизации реактора[16]. Доступность коммерческой энергии ядерного синтезаНесмотря на распространённый оптимизм (с начала первых исследований 1950-х годов), существенные препятствия между сегодняшним пониманием процессов ядерного синтеза, технологическими возможностями и практическим использованием ядерного синтеза до сих пор не преодолены. Неясным является даже то, насколько может быть рентабельным производство электроэнергии с использованием термоядерного синтеза. Хотя наблюдается постоянный прогресс в исследованиях, исследователи то и дело сталкиваются с новыми проблемами. Например, проблемой является разработка материала, способного выдержать нейтронную бомбардировку, которая, как оценивается, должна быть в 100 раз интенсивнее, чем в традиционных ядерных реакторах. Тяжесть проблемы усугубляется тем, что сечение взаимодействия нейтронов с ядрами с ростом энергии перестаёт зависеть от числа протонов и нейтронов и стремится к сечению атомного ядра — и для нейтронов энергии 14 МэВ просто не существует изотопа с достаточно малым сечением взаимодействия. Это обуславливает необходимость очень частой замены конструкций D-T- и D-D-реактора и снижает его рентабельность настолько, что стоимость конструкций реакторов из современных материалов для этих двух типов оказывается больше стоимости произведённой на них энергии. Решения возможны трёх типов[источник не указан 2828 дней]:
Побочные реакции D-D (3 %) при синтезе D-He осложняют изготовление рентабельных конструкций для реактора, хотя они возможны на современном технологическом уровне. Различают следующие фазы исследований:
Следующим шагом в исследованиях должен стать Международный термоядерный экспериментальный реактор (International Thermonuclear Experimental Reactor, ITER). На этом реакторе планируется провести исследование поведения высокотемпературной плазмы (пылающая плазма с Q ~ 30) и конструктивных материалов для промышленного реактора. Окончательной фазой исследований станет DEMO: прототип промышленного реактора, на котором будет достигнуто воспламенение, и продемонстрирована практическая пригодность новых материалов. Самые оптимистичные прогнозы завершения фазы DEMO: 30 лет. Вслед за DEMO может начаться проектирование и строительство коммерческих термоядерных реакторов (условно называются ТЯЭС — термоядерные электростанции). Строительство ТЯЭС может начаться не раньше 2045 года.[17] Существующие токамакиВсего в мире было построено около 300 токамаков. Ниже перечислены наиболее крупные из них.
См. такжеПримечания
Литератураwikiredia.ru Получение термоядерной энергии синтезом в реакторе легких элементовКогда атом расщепляется на две части, либо путем естественного распада, либо при возбуждении он высвобождает энергию. Этот процесс известен как ядерное деление обладающее большим потенциалом и потребление энергии такого типа сейчас в мире относительно велико. Ядерное деление или распад с выделением энергии имеет ряд связанных проблем в области безопасности, охраны окружающей среды и политики, которые могут препятствовать использованию атомной энергии. Существует и термоядерная энергия выделяемая при помощи синтеза. Термоядерный синтез — процесс соединения в реакторе легких ядер в большие с помощью теплового метода с положительным выходом энергии. Определение деленияАтом содержит протоны и нейтроны в своем центральном ядре. При делении ядро расщепляется либо путем радиоактивного распада, либо из-за того, что оно подверглось бомбардировке другими субатомными частицами, известными как нейтрино. Полученные части имеют меньшую комбинированную массу, чем исходное ядро, при этом недостающая масса превращается в ядерную энергию. Контролируемое деление происходит, когда очень легкий нейтрино бомбардирует ядро атома, разбивая его на два меньших, похожих по размеру ядра. Разрушение высвобождает значительное количество энергии — в 200 раз больше энергии нейтронов, которые начали процедуру — а также высвобождает по крайней мере еще два нейтрино. Контролируемые реакции такого рода используются для высвобождения энергии на атомных электростанциях. Неконтролируемые реакции используются в ядерном оружии. Радиоактивное деление, где центр тяжелого элемента самопроизвольно испускает заряженную частицу, когда распадается на меньшее ядро, происходит только с тяжелыми элементами. Разделение отличается от процесса слияния, когда два ядра соединяются друг с другом, а не разделяются друг от друга. Слияние под воздействием температуры — термоядерный синтез. Открытие атомной энергииОтто Хан В 1938 году немецкие физики Отто Хан и Фриц Штрассман бомбардировали атом урана нейтронами в попытке образовать тяжелые элементы. Но ядро урана распалось на более лёгкие элементы барий и криптон, что значительно меньше, чем уран. Ученые озадачились неожиданными результатами так как открыли расщепление ядра. Австрийский физик Лиза Мейтнер, бежавшая в Швецию после вторжения Гитлера в ее страну, поняла, что расщепление ядра также освобождает энергию. Работая над этой проблемой, она установила, что деление дает минимум два нейтрона. В конечном счете, другие физики поняли, что каждый вновь освобожденный нейтрон может продолжать вызывать две отдельные реакции, каждая из которых может вызвать по крайней мере еще. Один удар может запустить цепную реакцию, управляя выпуском еще большей энергии. Энергия и разрушениеВ интеллектуальной цепной реакции ученые начали реализовывать возможности, существующие в новом открытии. В письме президенту США Франклину Рузвельту в начале Второй мировой войны, подготовленном венгерским физиком Лео Силардом и подписанном Альбертом Эйнштейном, отмечалось, что такие исследования могли быть использованы для создания бомбы эпических масштабов, и рассматривалась идея о том, что немцы могли достоверно изготовить и использовать такое оружие. Рузвельт выделил деньги на американские исследования и в 1941 году было образовано Управление научных исследований и разработок с целью применения исследований для национальной обороны. В 1943 году армейская корпорация инженеров взяла на себя исследования по созданию ядерного оружия. Известный как «Манхэттенский проект», сверхсекретные усилия привели к образованию первой атомной бомбы в июле 1945 года. Атомное оружие было использовано в рамках военного удара по городам Хиросима и Нагасаки в Японии. С тех пор ядерные исследования считаются чрезвычайно чувствительными в политическом равновесии. Чаще всего деление используется для генерации энергии на АЭС. Однако процесс создает значительное количество ядерных отходов, которые могут быть опасными для людей и окружающей среды. В то же время люди часто опасаются опасностей, которые могут возникнуть у атомных станций и не хотят, чтобы они находились на их территории. Такие вопросы означают, что ядерная энергия не столь популярна, как более традиционные методы получения энергии, такие как использование ископаемых видов топлива. Международный термоядерный реакторСтроительство международного термоядерного реактора Первый в мире атомный международный термоядерный реактор в настоящее время достиг 50-процентного завершения и по последней информации будет готов к 2025 году. Эта термоядерная электростанция строится на юге Франции. Управляемый термоядерный синтез не имеет военного применения поэтому привлекаются ученые многих стран. Когда он заработает в экспериментальном термоядерном реакторе будет циркулировать плазма, что в 10 раз жарче, чем солнце в межзвездном пространстве. Основная цель заставить атомы водорода генерировать в 10 раз больше энергии к 2030-м годам. В конечном счете термоядерная энергия призвана доказать, что сила слияния может генерироваться в коммерческих масштабах и является устойчивой, обильной, безопасной и чистой. Концептуальный проектТермоядерный синтез, та же реакция, которая происходит в центре Солнца, соединяются атомные ядра, чтобы сформировать более тяжелые ядра. Термоядерный синтез генерирует гораздо больше поток энергии, чем сжигание ископаемого топлива. Например, в количестве атомов водорода размером с ананас находится столько же энергии, сколько в 10 000 тонн угля, в соответствии с заявлением по проекту международного термоядерного реактора. В отличие от ядерного деления которое разбивает большие атомы на более мелкие этот термоядерный реактор не будет производить высокий уровень радиоактивных отходов. И в отличие от установок по производству ископаемого топлива, термоядерная энергия слияния не генерирует парниковых газов, углекислого газа или других загрязнителей. Ядерное деление В термоядерном реакторе выделяется энергия при синтезе лёгких ядер (водорода, гелия и лития). Чтоб два ядра водорода (на практике — дейтерия и/или трития, то есть изотопов водорода) сошлись на достаточно близкое расстояние, чтобы преодолеть кулоновское отталкивание одноименно заряженных ядер, необходимо создать либо огромное давление, либо крайне высокую температуру. В термоядерном реакторе нет ничего самопроизвольного, поэтому он безопаснее. Любое неконтролируемое повреждение и исчезают условия, необходимые для термоядерного синтеза. Термоядерный синтез Атомный термоядерный реактор использует сверхпроводящие магниты для плавления атомов водорода и получения большого количества тепла. Будущие атомные термоядерные электростанции могут затем использовать эту теплоту для привода турбин и выработки электроэнергии. Экспериментальный реактор не будет использовать обычные атомы водорода, ядра которых состоят из одного протона. Вместо этого он будет взрывать дейтерий, ядра которого имеют один протон и один нейтрон, с тритием, ядра которых имеют один протон и два нейтрона. Дейтерий легко извлекается из морской воды, а тритий будет сгенерирован внутри термоядерного реактора. Поставки этих видов топлива достаточно велики, достаточно на миллионы лет при нынешнем глобальном потреблении энергии. И в отличие от реакторов деления, термоядерное синтезирование является очень безопасным: если реакции термоядерного синтеза нарушаются в пределах завода по термоядерному синтезу, термоядерные реакторы просто отключаются безопасно и без необходимости внешней помощи, отметил проект ITER. Теоретически, плавильные установки также используют только несколько граммов топлива одновременно, поэтому нет возможности аварии расплава. Проблема управляемых термоядерных реакцийХотя энергия слияния имеет много потенциальных преимуществ, она оказалась чрезвычайно трудной для достижения на Земле. Атомные ядра требуют огромного количества тепла и давления, прежде чем они объединятся. Чтобы преодолеть эту огромную проблему необходимо нагревать водород примерно до 150 миллионов градусов по Цельсию что, в 10 раз жарче, чем ядро Солнца. Эта перегретая плазма водорода будет ограничена и распространяется внутри в форме под названием токамак, который находится в окружении гигантских сверхпроводящих магнитов, которые управляют электрически заряженной плазмой. Для того, чтобы сверхпроводящие магниты функционировали, их необходимо охлаждать до минус 269 градусов C, также холодно как и в межзвездном пространстве. Промышленные объекты по всему миру производят 10 миллионов комплектующих для реактора. Реактор часто упоминается как самое сложное инженерное сооружение. Например, магниты высотой более 17 метров должны быть установлены вместе с погрешностью менее 1 миллиметра. Охлаждение 10 000 тонн сверхпроводящего материала магнита до минус 269 градусов беспрецедентно по масштабу. ИТЭР международный термоядерный экспериментальный реакторНаучное партнерство из 35 стран строит ИТЭР на юге Франции. Все члены разделяют технологии и они получают равный доступ к интеллектуальной собственности и инновациям которые применяются. Идея научного партнерства по строительству термоядерного завода была впервые задумана на Женевском саммите 1985 года между Рональдом Рейганом и Михаилом Горбачевым. Проект ИТЭР начался в 2007 году, и изначально должен быть завершиться в 10 лет за 5,6 миллиарда долларов. Однако проект более десяти лет отстает от графика, и его сметная стоимость взлетела примерно до 22 миллиардов долларов. Риски ИТЭРВ настоящее время ИТЭР находится на полпути к своей первоначальной цели циркуляции плазмы. Разработчики постоянно работают над прогнозированием и смягчением рисков, которые могут привести к дополнительным задержкам или затратам. Конечной целью, конечно, является не просто циркулирующая плазма, но и плавление дейтерия и трития для создания «горящей» плазмы, которая генерирует значительно больше энергии, чем поступает в нее. Токамак ИТЭР должен генерировать 500 мегаватт электроэнергии, в то время как коммерческие термоядерные установки будут размещать более крупные реакторы, чтобы генерировать от 10 до 15 раз больше энергии. Согласно планам, 2000-мегаваттный термоядерный завод поставит 2 миллиона домов электричеством.. Если проект окажется успешным, ученые ИТЭР предсказывают, что термоядерные электростанции могут начать выходить в эксплуатацию уже к 2040 году по производству 2 гигаватт и более. Капитальные затраты на строительство АЭС должны быть аналогичны капитальным затратам нынешних АЭС ― около 5 миллиардов долларов за гигаватт. В то же время термоядерные электростанции просто используют дейтерий и тритий, и поэтому избегают «затрат на добычу и обогащение урана, или затрат на уход за радиоактивными отходами и их утилизацию. Строительство атомной станции синтеза стоит больше, чем строительство станции ископаемого топлива. Цены на ископаемое топливо очень высоки, а расходы на топливо для синтеза незначительны, так что в течение срока службы электростанции расходы будут незначительны. В то же время ископаемое топливо обходится дорого не только из-за финансовых значений. Огромные затраты на ископаемое топливо связаны с воздействием на окружающую среду, будь то из-за добычи полезных ископаемых, загрязнения окружающей среды или выброса парниковых газов. Синтез углерода — бесплатен. beelead.com Термоядерная энергия | Itera викиК середине века на сцене появится новый игрок, способный резко изменить правила игры. Речь идет об энергии синтеза, или термоядерной энергии. К тому времени это техническое решение, по всей видимости, станет самым конкурентоспособным и, возможно, позволит решить проблему энергии навсегда. Если на атомных станциях энергия (и большое количество радиоактивных отходов) получается за счет расщепления ядер атомов урана, то термоядерный синтез основан на слиянии атомов водорода. При этом выделяется огромное количество тепла (а значит, энергии) и очень мало отходов. В отличие от распада, синтез представляет собой имитацию процессов, протекающих в глубинах Солнца. Энергия, скрытая в глубине атомов водорода, обеспечивает существование Вселенной. Энергия синтеза зажигает Солнце и освещает небеса. В ней заключена главная тайна звезд. Всякий, кто сумеет обуздать термоядерный синтез, получит вечный источник неограниченной энергии. А топливо для термоядерных станций можно добывать из обычной морской воды. Термоядерный синтез дает в 10 млн раз больше энергии на единицу веса, чем бензин, и в обычном стакане воды содержится столько же энергии, сколько в 500 000 баррелей нефти. Именно синтез (а не распад) использовала природа для обеспечения нашей Вселенной энергией. При образовании звезд газовый шар, богатый водородом, постепенно сжимается под действием гравитации, одновременно разогреваясь до огромных температур. Когда температура газа достигает порядка 50 млн градусов (конкретная цифра меняется в зависимости от условий), ядра водорода внутри шара, сталкиваясь между собой, начинают сливаться с образованием ядер гелия. При этом высвобождается громадное количество энергии, и газ вспыхивает. (Если говорить точнее, сжатие должно обеспечить выполнение так называемого критерия Лоусона, который требует, чтобы водород был сжат до определенной плотности при определенной температуре на определенное время. Если все три условия — плотность, температура и время — выполнены, возникает реакция ядерного синтеза. Результатом может быть водородная бомба, звезда или ядерный синтез в реакторе.) Итак, есть ключевое условие: для высвобождения космических количеств энергии необходимо нагреть и сжать водород до определенной степени. Но до сих пор все попытки обуздать эту космическую мощь терпели неудачу. Оказалось, что нагреть водород до десятков миллионов градусов, при которых протоны начнут объединяться в ядра гелия и выделять энергию, крайне трудно. Более того, общество критически относится ко всем обещаниям такого рода — ведь каждые двадцать лет ученые заявляют, что через двадцать лет термоядерная энергия будет освоена. На самом же деле сейчас, после полувека сверхоптимистических обещаний, физики все больше убеждаются в том, что управляемый термояд действительно на подходе и первые экспериментальные реакторы могут быть созданы уже к 2030 г. Вполне возможно, что к середине века появятся и коммерческие станции. Надо отметить, что общественность имеет полное право скептически относиться к термоядерному синтезу — слишком много в прошлом было хвастовства, обмана и просто неудач в этой области. В 1951 г., когда холодная война была в полном разгаре и разработка водородной бомбы шла бешеными темпами, президент Аргентины Хуан Перон объявил с большой помпой, что ученые его страны совершили прорыв и покорили энергию солнца. В средствах массовой информации поднялся страшный шум. Заявление казалось невероятным, но крупнейшие газеты мира, включая The New York Times, помещали его на первых полосах. Аргентина, хвастал Перон, совершила великое научное открытие там, где потерпели неудачу сверхдержавы. Неизвестный немецкий ученый Рональд Рихтер (Ronald Richter) убедил Перона профинансировать его «термотрон» и пообещал взамен неограниченное количество энергии и вечную славу Аргентине. Американское научное сообщество, все еще лихорадочно работавшее над созданием водородной бомбы и мечтавшее успеть раньше русских, объявило заявление Перона чепухой. Ученый-атомщик Ральф Лэпп (Ralph Lapp) сказал тогда: «Я знаю, какой еще материал используют аргентинцы. Это чушь». Другого ученого-атомщика, Дэвида Лилиенталя (David Lilienthal), спросили, существует ли хоть «самый крохотный шанс» на то, что аргентинцы могут оказаться правы. Он ответил: «Меньше, чем вы сказали». Под таким давлением Перон уперся и стоял на своем; он намекал, что сверхдержавы просто завидуют Аргентине, которая сумела всех обойти. Момент истины наступил год спустя, когда представители Перона побывали в лаборатории Рихтера. Вообще, когда со всех сторон посыпались обвинения и вопросы, Рихтер повел себя странно; чем дальше, тем нелепее и беспорядочнее становились его поступки. Перед прибытием инспекторов он подорвал дверь своей лаборатории при помощи кислородных баллонов и написал на листе бумаги слова «атомная энергия». Он заказал порох и собирался поместить его в реактор. Создавалось впечатление, что ученый сошел с ума. Когда инспекторы поместили рядом со «счетчиками излучения» Рихтера кусочек радия, ничего не произошло; очевидно, его оборудование было просто подделкой. Позже Рихтер был арестован. Но самый знаменитый случай связан с именами Стэнли Понса (Stanley Pons) и Мартина Флейшманна (Martin Fleischmann), двух известных и уважаемых химиков из Университета Юты, которые в 1989 г. объявили об открытии так называемого «холодного синтеза», т. е. реакции ядерного синтеза, протекающей при комнатной температуре. Ученые утверждали, что поместили в воду металлический палладий, который затем каким-то волшебным образом сжал атомы водорода до такой степени, что они слились и образовали гелий. Энергия солнца высвободилась практически на лабораторном столе. Сообщение вызвало настоящий шок. Едва ли не все газеты мира поместили это открытие на первую полосу. Журналисты заговорили о конце энергетического кризиса и начале новой эры, эры неограниченной энергии. Штат Юта немедленно провел закон и выделил 5 млн долларов на создание Национального института холодного синтеза. Даже японские автопроизводители поспешили пожертвовать миллионы долларов на исследования в этой новой, но невероятно перспективной области. Вокруг холодного синтеза начали собираться последователи, мгновенно уверовавшие в него; образовалось даже что-то вроде секты. В отличие от Рихтера, Понс и Флейшманн пользовались уважением в ученой среде и рады были поделиться своими результатами. Они предъявили оборудование и полученные данные, чтобы все желающие могли увидеть их воочию и убедиться. Но затем ситуация осложнилась. Ученые пользовались настолько простым оборудованием, что повторить их опыт могла любая лаборатория мира. Естественно, желающих своими глазами увидеть поразительный результат хватало. Увы, большинству групп не удалось зарегистрировать какого бы то ни было выделения дополнительной энергии, и холодный синтез был объявлен тупиковым направлением. Однако забыть об этой истории тоже не удавалось, поскольку время от времени появлялись новые сообщения о том, что какие-то группы повторили эксперимент успешно. Наконец вмешалось физическое сообщество. Физики проанализировали уравнения Понса и Флейшманна и сделали вывод, что они некорректны. Во-первых, если утверждения ученых верны и в ходе эксперимента действительно происходило то, о чем идет речь, из сосуда с водой, в котором происходил синтез, должен был вылететь обжигающий поток нейтронов. (В типичной реакции синтеза два ядра водорода сливаются в ядро гелия, выделяя при этом энергию и нейтрон.) Сам факт, что ученые остались живы, означал, что никакого ядерного синтеза в эксперименте не было; если бы он происходил, они должны были умереть от радиационных ожогов. Во-вторых, скорее всего, Понс и Флейшманн столкнулись с какой-то химической, а не термоядерной реакцией. И наконец, заключили физики, металлический палладий не в состоянии сблизить атомы водорода в достаточной степени, чтобы вызвать слияние. Это означало бы нарушение квантовой теории. Несмотря ни на что, споры о холодном синтезе продолжаются по сей день. Время от времени появляются новые сообщения о том, что кому-то удалось получить холодный синтез. Проблема в том, что никому не удается воспроизвести такой результат надежно и по первому требованию. В конце концов, какой смысл делать автомобильный двигатель, если он будет работать от случая к случаю? Наука основывается на воспроизводимых, проверяемых и опровержимых результатах, которые можно получить в любой момент. ru.itera.wikia.com |