Как собрать солнечную батарею своими руками. Солнечный элемент своими рукамиСолнечный элемент своими руками - Автономный домСолнечные элементы своими руками.У радиоконструктора всегда можно найти старые ненужные диоды и транзисторы от радиоприемников и телевизоров. В умелых руках это – богатство, которому можно найти дельное применение. Например, сделать полупроводниковую солнечную батарею своими руками для питания в походных условиях транзисторного радиоприемника. Как известно, при освещении светом полупроводник становится источником электрического тока – фотоэлементом. Этим свойством мы и воспользуемся. Сила тока и электродвижущая сила такого фотоэлемента зависят от материала полупроводника, величины его поверхности и освещенности. Но чтобы превратить диод или транзистор в фотоэлемент, нужно добраться до полупроводникового кристалла, а, говоря точнее, его нужно вскрыть. Как это сделать своими руками? Расскажем чуть позже, а пока загляните в таблицу, где приведены параметры самодельных фотоэлементов. Все значения получены при освещении лампой мощностью 60 Вт на расстоянии 170 мм , что примерно соответствует интенсивности солнечного света в погожий осенний день. Как видно из таблицы, энергия, вырабатываемая одним фотоэлементом, очень мала, поэтому их объединяют в батареи. Чтобы увеличить ток, отдаваемый во внешнюю цепь, одинаковые фотоэлементы соединяют последовательно. Но наилучших результатов можно добиться при смешанном соединении, когда фотобатарею собирают из последовательно соединенных групп, каждая из которых составляется из одинаковых параллельно соединенных элементов (рис. 3). Предварительно подготовленные группы диодов собирают на пластине из гетинакса, органического стекла или текстолита, например, так, как показано на рисунке 4. Между собой элементы соединяются тонкими лужеными медными проводами. Подходящие к кристаллу выводы, лучше не паять, так как при этом от высокой температуры можно повредить полупроводниковый кристалл. Пластину с фотоэлементом поместите в прочный корпус с прозрачной верхней крышкой. Оба вывода подпаяйте к разъему – к нему будете подключать шнур от радиоприемника. Солнечная фотобатарея из 20 диодов КД202 (пять групп по четыре параллельно соединенных фотоэлемента) на солнце генерирует напряжение до 2,1 В при токе до 0,8 мА. Этого вполне достаточно для того, чтобы питать радиоприемник на одном-двух транзисторах. Как же превратить диоды и транзисторы в фотоэлементы. Приготовьте тиски, бокорезы, плоскогубцы, острый нож, небольшой молоток, паяльник, оловянно- свинцовый припой ПОС-60, канифоль, пинцет, тестер или микроамперметр на 50-300 мкА и батарейку на 4,5 В. Диоды Д7, Д226, Д237 и другие в похожих корпусах следует разбирать так. Сначала отрежьте бокорезами выводы по линиям А и Б (рис.1). Смятую при этом трубочку В аккуратно расправьте, чтобы освободить вывод Г. Затем диод зажмите в тисках за фланец. К сварному шву приложить острый нож и, несильно ударив по тыльной стороне ножа, удалите крышку. Следите за тем, чтобы лезвие ножа не проходило глубоко вовнутрь – иначе можно повредить кристалл. Вывод Д очистите от краски – фотоэлемент готов. У диодов КД202 (а также Д214, Д215, Д242-Д247) плоскогубцами откусите фланец А (рис.2) и отрежьте вывод Б. Как и в предыдущем случае, расправьте смятую трубку В, освободите гибкий вывод Г. Солнечные элементы своими руками: futureenergy Originally published at ВИЭ своими руками . Please leave any comments there. У радиоконструктора всегда можно найти старые ненужные диоды и транзисторы от радиоприемников и телевизоров. В умелых руках это – богатство, которому можно найти дельное применение. Например, сделать полупроводниковую…avtonomny-dom.ru Солнечные батареи своими руками: расчет и выбор солнечных элементовСолнечные батареи редко рассматриваются в качестве единственного источника электроэнергии, тем не менее, целесообразность в их установке есть. Так, в безоблачную погоду правильно рассчитанная автономная система сможет обеспечивать электроэнергией подключенные к ней электроприборы практически круглые сутки. Впрочем, грамотно скомплектованные солнечные панели, аккумуляторы и вспомогательные устройства даже в пасмурный зимний день позволят значительно снизить затраты на оплату электроэнергии по счетчику. Что такое солнечная батарея Солнечная батарея (СБ) представляет собой несколько фотоэлектрических модулей, объединенных в одно устройство с помощью электрических проводников. И если батарея состоит из модулей (которые еще называют панелями), то каждый модуль сформирован из нескольких солнечных элементов (которые называют ячейками). Солнечная ячейка является ключевым элементом, который находится в основе батарей и целых гелиоустановок. На фото представлены солнечные ячейки различных форматов. На практике фотоэлектрические элементы используются в комплекте с дополнительным оборудованием, которое служит для преобразования тока, для его аккумуляции и последующего распределения между потребителями. В комплект домашней солнечной электростанции входят следующие устройства:
Схематично система электроснабжения, работающая от солнечных батарей, выглядит следующим образом. Схема довольно проста, но для того, чтобы она эффективно работала, необходимо правильно рассчитать рабочие параметры всех задействованных в ней устройств. Расчет фотоэлектрических панелейПервое, что необходимо знать, собираясь рассчитывать конструкцию фотоэлектрических преобразователей (панелей ФЭП), это количество электроэнергии, которое будет потреблять оборудование, подключенное к солнечным батареям. Просуммировав номинальную мощность будущих потребителей солнечной энергии, которая измеряется в Ваттах (Вт или кВт), можно вывести среднемесячную норму потребления электроэнергии – Вт*ч (кВт*ч). А требуемая мощность солнечной батареи (Вт) будет определяться, исходя из полученного значения. Вычисляя суммарную потребляемую мощность, следует учитывать не только номинал электроприборов, но и среднесуточное время работы каждого устройства. Для примера рассмотрим перечень электрооборудования, которое сможет обеспечивать энергией небольшая солнечная электростанция мощностью 250 Вт. Налицо несоответствие между суточным потреблением электроэнергии – 950 Вт*ч (0,95 кВт*ч) и значением мощности солнечной батареи – 250 Вт, которая при непрерывной работе должна генерировать в сутки 6 кВт*ч электроэнергии (что намного больше обозначенных потребностей). Но раз уж мы говорим именно о солнечных панелях, то следует помнить, что свою паспортную мощность эти устройства способны развивать только в светлое время суток (примерно с 9-ти до 16-ти часов), да и то в ясный день. В пасмурную погоду выработка электроэнергии также заметно падает. А утром и вечером объем электроэнергии, вырабатываемой батареей, не превышает 20–30% от среднесуточных показателей. К тому же, номинальная мощность может быть получена с каждой ячейки только при наличии оптимальных для этого условий. Все это учитывается, когда в конструкцию солнечных панелей закладывается определенный запас мощности. Теперь поговорим о том, откуда взялся показатель мощности – 250 кВт. Указанный параметр учитывает все поправки на неравномерность солнечного излучения и представляет собой усредненные данные, основанные на практических экспериментах. А именно: измерение мощности при различных условиях эксплуатации батарей и вычисление ее среднесуточного значения. Идем дальше: зная среднесуточные потребности в электричестве, можно рассчитать требуемую мощность солнечных батарей и количество рабочих ячеек в одной фотоэлектрической панели. Для более точного определения потребностей в электричестве необходимо учитывать не только мощность электроприборов, но и дополнительные потери электроэнергии: естественные потери на сопротивление проводников, а также потери на преобразование энергии в контроллере и инверторе, которые зависят от КПД этих устройств. При осуществлении дальнейших расчетов будем ориентироваться на данные уже знакомой нам таблицы. Итак, предположим, что суммарная мощность потребления равна примерно 1 кВт*ч в сутки (0,95 кВт*ч). Как мы уже знаем, нам понадобится солнечная батарея, обладающая номинальной мощностью – не менее 250 Вт. Предположим, что для сборки рабочих модулей вы планируете использовать фотоэлектрические ячейки с номинальной мощностью – 1,75 Вт (мощность каждой ячейки определяется произведением силы тока и напряжения, которые генерирует солнечный элемент). Мощность 144-х ячеек, объединенных в четыре стандартных модуля (по 36 ячеек в каждом), будет равна 252 Вт. В среднем с такой батареи мы получим 1 – 1,26 кВт*ч электроэнергии в сутки, или 30 – 38 кВт*ч в месяц. Но это в погожие летние дни, зимой даже эти значения можно получить далеко не всегда. При этом в северных широтах результат может быть несколько ниже, а в южных – выше. Представленные значения – это киловатты, которые можно получить непосредственно с солнечных батарей. Сколько же энергии дойдет до конечных потребителей – это зависит от характеристик дополнительного оборудования, встроенного в систему электроснабжения. О них мы поговорим позже. Как видим, количество солнечных элементов, необходимых для генерирования заданной мощности, можно рассчитать лишь приблизительно. Для более точных расчетов рекомендуется использовать специальные программы и онлайн калькуляторы солнечной энергии, которые помогут определить требуемую мощность батареи в зависимости от многих параметров (в том числе, и от географического положения вашего участка). Каким бы ни получилось конечное значение рекомендуемой мощности, всегда необходимо иметь ее некоторый запас. Ведь со временем электротехнические характеристики солнечной батареи снижаются (батарея стареет). За 25 лет эксплуатации среднестатистическая потеря мощности солнечных панелей составляет 20%. Если с первого раза произвести правильный расчет фотоэлектрических панелей не удалось (а непрофессионалы очень часто сталкиваются с подобной проблемой), это не беда. Недостающую мощность всегда можно будет восполнить, установив несколько дополнительных фотоэлементов. Напряжение и сила тока на выходе из панелей должны соответствовать параметрам контроллера, который будет к ним подключен. Это необходимо предусмотреть на стадии расчета солнечной электростанции. Разновидности фотоэлектрических элементовС помощью настоящей главы постараемся развеять заблуждения, касающиеся преимуществ и недостатков наиболее распространенных фотоэлектрических элементов. Это упростит вам выбор подходящих устройств. Широкое распространение сегодня получили монокристаллические и поликристаллические кремниевые модули для солнечных батарей. Так выглядит стандартный солнечный элемент (ячейка) монокристаллического модуля, который можно безошибочно отличить по скошенным углам. Ниже представлено фото поликристаллической ячейки. Какой модуль лучше? Кто-то считает, что поликристаллические модули работают более эффективно при пасмурной погоде, при этом монокристаллические панели демонстрируют превосходные показатели в солнечные дни. При этом всегда найдутся оппоненты, которые после проведения практических замеров полностью опровергают представленное утверждение. Второе утверждение касается срока службы фотоэлектрических элементов: поликристаллы стареют быстрее монокристаллических элементов. Рассмотрим данные официальной статистики: стандартный срок службы монокристаллических панелей составляет 30 лет (некоторые производители утверждают, что такие модули могут работать до 50 лет). При этом период эффективной эксплуатации поликристаллических панелей не превышает 20-ти лет. Действительно, мощность солнечных батарей (даже с очень высоким качеством) с каждым годом эксплуатации уменьшается на определенные доли процента (0,67% – 0,71%). При этом в первый год эксплуатации их мощность может снизиться сразу на 2% и 3% (у монокристаллических и поликристаллических панелей – соответственно). Как видим, разница есть, но она незначительна. А если учесть, что представленные показатели во многом зависят от качества фотоэлектрических модулей, то разницу и вовсе можно не брать во внимание. Тем более, известны случаи, когда дешевые монокристаллические панели, изготовленные нерадивыми производителями, теряли до 20% своей мощности в первый же год эксплуатации. Вывод: чем надежнее производитель фотоэлектрических модулей, тем долговечнее его продукция. Многие утверждают, что монокристаллические модули всегда дороже поликристаллических. У большинства производителей разница в цене (в пересчете на один ватт генерируемой мощности) на самом деле ощутима, что делает покупку поликристаллических элементов более привлекательной. Поспорить с этим нельзя, но не поспоришь и с тем, что КПД монокристаллических панелей выше, чем у поликристаллов. Следовательно, при одинаковой мощности рабочих модулей поликристаллические батареи будут иметь большую площадь. Иными словами, выигрывая в цене, покупатель поликристаллических элементов может проиграть в площади, что при недостатке свободного пространства под установку СБ может лишить его так очевидной на первый взгляд выгоды. Аморфные панели – это еще одна разновидность фотоэлектрических элементов, которые пока не успели стать достаточно востребованными, несмотря на свои очевидные преимущества: низкий коэффициент потери мощности при повышении температуры, способность генерировать электроэнергию даже при очень слабом освещении, относительная дешевизна одного производимого кВт энергии и так далее. А одна из причин низкой популярности кроется в их весьма ограниченном КПД. Аморфные модули еще называют гибкими модулями. Гибкая структура значительно облегчает их установку, демонтаж и хранение. Выбирая рабочие элементы для строительства солнечных батарей, в первую очередь следует ориентироваться на репутацию их производителя. Ведь именно от качества зависят их реальные рабочие характеристики. Также нельзя упускать из вида условия, при которых будет производиться монтаж солнечных модулей: если площадь, отведенная под установку солнечных батарей, у вас ограничена, то целесообразно использовать монокристаллы. Если недостатка в свободном пространстве нет, то обратите внимание на поликристаллические или аморфные панели. Последние могут оказаться даже практичнее панелей кристаллических. Еще одно преимущества аморфных панелей перед панелями кристаллическими состоит в том, что их элементы можно устанавливать непосредственно в оконные проемы (на месте обычных стекол) или даже использовать их для отделки фасадов. Приобретая готовые панели от производителей, можно значительно упростить себе задачу по строительству солнечных батарей. Для тех же, кто предпочитает все создавать своими руками, процесс изготовления солнечных модулей будет описан в продолжении настоящей статьи. Также в ближайшее время мы планируем рассказать о том, по каким критериям следует выбирать аккумуляторы, контроллеры и инверторы – устройства, без которых ни одна солнечная батарея не сможет функционировать полноценно. depils.com Собираем солнечную батарею сами, как выбрать материалЕсть категория людей, которые все привыкли делать своими руками. И не потому, что «самоделки», как правило, обходятся дешевле аналогичных устройств, изготовленных промышленным способом. А потому, что этим людям доставляет удовольствие сам процесс творчества. И не удивительно, что народные умельцы обратили свои взгляды на солнечную фотовольтаику. Здесь перед ними открывается широкое поле деятельности. Своими руками они собирают солнечные батареи различной мощности и назначения, компоненты солнечных электростанций, причем, порой их изделия превосходят по своим показателям промышленные образцы. Выбор материалаПрежде чем начать собирать солнечную батарею, следует определиться, где, как, для каких целей она будет использоваться. От этого во многом зависит и выбор материала для фотоэлектрического преобразователя. Обычно для солнечных батарей используют разновидности кремния. Это могут быть пластины монокристаллического кремния, это могут быть тонкие пленки поликристаллического кремния или аморфного кремния. На базе кремниевых фотоэлектрических преобразователей можно самостоятельно собрать зарядные устройства, походные солнечные батареи, а при желании и полноценные гелиевые модули для домашней электростанции. Кремниевые фотоэлектрические преобразователи Кроме кремния в качестве материала для элементов гелиевой батареи можно использовать медную фольгу. Для применения в схемах электропитания различных приборов или зарядных устройств медные фотоэлектрические преобразователи мало пригодны из-за низкой эффективности и малой мощности, но в самодельных сигнальных устройствах их вполне можно использовать. Например, для изготовления датчика освещенности. Медная фольга При выборе материала следует еще учитывать и его доступность. На сегодняшний день в интернет-магазинах можно купить практически все. Для серьезных систем можно, например, на еВау купить высококачественные монокристаллические кремниевые пластины размером 156×156 миллиметров. Но по значительно низкой цене можно купить и пластины с небольшим браком (небольшие сколы, царапины, незначительное повреждение токоведущей дорожки). Эти пластины можно использовать, например, в походных зарядных устройствах, в системах освещения в палатках, для зарядки различных гаджетов. Все зависит от того, для каких целей будет использована эта самодельная солнечная панель. Солнечная батарея из медной фольгиГелиевую батарею из медной фольги можно изготовить примерно за один час. Но вначале нужно подготовить все необходимое. Понадобятся медная фольга, паяльник, припой, прозрачный чехол от компакт-диска, синтетический клей, провод, наждак, электрическая плита, шприц, поваренная соль, стакан. Вырезать из меди кусок, который бы помещался в одну из сторон чехла от компакт-диска. Тщательно обезжирить медь с обеих сторон, зачистить наждаком. Включить плиту, подождать, пока спираль не раскалится докрасна, и положить на спираль медную фольгу. В процессе нагревания медь окисляется, и на ее поверхности появляется оксид. Вначале это будут небольшие пятнышки, но затем эти пятна распространятся на всю поверхность меди. Примерно через полчаса вся поверхность будет черного цвета – от оксида меди. Выключить плиту и дать меди возможность естественно остывать. Оксид меди на листе В процессе остывания от поверхности будут откалываться кусочки оксида, так как коэффициенты температурного расширения меди и оксида различны. После остывания пластину следует промыть проточной водой. Когда пластина высохнет, припаять к ней проводник. Это будет «минус» батареи. Место припоя следует тщательно обработать синтетическим клеем. После этого приклеить пластину по периметру к внутренней стороне крышки чехла от компакта. Взять другой кусок медной фольги (не подвергавшейся температурной обработке), по размерам аналогичный первому. Вырезать из нее П-образную форму, тщательно зачистить, припаять проводник. Место припоя также тщательно залить синтетическим клеем. Этот проводник буде «плюс» батареи. Элементы солнечной батареи перед сборкой П-образный электрод наклеивается на внутреннюю сторону второй крышки чехла. Крышки закрываются, проводники выводятся наружу. Места соединения крышек проклеиваются синтетическим клеем. Далее готовится соляной раствор – на стакан воды две столовые ложки обычной поваренной соли. Когда соль полностью растворится, раствор шприцем вводится в изготовленную конструкцию. Солнечная батарея готова к работе. На свету эта самоделка вырабатывает ток до 35 микроампер. Проверка работоспособности медной солнечной батареи Солнечная батарея из кремниевых пластинДля более серьезных целей потребуются и более серьезные компоненты солнечных батарей. На том же еВау можно приобрести по сравнительно невысокой цене вполне нормальные целые гелиевые монокристаллические ячейки стандартных размеров. Там же можно купить и все необходимые элементы конструкции – токоведущие проводники, алюминиевый уголок, оргстекло или поликарбонат, подложку, крепеж, специальный герметик, припой. И уже из этого набора, следуя инструкции, собрать солнечную панель. Но можно пойти и другим путем. Можно купить некондиционные кремниевые пластины (как правило, они почти в половину меньше стандартных). У них имеются токоведущие шины, полностью распаянные по элементам. Некондиционная кремниевая пластина Каждая пластина вполне работоспособна, при облучении светом при тестировании показывает неплохие результаты. Для получения необходимого напряжения эти пластины необходимо соединить последовательно между собой. Величину выходного напряжения можно рассчитать, измерив это значение у каждой пластины.А теперь о сборке. Для тыльной стенки корпуса вполне подойдет фанера толщиной в девять миллиметров, вместо алюминиевого уголка для рамы можно использовать деревянные рейки, имеющие в сечении квадрат со стороной 18 миллиметров. Если количество пластин таково, что их суммарная длина превышает 1000 миллиметров, то есть смысл разделить корпус рейками на две части. Деревянный корпус Рейки следует приклеить к фанере и для прочности закрепить шурупами. Затем полученный короб следует покрасить в несколько слоев для обеспечения надежной защиты от влаги и от воздействия окружающей среды. Цвет особого значения не имеет. Корпус после покраски Для монтажа пластин необходимо изготовить подложку. Ее можно изготовить из ДВП или любого другого жесткого диэлектрика. В подложке на всю дину и ширину необходимо просверлить отверстия с шагом примерно 25 миллиметров. Подложку также следует покрасить в цвет корпуса. Подложка После сборки корпуса подгоняется под размер стекло. Обычное стекло использовать не рекомендуется ввиду его хрупкости. Для покрытия вполне подойдет оргстекло или поликарбонат. В рейке, которая делит корпус на две части, следует просверлить отверстия для соединительных проводников. Такие же отверстия нужно просверлить в одной из торцевых реек. Эти отверстия должны служить для вывода излишних испарений и вентиляции. Пайка элементов Силовые провода выводятся на тыльную сторону панели. Теперь осталось только смонтировать на подложке пластины, соединить их должным образом, протестировать работоспособность всей батареи, закрыть стеклом и закрепить его шурупами на корпусе. Солнечная батарея готова к работе. Солнечная батарея в сборе В заключение следует отметить, что солнечная батарея, изготовленная описанным способом из некондиционных кремниевых пластин, генерировала электричество мощностью до 80 ватт. solarb.ru Солнечные элементы своими руками. - ВИЭ своими рукамиOriginally published at ВИЭ своими руками. Please leave any comments there. У радиоконструктора всегда можно найти старые ненужные диоды и транзисторы от радиоприемников и телевизоров. В умелых руках это – богатство, которому можно найти дельное применение. Например, сделать полупроводниковую солнечную батарею своими руками для питания в походных условиях транзисторного радиоприемника. Как известно, при освещении светом полупроводник становится источником электрического тока – фотоэлементом. Этим свойством мы и воспользуемся. Сила тока и электродвижущая сила такого фотоэлемента зависят от материала полупроводника, величины его поверхности и освещенности. Но чтобы превратить диод или транзистор в фотоэлемент, нужно добраться до полупроводникового кристалла, а, говоря точнее, его нужно вскрыть. Как это сделать своими руками? Расскажем чуть позже, а пока загляните в таблицу, где приведены параметры самодельных фотоэлементов. Все значения получены при освещении лампой мощностью 60 Вт на расстоянии 170 мм , что примерно соответствует интенсивности солнечного света в погожий осенний день. Как видно из таблицы, энергия, вырабатываемая одним фотоэлементом, очень мала, поэтому их объединяют в батареи. Чтобы увеличить ток, отдаваемый во внешнюю цепь, одинаковые фотоэлементы соединяют последовательно. Но наилучших результатов можно добиться при смешанном соединении, когда фотобатарею собирают из последовательно соединенных групп, каждая из которых составляется из одинаковых параллельно соединенных элементов (рис. 3). Предварительно подготовленные группы диодов собирают на пластине из гетинакса, органического стекла или текстолита, например, так, как показано на рисунке 4. Между собой элементы соединяются тонкими лужеными медными проводами. Подходящие к кристаллу выводы, лучше не паять, так как при этом от высокой температуры можно повредить полупроводниковый кристалл. Пластину с фотоэлементом поместите в прочный корпус с прозрачной верхней крышкой. Оба вывода подпаяйте к разъему – к нему будете подключать шнур от радиоприемника. Солнечная фотобатарея из 20 диодов КД202 (пять групп по четыре параллельно соединенных фотоэлемента) на солнце генерирует напряжение до 2,1 В при токе до 0,8 мА. Этого вполне достаточно для того, чтобы питать радиоприемник на одном-двух транзисторах. Как же превратить диоды и транзисторы в фотоэлементы. Приготовьте тиски, бокорезы, плоскогубцы, острый нож, небольшой молоток, паяльник, оловянно- свинцовый припой ПОС-60, канифоль, пинцет, тестер или микроамперметр на 50-300 мкА и батарейку на 4,5 В. Диоды Д7, Д226, Д237 и другие в похожих корпусах следует разбирать так. Сначала отрежьте бокорезами выводы по линиям А и Б (рис.1). Смятую при этом трубочку В аккуратно расправьте, чтобы освободить вывод Г. Затем диод зажмите в тисках за фланец. К сварному шву приложить острый нож и, несильно ударив по тыльной стороне ножа, удалите крышку. Следите за тем, чтобы лезвие ножа не проходило глубоко вовнутрь – иначе можно повредить кристалл. Вывод Д очистите от краски – фотоэлемент готов. У диодов КД202 (а также Д214, Д215, Д242-Д247) плоскогубцами откусите фланец А (рис.2) и отрежьте вывод Б. Как и в предыдущем случае, расправьте смятую трубку В, освободите гибкий вывод Г. futureenergy.livejournal.com |