Eng Ru
Отправить письмо

Характеристики и принцип действия выпрямительных диодов. Характеристики диоды


Выпрямительный диод - виды, принцип работы и применение

Существует немало устройств, созданных с целью преобразования электрического тока, и выпрямительные диоды – одни из них.

Выпрямительный диод – преобразователь тока переменного в постоянный. Является одним из видов полупроводников. Широкое применение получил благодаря основной характеристике – переводу электрического тока строго в одном направлении.

Принцип действия

Необходимый эффект при работе устройства создают особенности p-n перехода. Заключаются в том, что рядом с переходом двух полупроводников встраивается слой, который характеризуется двумя моментами: большим сопротивлением и отсутствием носителей заряда. Далее при воздействии на данный запирающий слой переменного напряжения извне толщина его уменьшается и впоследствии исчезает. Возрастающий во время этого ток и является прямым током, который проходит от анода к катоду. В случае перемены полярности внешнего переменного напряжения запирающий слой будет больше, и сопротивление неминуемо возрастет.

Диоды выпрямительные резьбовые

ВАХ выпрямительного диода (вольт-амперная характеристика) также дает представление о специфике работы выпрямителя и является нелинейной. Выглядит следующим образом: существует две ветви – прямая и обратная. Первая отражает наибольшую проводимость полупроводника при возникновении прямой разницы потенциалов. Вторая указывает на значение низкой проводимости при обратной разнице потенциалов.

Вольт-амперные характеристики выпрямителя прямо пропорциональны температуре, с повышением которой разность потенциалов сокращается. Электрический ток не пройдет через устройство в случае низкой проводимости, но лавинный пробой происходит в случае возросшего до определенного уровня обратного напряжения.

Использование сборки

При эксплуатации выпрямительного полупроводникового диода польза извлекается только из половины волн переменного тока, соответственно, безвозвратно теряется более половины входного напряжения.

С целью улучшить качество преобразования переменного тока в постоянный используется сборка из четырех устройств – диодный мост. Выгодно отличается тем, что пропускает ток на протяжении каждого полупериода. Диодные мосты производят в виде комплекта, заключенного в пластиковый корпус.

Выпрямительный мост из диодовПринципиальная схема диодного моста

Физико-технические параметры

Основные параметры выпрямительных диодов базируются на таких значениях:

  • максимально допустимом значении разницы потенциалов при выпрямлении тока, при котором устройство не выйдет из строя;
  • наибольшем среднем выпрямленном токе;
  • наибольшем значении обратного напряжения.

Выпрямители промышленность выпускает с разными физическими характеристиками. Соответственно, устройства имеют разную форму и способ монтажа. Разделяются при этом на три группы:

  1. Выпрямительные диоды большой мощности. Характеризуются пропускной способностью тока до 400 А и являются высоковольтными. Высоковольтные выпрямительные диоды производятся в корпусах двух видов –штыревом, где корпус герметичный и стеклянный, и таблеточном, где корпус из керамики.
  2. Выпрямительные диоды средней мощности. Обладают пропускной способность от 300 мА до 10А.
  3. Выпрямительные диоды малой мощности. Максимально допустимое значение тока – до 300 мА.

Силовые выпрямительные диоды большой мощности

Выбор выпрямительных диодов

При приобретении устройства необходимо руководствоваться такими параметрами:

  • значениями вольт-амперной характеристики максимально обратного и пикового тока;
  • максимально допустимым обратным и прямым напряжением;
  • средней силой выпрямленного тока;
  • материалом прибора и типом монтажа.

В зависимости от физических характеристик на корпус устройства наносится соответствующее обозначение. Каталог с маркировкой выпрямительных диодов представлен в специализированном справочнике. Необходимо знать, что маркировка импортных аналогов отличается от отечественных.

Также стоит обратить внимание на то, что выпрямительные схемы отличаются по количеству фаз:

  1. Однофазные. Широко применяются для бытовых электроприборов. Существуют диоды автомобильные и для электродуговой сварки.
  2. Многофазные. Незаменимы для промышленного оборудования, общественного и специального транспорта.

Трефазный выпрямительный диодный мост

Диод Шоттки

Отдельную позицию занимает диод Шоттки. Изобрели его в связи с растущими потребностями в развивающейся отрасли радиоэлектроники. Основное отличие его от остальных диодов заключается в том, что в его конструкцию заложен металл-полупроводник как альтернатива p-n переходу. Соответственно, диод Шоттки обладает своими, уникальными свойствами, которыми не могут похвастаться кремниевые выпрямительные диоды. Некоторые из них:

  • оперативная возобновляемость заряда благодаря его низкому значению;
  • минимальное падение напряжения на переходе при прямом включении;
  • ток утечки обладает большим значением.

При изготовлении диода Шоттки применяют такие материалы, как кремний и арсенид галлия, но иногда применяется и германий. Свойства материалов немного отличаются, но в любом случае, максимально допустимое обратное напряжение для выпрямителя Шоттки составляет не более 1200 V.

Диод Шоттки SiC

В противовес всем достоинствам конструкция данного вида имеет и минусы. Например, в сборке моста устройство категорически не воспринимает превышение обратного тока. Нарушение условия приводит к поломке выпрямителя. Также малое падение напряжения происходит при невысоком напряжении около 60-70 V. Если значение превышает этот показатель, то устройство превращается в обыкновенный выпрямитель.

Стоит отметить, что достоинства диода мощного выпрямительного Шоттки значительно превышают недостатки.

Диод-стабилитрон

Для стабилизации напряжения используют специальное приспособление, способное работать в режиме пробоя, – стабилитрон, зарубежное название которого «диод Зенера». Выполняет свою функцию устройство, работая в режиме пробоя при напряжении обратного смещения. Возрастание силы тока происходит в момент пробоя, одновременно опускается до минимума дифференциальное значение, вследствие чего напряжение стабильное и охватывает достаточно серьезный диапазон обратных токов.

Практическое использование выпрямительного диода

В связи с неудержимым развитием научно-технического прогресса применение выпрямителей затронуло все сферы жизнедеятельности человека. Диоды силовые выпрямительные эксплуатируются в таких узлах и механизмах:

  • в блоках питания главных двигателей транспортных средств (наземных, воздушных и водных), промышленных станков и техники, буровых установок;
  • в комплектации диодного моста для сварочных аппаратов;
  • в выпрямительных установках для гальванических ванн, используемых для получения цветных металлов или нанесения защитного покрытия на деталь или изделие;
  • в выпрямительных установках для очистки воды и воздуха, фильтрах различного рода;
  • для передачи электроэнергии на дальние расстояния посредством высоковольтной линии электропередач.

В повседневной жизни выпрямители используют в различных транзисторных схемах. Применяют в основном маломощные устройства как в виде однополупериодного выпрямителя, так и виде диодного моста. Например, диоды выпрямительного блока генератора хорошо известны автолюбителям.

220.guru

параметры и схема :: SYL.ru

Выпрямительный диод - это диод на основе полупроводникового материала, который предназначен для того, чтобы преобразовывать переменный ток в постоянный. Правда, этой функцией сфера применения этих радиодеталей не исчерпывается: они применяются для коммутации, в сильноточных схемах, где нет жесткой регламентации временных и частотных параметров электрического сигнала.

Классификация

В соответствии со значением прямого тока, который является максимально допустимым, выпрямительный диод может иметь малую, среднюю и большую мощности:

  • малой - выпрямляют прямой ток до 300 mA;
  • выпрямительные диоды средней мощности - от 300 mA до 10 А;
  • большой - более 10 А.

Германий или кремний

По применяемым материалам они бывают кремниевые и германиевые, однако более широкое применение нашли кремниевые выпрямительные диоды благодаря своим физическим свойствам.

У них обратные токи в несколько раз меньше, чем в германиевых, в то время как напряжение одинаково. Это дает возможность добиваться в полупроводниках очень высокой величины допустимых обратных напряжений, которые могут составлять до 1000-1500 В. В германиевых диодах этот параметр находится в диапазоне 100-400 В.

Кремниевые диоды способны сохранять работоспособность в диапазоне температур от -60 ºС до +150 ºС, а германиевые – только от -60 ºС до +85 ºС. Это происходит потому, что когда температура становится выше 85 ºС, количество образовавшихся электронно-дырочных пар достигает таких величин, что резко увеличивается обратный ток, и выпрямитель перестает работать эффективно.

Технология изготовления

Выпрямительный диод по конструкции представляет пластину полупроводникового кристалла, в теле которой имеются две области, имеющие разную проводимость. Это послужило причиной того, что их называют плоскостными.

Полупроводниковые выпрямительные диоды делаются так: на области кристалла полупроводника, имеющей проводимость n-типа, происходит расплавление алюминия, индия или бора, а на область кристалла с проводимостью p-типа расплавляется фосфор.

При воздействии высоких температур эти два вещества накрепко сплавляются с полупроводниковой основой. Кроме того, атомы этих материалов диффундируют внутрь кристалла с образованием в нем области с преимущественно электронной или дырочной проводимостью. В итоге образуется полупроводниковый прибор, имеющий две области с различного типа электропроводностью, а между ними образован p-n-переход. Таков принцип работы подавляющего большинства плоскостных диодов из кремния и германия.

Конструкция

Для того чтобы организовать защиту от воздействий извне, а также добиться надежного отвода тепла, кристалл, имеющий p-n-переход, монтируется в корпусе.Диоды, имеющие малую мощность, производят в корпусе из пластмассы, снабдив гибкими внешними выводами. Выпрямительные диоды средней мощности имеют металлостеклянный корпус уже с жесткими внешними выводами. Детали большой мощности размещаются в корпусе из металлостекла или металлокерамики.

Кремниевые или германиевые кристаллы с p-n-переходом припаивают к кристаллодержателю, который одновременно служит основанием корпуса. К нему же приваривают корпус, имеющий стеклянный изолятор, сквозь который идет вывод одного из электродов.

Диоды малой мощности, которые имеют сравнительно малые габариты и вес, обладают гибкими выводами, при посредстве которых монтируются в схемах.

Поскольку токи, с которыми работают полупроводники средней мощности и мощные выпрямительные диоды, достигают значительных величин, их выводы намного мощнее. Нижняя их часть выполнена в виде массивного основания, отводящего тепло, оснащенного винтом и внешней поверхностью плоской формы, которая призвана обеспечивать надежный тепловой контакт с внешним радиатором.

Характеристики

Каждый тип полупроводников имеет свои рабочие и предельные параметры, которые подбирают для того, чтобы обеспечить работу в какой-либо схеме.

Параметры выпрямительных диодов:

  • I прям max – прямой ток, который максимально допустим, А.
  • U обрат max – обратное напряжение, которое максимально допустимо, В.
  • I обрат – обратный ток постоянный, мкА.
  • U прям – прямое напряжение постоянное, В.
  • Рабочая частота, кГц.
  • Температура работы, С.
  • Р max – рассеиваемая на диоде мощность, которая максимально допустима.

Характеристики выпрямительных диодов далеко не исчерпываются данным списком. Однако для выбора детали обычно их бывает достаточно.

Схема простейшего выпрямителя переменного тока

Рассмотрим, как работает схема (выпрямительный диод играет в ней главную роль) примитивного выпрямителя.

На его вход подается сетевое переменное напряжение с положительными и отрицательными полупериодами. К выходу выпрямителя подключается нагрузка (R нагр.), а функцию элемента, выпрямляющего ток, выполняет диод (VD).

Положительные полупериоды напряжения, поступающие на анод, вызывают открывание диода. В это время через него, а следовательно через нагрузку (R нагр.), которая питается от выпрямителя, протекает прямой ток (I прям.).

Отрицательные полупериоды напряжения, поступающие на анод диода, вызывают его закрывание. По цепи протекает небольшой обратный ток диода (I обр.). Здесь диод производит отсекание отрицательной полуволны переменного тока.

В результате выходит, что через подключенную к сети нагрузку (R нагр.), через диод (VD), теперь проходит пульсирующий, а не переменный ток одного направления. Ведь он может проходить исключительно в положительные полупериоды. В этом и заключается смысл выпрямления переменного тока.

Однако такое напряжение может запитать только нагрузку малой мощности, которая питается от сети переменного тока и не предъявляет серьезных требований к питанию, к примеру, лампы накаливания.

Лампа будет пропускать напряжение лишь при прохождении положительных импульсов, вследствие этого электроприбор подвергается слабому мерцанию, имеющему частоту 50 Гц. Правда, вследствие того, что нить подвержена тепловой инертности, она не сможет до конца остывать в перерывах между импульсами, а значит, мерцание будет почти не заметно.

В случае если такое напряжение подать на усилитель или приемник мощности, то в громкоговорителе будет слышен звук низкой частоты (частотой 50 Гц), который называется фоном переменного тока. Этот эффект происходит по причине того, что пульсирующий ток во время прохождения через нагрузку наводит в ней пульсирующее напряжение, порождающее фон.

Подобный недостаток в какой-то мере устраняется, если параллельно нагрузке включить фильтрующий конденсатор (C фильтр), емкость которого достаточно велика.

Конденсатор будет заряжаться импульсами тока при положительных полупериодах, и разряжаться через нагрузку (R нагр.) при отрицательных полупериодах. При достаточной емкости конденсатора за время, которое проходит между двумя импульсами тока, он не успеет полностью разрядиться, а следовательно, на нагрузке (R нагр.) будет постоянно находиться ток.

Но даже таким, относительно сглаженным, током также не следует питать нагрузку, ведь она будет продолжать фонить, потому что величина пульсаций (U пульс.) пока еще достаточно серьезна.

Недостатки

В выпрямителе, работу которого мы только что разобрали, с пользой применяется лишь половина волн переменного тока, вследствие этого на нем происходит потеря более чем половины входного напряжения. Такой вид выпрямления переменного тока получил название однополупериодного, а выпрямители, которые используют этот вид выпрямления, называются однополупериодными. Недостатки однополупериодных выпрямителей успешно устранены в выпрямителях, использующих диодный мост.

Диодный мост

Диодный мост – это компактная схема, которая составлена из четырех диодов, и служит цели преобразования переменного тока в постоянный. Мостовая схема дает возможность пропускать ток в каждом полупериоде, что выгодно отличает ее от однополупериодной. Диодные мосты производятся в форме сборок небольшого размера, которые заключены в корпус из пластмассы.

На выходе корпуса такой сборки имеются четыре вывода с обозначениями «+», «—» или «~», указывающими на назначение контактов. Однако диодные мосты встречаются и не в сборке, нередко они собираются прямо на печатной плате путем включения четырех диодов. Выпрямитель, который выполняется на диодном мосте, называется двухполупериодным.

www.syl.ru

описание и применение, технические характеристики, аналоги

Практически в любых импортных электронных устройствах можно встретить диоды 1n400х. Учитывая популярность этой серии, имеет смысл детально ознакомиться с описанием ее топового элемента. Речь идет о диоде 1N4007.Давайте рассмотрим его основные технические характеристики, назначение, маркировку и возможность замены отечественными и зарубежными аналогами.

Описание и применение диода 1n4007

В даташите этого элемента указано, что он является выпрямительным маломощным кремниевым диодом, который производится в корпусе из негорючего пластика (тип D0-41). Конструкция, цоколевка и типовые размеры устройства приведены ниже.

Конструкция полупроводникового элементаКонструкция полупроводникового элемента

Допустимые отклонения в размерах приведены в таблице:

Обозначения на рисунке Миллиметры Дюймы
min Max min max
A 4,10 5,20 0,161 0,205
В 2,00 2,70 0,079 0,106
С 0,71 0,86 0,028 0,034
D 25,40 1,000
E 1.27 0.05

Эти полупроводники также выпускаются в стандартном smd-корпусе (тип  D0-214), что делает возможным их использование в миниатюрных электронных устройствах.

1N4007 (M7) в SMD исполнении (катод отмечен полоской на корпусе)1N4007 (M7) в SMD исполнении (катод отмечен полоской на корпусе)

Типовые размеры в миллиметрах для элементов SMD исполнения приведены ниже.

Размеры корпуса D0-214Размеры корпуса D0-214

Основное назначение устройства – преобразование переменного напряжение с рабочей частотой не более 70 Гц. Данный вид кремневых полупроводниковых элементов применяется в цепях и блоках питания различных электронных приборов малой и средней мощности.

Монтаж

Для установки элементов в корпусе D0-41 используется выводная схема монтажа, при этом допускается как горизонтальное, так и вертикальное положение детали (относительно печатной платы). Пайка должна производится «мягким» (низкотемпературным) припоем с точкой плавления менее 210-220°С, например, ПОС-61. Процесс должен занимать не более 10 секунд, чтобы не допустить перегрев элемента.

Заметим, что в даташите указана пороговая температура 260°С, но, как показывает практика, в данном случае лучше перестраховаться, чем испортить деталь и тратить время на ее выпаивание обратно.

Диоды в корпусе D0-215, как и все SMD элементы, устанавливаются по методике поверхностного монтажа, с применением для этой цели специальной паяльной пасты.

Технические характеристики in4007

Перечислим основные параметры для всей серии (информация взята с официального даташита производителя). Начнем с VRM (reverse voltage max) – допустимой величины обратного напряжения 1n400x (здесь и далее последняя цифра модели соответствует порядковому номеру в списке):

  1. 50 В;
  2. 100 В;
  3. 200 В;
  4. 500 В;
  5. 600 В;
  6. 800 В;
  7. 1000 В.

Допустимое RMS (среднеквадратическая величина):

  1. 35 В;
  2. 70 В;
  3. 140 В;
  4. 280 В;
  5. 420 В;
  6. 560 В;
  7. 700 В.

Пиковое значение Vdc:

  1. 50 В;
  2. 100 В;
  3. 200 В;
  4. 400 В;
  5. 600 В;
  6. 800 В;
  7. 1000 В.

Другие технические параметры:

  • Максимальное значение выпрямленного тока при работе в штатном режиме и температуре элемента 50 °С – 1 Ампер.
  • Допустимая величина тока при импульсе длительностью до 8 мсек – 30 Ампер.
  • Допустимый уровень падения напряжения на открытом переходе при силе тока 1 Ампер не более 1-го Вольта.
  • Пиковая величина обратного тока при штатном напряжении, при температуре элемента 30 °С – 5 мА, 90 °С – 50 мА.
  • Уровень емкости перехода – 15 пФ (значение приводится для постоянного напряжения 4,00 Вольта и частоты 1 МГц).
  • Уровень типичного теплового сопротивления – 50°С/Вт.
  • Максимальный уровень рабочей частоты – 1 МГц.
  • Границы диапазона рабочей температуры от -50 до 125 °С.
  • Быстродействие (стандартное время восстановления) более 500 нс;
  • Скорость обратного восстановления – 2 мс.
  • Допустимая температура хранения от -50 до 125 °С.
  • Вес элемента в корпусе в пластиковом корпусе D0-41 в пределах 0,33-0,35 грамм, для D0-214 – не более 0,3 г.

Маркировка диода in4007

Начнем с расшифровки для деталей в корпусе DO-41. Варианты нанесенных на него обозначений приводятся на рисунке.

Значимые элементы маркировкиЗначимые элементы маркировки

Расшифровка:

  1. Наименование модели серии 1N4001-4007.
  2. Графический или буквенный или буквенно-цифровой код производителя радиодетали.
  3. Дата производства в формате месяц/год (приводится последние две цифры).

Поскольку SMD корпус имеет небольшой размер, то если нанести на него полное наименование модели, распознать надпись невооруженным глазом будет затруднительно. Поэтому название кодируется в соответствии с таблицей.

Таблица маркировки для smd-диодов серии 1N400x.

М1 М2 М3 М4 М5 М6 М7
1N4001 !N4002 1N4003 1N4004 1N4005 1N4006 1N4007

Замена

Несмотря на распространенность данной модели, может возникнуть ситуация, при которой нужного диода не окажется в домашнем запаснике. В таком случае следует прибегнуть к поиску альтернативы. С этим не будет проблем, поскольку есть компоненты, полностью совместимые или близкие по характеристикам.

Отечественные аналоги 1n4007

Идеальный вариант для замены – КД 258Д, его характеристики практически идентичны импортной модели, а по некоторым параметрам он даже превосходит ее.

КД 258Д – практически полный аналог 1N4007КД 258Д – практически полный аналог 1N4007

Не смотря на очевидные преимущества отечественного аналога, у него есть существенный недостаток – высокая стоимость (по сравнению с 1N4007). Оригинал стоит порядка $0.05, в то время, как наша деталь порядка $1. Согласитесь, разница существенная.

В некоторых случаях можно использовать диоды Д226, КД208-209, КД243 и КД105, но предварительно потребуется проанализировать их характеристики на предмет совместимости с режимом работы в том или ином устройстве.

Зарубежные аналоги

Среди импортных деталей более широкий выбор для полноценной замены, в качестве примера можно привести следующие модели:

  • HEPR0056RT, выпускается компанией Моторола;
  • среди продукции Томпсон есть два полных аналога: BYW27-1000 и BY156;
  • у Филипса это BYW43;
  • и три компонента (10D4, 1N2070, 1N3549) от компании Diotec Semiconductor.

Кратко о достоинствах

Следует признать, что модельный ряд 1n400x получился довольно удачным. Отличные характеристики для своего класса, универсальность и самая низкая цена по сравнению с аналогами, сыграли немаловажную роль в популярности диодов этой серии.

Также следует отметить высокий уровень взаимозаменяемости, в частности элемент 1N4007 можно смело устанавливать в качестве альтернативы любой модели этого семейства.

Как проверить 1N4007?

С проверкой данного полупроводникового компонента проблем не возникнет, он тестируется так же, как и обычные диоды. Для этого процесса нам понадобится только мультиметр или омметр.

Расскажем пошаговый алгоритм тестирования:

  1. включаем прибор и переводим его в режим «Прозвонка» так, как продемонстрировано на рисунке. Если у вас другая модель мультиметра, обратитесь к руководству пользователя, оно прилагается к каждому измерительному прибору. Режим для проверки диодов отмечен синим квадратомРежим для проверки диодов отмечен синим квадратом
  2. Подключаем щупы к проверяемой детали, причем красный к аноду, а черный к катоду. При такой полярности через диод 1N4007 будет проходить ток, что отобразится на дисплее прибора. Если он показывает бесконечно большое сопротивление, значит, можно с уверенностью констатировать внутренний обрыв, и на этом заканчивать тестирование.
  3. Меняем полярность подключения и смотрим на показания мультиметра. При смене направления (полярности) диод не пропускает через себя напряжение, следовательно, сопротивление будет бесконечно большим. Другие показания говорят о пробое перехода.

Этих действий вполне достаточно для определения работоспособности полупроводниковых диодов этой серии.

www.asutpp.ru

Общие свойства и параметры диодов

 

Система и перечень параметров, включаемые в технические описания и характеризующие свойства полупроводниковых диодов, выбираются с учетом их физико-технологических особенностей и области применения. В большинстве случаев важны сведения об их статических, динамических и предельных параметрах.

Статические параметры характеризуют поведение приборов при постоянном токе, динамические — их частотно-временные свойства, предельные параметры определяют область устойчивой и надежной работы.

В справочники, стандарты или технические описания включается необходимая для детального расчета схем информация о параметрах: нормы на значения параметров, режимы их измерений, вольт-амперные характеристики, зависимости параметров от режима и температуры, максимальные и максимально допустимые значения параметров, конструктивно-технологические особенности приборов, их основное назначение, специфические требования, методы измерения параметров, типовые схемы применения.

Постоянные (случайные) изменения технологических факторов оказывают существенное влияние на значения параметров изготавливаемых приборов. Поэтому значения параметров даже одного типа приборов являются случайными величинами, т.е. имеется отклонение от среднего (типового, номинального) уровня. Для некоторых параметров устанавливаются граничные значения и возможные отклонения (разброс). Нормы на разброс параметров устанавливаются на основе экспериментально-статистических данных при обеспечении надежной и устойчивой работы приборов в различных условиях и режимах применения, а также исходя из экономических соображений.

Необходимо отметить, что вследствие постоянного совершенствования конструкций и технологии изготовления полупроводниковых приборов происходят изменения средних значений параметров. Некоторые образцы приборов имеют параметры лучше, чем приведенные в технических описаниях и справочниках.

В разных странах существуют региональные унифицированные стандарты на параметры и характеристики полупроводниковых приборов, методики их измерений и контроля качества, которые могут существенно отличаться от международных стандартов.

Различают общие параметры, которыми характеризуется любой полупроводниковый диод, и специальные параметры, присущие только отдельным видам диодов. К общим параметрам диодов относят: параметры рассеиваемой мощности, тепловые параметры, пробивные максимальные и максимально допустимые токи и напряжения, параметры, определяемые по виду ВАХ прибора, параметры, характеризующие основные свойства \(p\)-\(n\)-перехода и т.п.

Рассеиваемая мощность (\(P_{пр}\), \(P_{обр}\), \(P_{ср}\), \(P_и\)). Когда через диод проходит ток, при заданном напряжении на диоде выделяется мощность \(P_д = I \cdot U\). При подаче на диод переменного напряжения общая мощность, рассеиваемая диодом, равна сумме мощностей рассеиваемых при прохождении тока в прямом (\(P_{пр}\)) и обратном (\(P_{обр}\)) направлениях \(P_д = P_{пр} + P_{обр}\). Средняя рассеиваемая мощность (\(P_{ср}\)) определяется как среднее за период значение мощности, рассеиваемой диодом при протекании прямого и обратного токов. Максимальное значение рассеиваемой мощности, при которой гарантируется долговременная и стабильная работа диода при заданных внешних условиях, называется максимальной допустимой мощностью рассеяния диода. Наибольшее мгновенное значение мощности, рассеиваемой диодом, называется импульсной рассеиваемой мощностью (\(P_и\)).

Температура (\(T\), \(T_п\), \(T_{кор}\)). Выделение мощности сопровождается нагреванием диода, что приводит к росту обратного тока и увеличению вероятности возникновения теплового пробоя \(p\)-\(n\)-перехода. Для исключения теплового пробоя температура \(p\)-\(n\)-перехода должна быть меньше максимальной допустимой температуры перехода (\(T_{п max}\)). Как правило, эта температура для германиевых диодов составляет 70 °C, а для кремниевых — 125 °C. Выделяемая теплота рассеивается диодом в окружающую среду. Учитывая конструктивные особенности диода и условия его эксплуатации, иногда нормируются максимальная температура корпуса диода (\(T_{к max}\)) и максимальная температура окружающей среды вблизи диода (\(T\)).

Тепловое сопротивление (\(R_т\), \(R_{т пер-окр}\), \(R_{т пер-кор}\)). Перепад температур между переходом и окружающей средой определяется выражением: \(T_п – T = R_т \cdot P_д\), где \(R_т\) — тепловое сопротивление, характеризующее условия отвода теплоты от диода (определяется конструкцией корпуса, наличием радиатора и т.д.). В зависимости от расположения контрольной точки, в которой производится измерение температуры, различают: тепловое сопротивление переход – окружающая среда (\(R_{т пер-окр}\)), тепловое сопротивление переход – корпус диода (\(R_{т пер-кор}\)). Тепловое сопротивление переход – среда (\(R_{т пер-окр}\)) необходимо знать для расчета допустимой рассеиваемой мощности маломощных диодов обычно работающих без теплоотвода, а тепловое сопротивление переход – корпус (\(R_{т пер-кор}\)) — для расчета режима работы мощных приборов при наличии внешнего радиатора. Обычно \(R_{т пер-окр} \gg R_{т пер-кор}\) (сопротивление \(R_{т пер-кор}\) остается постоянным только в случае малых плотностей тока). Тепло от кристалла с переходами к корпусу или радиатору отводится за счет теплопроводности, а от корпуса в окружающее пространство — конвекцией и излучением. Режим диода необходимо выбирать из условия \(\newcommand{\slfrac}[2]{\left.#1\right/#2}U \cdot I \leq P_{д max}= \slfrac{\left( T_{п max} – T \right)}{R_{т пер-окр}}\).

Переходное тепловое сопротивление (\(Z_т\), \(Z_{т пер-окр}\), \(Z_{т пер-кор}\)). При определении тепловых режимов в случае работы диодов при малых длительностях импульсов используются их переходные тепловые характеристики, а именно переходное тепловое сопротивление диода (\(Z_т\)), которое является отношением разности изменения температуры перехода и температуры в контрольной точке за заданный промежуток времени, когда происходит это изменение температуры, к приращению рассеиваемой мощности диода, скачкообразно увеличенной в начале этого интервала. Производными этого параметра являются: переходное тепловое сопротивление переход – окружающая среда (\(Z_{т пер-окр}\)) и переходное тепловое сопротивление переход – корпус диода (\(Z_{т пер‑кор}\)).

Прямой ток и напряжение (\(I_{пр}\), \(I_{пр}\) и, \(I_{пр ср}\), \(U_{пр}\), \(U_{пр и}\)). При приложении к диоду постоянного прямого напряжения \(U_{пр}\) его температура зависит от величины протекающего прямого тока \(I_{пр}\). Прямой ток, при котором температура \(p\)-\(n\)-перехода диода достигает максимального допустимого значения (\(T_{п max}\)), называют допустимым прямым током (\(I_{пр max}\)). Наибольшее допустимое мгновенное значение прямого тока диода называют максимальным импульсным прямым током (\(I_{пр и max}\)). Наибольшее мгновенное значение прямого напряжения на диоде, обусловленное заданным импульсным прямым током, называется максимальным импульсным прямым напряжением диода (\(U_{пр и max}\)). Средний прямой ток диода (\(I_{пр ср}\)) определяется при подаче на диод переменного напряжения как среднее за период значение прямого тока.

Обратный ток и напряжение (\(I_{обр}\), \(I_{обр и}\), \(U_{обр}\), \(U_{обр и}\)). При приложении к диоду постоянного заданного обратного напряжения \(U_{обр}\) через него протекает постоянный обратный ток \(I_{обр}\) определенной величины. Важным параметром диодов является максимальное допустимое обратное напряжение \(U_{обр max}\), при котором не происходит пробоя \(p\)-\(n\)-перехода. Обычно \(U_{обр max} \le {0,8}U_{проб}\), где \(U_{проб}\) — значение обратного напряжения, вызывающее пробой перехода диода, при котором обратный ток достигает заданного значения, оно называется пробивным напряжением диода. Максимально допустимое импульсное обратное напряжение (\(U_{обр и max}\)) определяет максимальное мгновенное значение для обратного напряжения на диоде, а максимально допустимый импульсный обратный ток (\(I_{обр и max}\)) характеризует предельное мгновенное значение обратного тока, обусловленного импульсным обратным напряжением.

Дифференциальное сопротивление (\(r_{диф}\)). Прямое (\(r_{пр}\)) и обратное (\(r_{обр}\)) сопротивления диода постоянному току выражаются соотношениями: \(\newcommand{\slfrac}[2]{\left.#1\right/#2}r_{пр} = \slfrac{U_{пр 0}}{I_{пр 0}}\), \(r_{обр} = \slfrac{U_{обр 0}}{I_{обр 0}}\) , где \(U_{пр 0}\), \(I_{пр 0}\), \(U_{обр 0}\), \(I_{обр 0}\) задают конкретные точки на ВАХ прибора, в которых производится вычисление сопротивления. Поскольку типичная ВАХ полупроводникового прибора имеет участки с повышенной линейностью (один на прямой ветви, один — на обратной), то вводится понятие дифференциального сопротивления (\(r_{диф}\)), которое вычисляется как отношение малого приращения напряжения диода к малому приращению тока в нем при заданном режиме (\(r_{диф пр} = \slfrac{\Delta U_{пр}}{\Delta I_{пр}}\), \(r_{диф обр} = \slfrac{\Delta U_{обр}}{\Delta I_{обр}}\)).

Емкость перехода (\(C_{пер}\)) и накопленный заряд (\(Q_{нк}\)). Изменение внешнего напряжения \(\operatorname{d}U\) на \(p\)-\(n\)-переходе приводит к изменению накопленного в нем заряда \(\operatorname{d}Q\). Поэтому \(p\)‑\(n\)‑переход ведет себя подобно конденсатору, емкость которого \(C = \operatorname{d}Q/\operatorname{d}U\). В зависимости от физической природы изменяющегося заряда различают зарядную (барьерную) и диффузионную емкости. Зарядная (барьерная) емкость определяется изменением нескомпенсированного заряда ионов при изменении ширины запирающего слоя под воздействием внешнего обратного напряжения. При увеличении же внешнего напряжения, приложенного к \(p\)-\(n\)-переходу в прямом направлении, растет концентрация инжектированных носителей вблизи границ перехода, что приводит к изменению количества заряда, обусловленного неосновными носителями в \(p\)- и \(n\)-областях. Это можно рассматривать как проявление некоторой емкости. Поскольку она зависит от изменения диффузионной составляющей тока, ее называют диффузионной емкостью. Заряд электронов или дырок, накопленный при протекании прямого тока в базе диода или \(i\)‑области \(p\)-\(i\)-\(n\)-диода, называется накопленным зарядом (\(Q_{нк}\)). Полная емкость \(p\)-\(n\)-перехода определяется суммой зарядной и диффузионной емкостей: \(C_{пер} = C_{зар} + C_{диф}\). При включении \(p\)‑\(n\)‑перехода в прямом направлении преобладает диффузионная емкость, а при включении в обратном направлении — зарядная (емкость \(C_{диф}\) при этом пренебрежимо мала).

Заряд восстановления (\(Q_{вос}\)) и время восстановления (\(t_{вос обр}\), \(t_{вос пр}\)). При переключении диода с прямого тока на обратный весь накопленный заряд вытекает во внешнюю цепь. При заданных прямом токе и итоговом обратном напряжении весь суммарный заряд (с учетом накопленного заряда и заряда емкости обедненного слоя для полных процессов запаздывания и восстановления), вытекающий во внешнюю цепь, называется зарядом восстановления (\(Q_{вос}\)), а время, истекшее от момента прохождения тока через нулевое значение до момента достижения обратным током заданной величины — временем восстановления обратного сопротивления или просто временем обратного восстановления диода (\(t_{вос обр}\)). Аналогично определяется время установления прямого напряжения или время прямого восстановления диода (\(t_{вос пр}\)), которое равно промежутку времени, в течение которого прямое напряжение на диоде устанавливается от нулевого значения до заданного уровня.

Полный список общих параметров диодов и их принятых обозначений приведен в таб. 2.2‑1. Помимо описанных выше параметров он включает также:

  • эффективное время жизни неравновесных носителей заряда (\(t_{эф}\)), характеризующее материал и некоторые конструктивные параметры кристалла полупроводника;
  • емкость корпуса диода (\(C_{кор}\)), определяемую его конструктивными особенностями;
  • общие емкость (\(C_д\)) и индуктивность (\(L_п\)) диода, измеряемые в установившемся режиме работы.

 

Таб. 2.2-1. Общие основные параметры диодов

 

 

< Предыдущая Следующая >
 

www.club155.ru

Характеристики светодиодов: обзор основных параметров LED

Экономически оправданной альтернативы LED-источникам пока не изобрели, что прогнозирует повальный переход на этот тип освещения уже в ближайшие годы. Но для корректного использования этих источников необходимо разбираться в их основных характеристиках.

При классификации светодиодных источников света используются параметры, разработанные исключительно для данных типов осветительных приборов. Данная статья как раз и предназначена для ознакомления с особенностями, которые отличают характеристики светодиодов от традиционных источников света.

Сила и напряжение, потребляемого светодиодом тока

Почти все светоизлучающие диоды рассчитаны на стандартную силу тока 20 мА. При вычислении сопротивления светодиода по закону Ома используется именно эта величина.

Светодиод, как собственно и любой диод, способен пропускать ток только в одну сторону, для стабильной работы он должен быть постоянным. Источником питания для LED источников света является дроссель, который выдает необходимые характеристики потребляемого тока. Светодиодный кристалл рассчитан на напряжение, колеблющееся от 0,5 до 6 вольт.

На одной подложке может быть размещено несколько LED кристаллов. Сумма показателей напряжения всех кристаллов составит требуемый показатель для такого источника света.

Следует заметить, что в электрофизических значениях светодиодов существует допустимый разброс вольт амперной характеристики (ВАХ), это обусловлено технологией производства. Невозможно вырастить кристаллы с жестко ограниченными показателями. Подгон показателей производится методом калибровки.

Монтаж следует проводить в соответствии с обозначенной полярностью. При неправильном включении светодиод закроется, и работать не будет. Если напряжение превысит предел в 5 вольт, произойдет пробой, что приведет к порче изделия.

Для правильного подключения катод на DIP светодиодах обозначается более короткой ногой, на SMD это будет спил на подложке возле соответствующего контакта.

характеристики светодиодов в виде таблицы

Интенсивность светового потока, угол рассеивания

Данная характеристика очень важна в освещении, особенно в помещениях. Интенсивность светового потока измеряется в Люменах (Лм). Для сравнения, обычная лампа накаливания в 100 Вт выдает показатель 1000 Лм. Для простого расчета напряжения лед-источника, который заменит лампу накаливания, необходимо вольтаж классики разделить на 8. Примером, лампе в 100 Вт будет соответствовать светодиод мощностью 12 – 12.5 Вт.

Важно осознавать, что рассматриваемый источник имеет одностороннее направление освещения, в то время как обычная лампа накаливания рассеивает свет во все стороны. Светодиоды имеют точечную направленность. Для увеличения угла рассеивания в конструкции применяются специальные линзы. Угол рассеивания колеблется в пределах 20 — 120˚.

Соотношение параметров эффективности разных источников света, приведенных для сравнения:

  1. Лампа накаливания – 10 Лм/Вт.
  2. Люминесцентная лампа – до 40 Лм/Вт.
  3. Светодиод – до 140 Лм/Вт.

три лампочки

Размер кристалла

В общих характеристиках светоизлучающих диодов можно встретить значение размера кристалла. Эта величина измеряется в Милах (mil), 1 mil соответствует 0,0254 мм. Стандартные размеры квадрата кристалла 24×24, 24×40, 35×35 и 40×40 mil. Считается, чем больше его площадь, тем больше потребляемая мощность, при этом снижается нагрев при работе и увеличивается предел перегрузки. Для сравнения размеры 40×40mil соответствуют 1,143 × 1,143 мм и потребляют около 1 Вт.

Естественно, большое значение имеет материал для изготовления и условия, при которых кристалл выращивался. Также значение имеет качество калибровки. Это к тому, что себе дешевле приобретать светодиоды известных брендов, показатели многих китайских лед источников света завышены.

Недобросовестные продавцы зачастую заявляют повышенную мощность. Обратив внимание на размеры кристалла, можно предостеречь себя от приобретения подделки.

CRI (индекс цветопередачи)

Для более ясного понимания этой характеристики, целесообразно ознакомиться с принципами восприятия цветов человеческим глазом. Белый свет включает в себя весь спектр. Попадая на окружающие нас предметы, отражается только та часть спектра, которая соответствует цвету предмета. Естественно, источник с искаженным спектром будет искажать человеческое цветовосприятие.

Для определения степени достоверности передачи цветов при освещении искусственным источником был разработан индекс цветопередачи (CRI). Степени значений индекса цветопередачи расположены в границах 0 – 100. Показатель 100 соответствует солнечному свету и является сравнительным эталоном.

Полноценный индекс CRI, при котором искажение будет минимальным, не должен быть ниже значения 90.

индекс цветопередачи

Цветовые характеристики

Свет имеет волновую природу, длина излучаемой волны определяет цвет и измеряется в нанометрах (нм). Человеческий глаз способен воспринимать диапазон от 380 до 760 нм, что соответствует видимому спектру.

цветовые характеристики

Таблица цветовых характеристик

Примечательно, что человеческий глаз имеет наибольшую чувствительность при показателе 555 нм, следовательно, источник с таким параметром будет иметь наибольшую степень освещенности.

Цветовая температура

Данная характеристика выведена по аналогии цветовосприятия разогреваемого металла. Численные пределы размещены в рамках от 800 до 7500 и измеряются в Кельвинах (К). Наиболее низким показателем обладает красный свет – около 800 К, соответственно, наиболее высокий – у холодного синего.

Для освещения применяется белый свет. Цветные светодиоды в основном используются в декоративных и индикационных целях. Белый цвет по критериям цветовой температуры разделяется на три подкатегории:

  1. Теплый – 2700 – 3500 К.
  2. Нейтральный – 3500 – 5300 К (наиболее сбалансированный для восприятия).
  3. Холодный – 5300 – 7500 К.

цветовая температура

Максимальная рабочая температура

Рабочая температура — одна из важнейших характеристик светодиода. При работе выделяется большое количество тепла, переизбыток которого может привести для начала к падению интенсивности светоизлучения, а в дальнейшем и к полной порче светодиода. Некоторые сверхяркие кристаллы способны разогреваться до температуры 150˚ С.

Производители ввели понятие «максимальная рабочая температура» для определения пределов температурного режима, в котором работа лед источника будет оптимальной. Значение допустимой температуры обозначаются в общих паспортных данных.

Для борьбы с избыточной температурой применяются алюминиевые и медные термоотводящие радиаторы. Маломощные SMD светодиоды монтируются на плату (подложку), которая также выступает и в роли охладителя. Для улучшенной теплоотдачи место соединения светодиода и радиатора смазывается термопастой.

максимальная рабочая температура

Срок эксплуатации

Этот параметр указывает на предполагаемую продолжительность работы LED кристалла. Индикационные светодиоды имеют продолжительность работы до 100 000 часов. Для сверхярких источников этот показатель составляет максимум 60 000 часов. Производители из Поднебесной зачастую завышают и этот показатель.

Для продления срока эксплуатации необходимо соблюдать температурный режим работы лед светильника. Другими словами, чем эффективней охлаждение, тем дольше живет источник.

Для наглядного ознакомления рекомендуется посмотреть видео. Автор видео всего за несколько минут лаконично описывает основные параметры и характеристики, которые действительно важны при выборе светодиодов.

Вывод

При выборе светодиодов желательно отдавать предпочтение маркам, зарекомендовавших себя брендов. Стоимость данных источников света значительно выше традиционных, следовательно, срок окупаемости тоже увеличен. Позарившись на дешевое изделие с плохими характеристиками, можно просто выбросить деньги на ветер и, напротив, светодиодные изделия от проверенных производителей обычно отрабатывают заявленный срок. Более того, при приобретении брендовых осветительных приборов на основе LED, как правило, предоставляется гарантия.

 

ledno.ru

Характеристики и параметры выпрямительных и универсальных диодов

Характеристики и параметры выпрямительных и универсальных диодов

 

Выпрямительные диоды служат для выпрямления переменного тока низкой частоты. В основе выпрямительных свойств этих диодов лежит принцип односторонней проводимости электронно-дырочных р-и-переходов.

Универсальные диоды используют в различной радиоэлектрон­ной аппаратуре в качестве выпрямителей переменного тока высоких и низких частот, умножителей и преобразователей частоты, детекто­ров больших и малых сигналов и т. д. Диапазон рабочих токов и напряжений выпрямительных и уни­версальных диодов очень широк, поэтому они выпускаются как с точечным так и плоскостным р-n-переходом в структуре полупроводника с площадями от десятых долей квад­ратного миллиметра до несколь­ких квадратных сантиметров. Обычно в универсальных диодах используются переходы с малыми площадями и емкостями, но с от­носительно высокими значениями прямых токов и обратных напря­жений. Этим требованиям удовлет­воряют точечные, микросплавные плоскостные и мезапланарные дио­ды. Характеристики и параметры универсальных диодов те же, что и у выпрямительных диодов.

Вольтамперная характеристи­ка (ВАХ) выпрямительных диодов выражает зависимость тока, про­ходящего через диод, от значения и полярности приложенного к нему постоянного напряжения Прямая ветвь характеристики  показывает зависи­мость тока через диод при прямой пропускной полярности приложен­ного напряжения. Сила прямого тока  экспоненциаль­но зависит от приложенного к диоду прямого напряжения и может достигать больших значений при малом (порядка 0,3 — 1 В) падении напряжения на диоде. 

Обратная ветвь характеристики  соответствует не­проводящему направлению тока через диод при обратной полярно­сти приложенного к диоду напряжения. Обратный ток (участок. ОД) незначительно зависит от приложенного обратного напряжения. При относительно большом обратном напряжении (точка В на характе­ристике) наступает электрический пробой р-n-перехода, при кото­ром быстро увеличивается обратный ток, что может привести к теп­ловому пробою и повреждению диода. При повышении температуры возрастут тепловой ток и ток генерации носителей зарядов в пере­ходе, что приведет к увеличению прямого и обратного токов и сме­щению характеристик диода.

Свойства и взаимозаменяемость диодов оценивают по их пара­метрам. К основным параметрам относят токи и напряжения, свя­занные с ВАХ Диоды применяют в цепях как переменного, так и постоянного тока. Поэтому для оценки свойств диодов наряду с параметрами на постоянном токе пользуются дифференциальными параметрами, ха­рактеризующими их работу на переменном токе.

Выпрямленный (прямой) ток Iпр представляет собой ток (сред­нее значение за период), проходящий через диод, при котором обес­печивается его надежная и длительная работа. Сила этого тока ог­раничивается разогревом или максимальной мощностью Рмакс. Пре­вышение прямого тока ведет к тепловому пробою и повреждению диода.

  • Прямое падение напряжения UПр.Ср — среднее значение за пери­од на диоде при прохождении через него допустимого прямого тока.
  • Допустимое обратное напряжение U0бр —среднее значение за период, при котором обеспечивается надежная и длительная работа диода. Превышение обратного напряжения приводит к пробою и вы­ходу диодов из строя. При повышении температуры значения об-ратного напряжения и прямого тока снижаются.
  • Обратный ток Iобр — среднее значение за период обратного то­ка при допустимом Uобр. Чем меньше обратный ток, тем лучше

Вы­прямительные свойства диода. Повышение температуры на каждые 10 °С приводит к увеличению обратного тока у германиевых « крем­ниевых диодов, в 1,5 — 2 раза и более.

Максимальная постоянная, или средняя за период мощность Pмакс, рассеиваемая диодом, при которой диод может длительно ра­ботать, не изменяя своих параметров. Эта мощность складывается из суммы произведений токов и напряжений при прямом и обрат­ном смещениях перехода, т. е. за положительный и отрицательный полупериоды переменного тока. Для приборов большой мощности, работающих с хорошим теплоотводом, Pмакс=(Tп.макс — Тк)/Rпк. Для приборов малой мощности, работающих без теплоотвода,

Pмакс = (Tп.макс — Т с) /Rп.с.

Максимальная температура перехода Гп.макс зависит от мате­риала (ширины запрещенной зоны) полупроводника и степени его легирования, т. е. от удельного сопротивления области р-n-перехода — базы. Диапазон Гп.макс для германия лежит в пределах 80 — 110°С, а для кремния 150 — 220 °С.

Тепловое сопротивление Rп.к между переходом и корпусом оп­ределяется температурным перепадом между переходом Тпи кор­пусом Tк и средней выделяемой в переходе мощностью Ра и состав­ляет 1 — 3°С/Вт: Ra.K=(Ta — TK)/Pa. Тепловое сопротивление Rn c между переходом и окружающей средой зависит от температурного перепада между переходом Тп и окружающей средой Тс. Поскольку практически RПK<RK с, то Rn с определяется тепловым сопротивлением между корпусом при­бора и окружающей средой- Rnc=(Ta — Tc)/Pn=Rn K+RK c. Для обычных широко распространенных корпусов Ra c=0,2 — 0,4 °С/мВт.

Предельный режим использования диодов характеризуют мак­симально допустимое обратное напряжение UОбр макс, максимальный выпрямительный ток IПр макс и максимальная темпера­тура перехода ТПмакс С повышением частоты переменного напряжения, подводимого к диоду, ухудшаются его выпрямительные свойства. Поэтому для определения свойств выпрямительных диодов обычно оговаривается диапазон рабочих частот Дf или максимальная частота выпрямле­ния fмакс На частотах, больших fмакс, не успевают скомпенсироваться накопленные за время прямого полупериода неосновные носите­ли заряда в базе, поэтому при обратном полупериоде выпрямляемо­го напряжения переход некоторое время остается прямосмещенным (т е теряет свои выпрямительные свойства). Это свойство прояв­ляется тем значительнее, чем больше импульс прямого тока или вы­ше частота подводимого переменного напряжения Кроме того, на высоких частотах начинает проявляться шунтирующее действие барьерной и диффузионной емкостей p-n-перехода, снижающих его выпрямительные свойства

При расчете режима выпрямителей используются статическое со­противление постоянному току и дифференциальное сопротивление диодов переменному току

  • Дифференциальное сопротивление переменному току rдиф=dU/dI или rДиф=ДU/ДI определяет изменение тока через диод при изменении напряжения вблизи выбранной рабочей точки на харак­теристике диода. При прямом включении напряжения rдиф Пр=0,026/ /IПр и токе IПр>10 мА оно составляет несколько омов При под­ключении обратного напряжения rДИф обр велико (от десятков ки-лоомов до нескольких мегаомов).
  • Статическое сопротивление диода постоянному току гпрд = UПр/Iпр, rобр д = Uобр/Iобр В Области прямых токов rПр д>rдиф пр, а в области обратных r0бр д<rдифобр Поскольку электрическое со­противление p-n-перехода в прямом направлении меньше, чем в об­ратном, диод обладает односторонней проводимостью и использует­ся для выпрямления переменного тока

Емкости диодов оказывают существенное влияние на их работу на высоких частотах и в импульсных режимах. В паспортных дан­ных диодов обычно приводится общая емкость диода Сд, которая помимо барьерной и диффузионной включает емкость корпуса при­бора Эту емкость измеряют между внешними токоотводами диода при заданных обратном напряжении смещения и частоте тока

audioakustika.ru

Импортные выпрямительные диоды и диодные мосты | Meanders.ru

Ниже приведены характеристики импортных выпрямительных диодов, однофазных и трёхфазных выпрямителей, диодных мостов, наиболее часто применяемых в современной бытовой аппаратуре.

Характеристики диодов выпрямительных малой мощности

P/N

Корпус

Импульсное обратное напряжение

Средний ток прямой макс

Ударный прямой ток

Напряжение прямое

Ток утечки

VRRM В

IFAV А

IFSM А

VF В

IF А

IR мкА

VR В

1N4001DO-41

50

1

50

1,1

1

5

50

1N4002DO-41

100

1

50

1,1

1

5

100

1N4003DO-41

200

1

50

1,1

1

5

200

1N4004DO-41

400

1

50

1,1

1

5

400

1N4005DO-41

600

1

50

1,1

1

5

600

1N4006DO-41

800

1

50

1,1

1

5

800

1N4007DO-41

1000

1

50

1,1

1

5

1000

1N4007-13DO-41

1300

1

50

1,1

1

5

1300

EM513DO-41

1600

1

50

1,1

1

5

1600

EM516DO-41

1800

1

50

1,1

1

5

1800

EM518DO-41

2000

1

50

1,1

1

5

2000

S1ASMA

50

1

30

1,1

1

5

50

S1BSMA

100

1

30

1,1

1

5

100

S1DSMA

200

1

30

1,1

1

5

200

S1GSMA

400

1

30

1,1

1

5

400

S1JSMA

600

1

30

1,1

1

5

600

S1KSMA

800

1

30

1,1

1

5

800

S1MSMA

1000

1

30

1,1

1

5

1000

S1TSMA

1300

1

30

1,1

1

5

1300

S1WSMA

1600

1

30

1,1

1

5

1600

S1XSMA

1800

1

30

1,1

1

5

1800

S1YSMA

2000

1

30

1,1

1

5

2000

S2ASMB

50

2

50

1,1

1,15

5

50

S2BSMB

100

meanders.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта