Eng Ru
Отправить письмо

Измерение переменного напряжения. Измерение переменного напряжения


Измерение переменного напряжения

Мы уже рассматривали, что переменное напряжение характеризуется мгновенным, средним, средневыпрямленным и среднеквадратическим значениями.

Градуировку большинства шкал вольтметров , кроме импульсных, производят в среднеквадратических (действующих) значениях, которые равны 0,707 от амплитудного значения. Если известны коэффициенты формы, то по одному из параметров можно определить другие. При измерении синусоидальных напряжений мгновенное значение (амплитуда) определяется как U=Uизм*1,41, гдеUизм – действующее значение илиU=1,1*Uсв (если измеряется средневыпрямленное значение). При измерении несинусоидальных сигналов в показания также должны быть введены поправки.

Для измерения переменного напряжения применяют электромеханические, термоэлектрические и электронные приборы. Выбор прибора определяется предельными значениями напряжения, условиями измерений, требуемой точностью.

Из электромеханических приборов применяются в основном приборы электромагнитной, электродинамической и электростатической систем.

Вольтметры переменного напряжения классифицируются по различным признакам:

  • по назначению: импульсные , переменного тока, фазочувствительные, селективные, универсальные;

  • по методу измерения: непосредственной оценки и сравнения с мерой;

  • по измеряемому параметру напряжения: амплитудные, среднеквадратические и средневыпрямленные;

  • по типу индикатора: стрелочные и цифровые.

Большинство вольтметров электромагнитной системы применяются на частотах 50 Гц. Класс точности – 2,5 – 0,5.Электродинамические вольтметры имеют тот же частотный диапазон, но более высокий класс точности (0,1). Уравнение шкалы носит квадратичный характер. Достоинства – простота конструкции, возможность непосредственного применения в цепях переменного напряжения, надежность. Недостатки – низкая чувствительность, большое потребление от измерительной цепи, неравномерность шкалы.

Электростатические вольтметры применяют для измерения высоких (до 100 кВ) напряжений. Класс точности 1.

Измерение напряжения высокой частоты имеет свои особенности. Чтобы прибор не влиял на измерительную цепь, необходимо, чтобы его входное сопротивление было большим, а входная емкость как можно меньше.

В практике радиоэлектронных измерений наибольшее распространение получили электронные и выпрямительные вольтметры. Это объясняется тем, что электронные вольтметры имеют высокое входное сопротивление как на высоких, так и на низких частотах, высокую чувствительность при использовании усилителя, малое потребление из измерительной цепи.

Измерение переменного напряжения методом непосредственной оценки.

Электронные вольтметры.

Структурные схемы электронных вольтметров строятся в основном по двум схемам, милливольтметры и вольтметры для измерений больших напряжений. Они представлены на рисунке М2-8.

Рисунок М2-8. Электронные вольтметры для измерений переменных напряжений.

Вольтметры для измерения больших напряжений состоят из входного устройства, преобразователя переменного напряжения в постоянное (детектора), усилителя постоянного тока и измерителя магнитоэлектрической системы. Милливольтметры отличаются наличием усилителя переменного напряжения до детектора, служащего для повышения чувствительности.

Вольтметры средних значений строятся по структурной схеме первого типа с преобразователей переменного напряжения в в постоянное по среднему значению. Простейшими вольтметрами средних значений являются выпрямительные вольтметры с преобразователями, выполненными на диодах.

Селективные вольтметры.

Селективные, т.е. избирательные микровольтметры широко применяются для исследования спектра непериодических сигналов. Это высокочувствительные приемники гетеродинного типа с настройкой на определенную частоту или узкий интервал частот. Упрощенная схема селективного вольтметра приведена на рисунке М2-9.

Рисунок М2-9. Схема селективного вольтметра

Измеряемый сигнал частоты Fc подается через входное устройство на смеситель, куда поступает и сигнал от гетеродина. В смесителе измеряемый сигнал преобразуется на промежуточную частоту и усиливается УПЧ. На выходе усилителя имеется вольтметр с цифровым или стрелочным индикатором.

Импульсные вольтметры. Импульсные напряжений измеряют с помощью импульсных вольтметров, которые строятся по схеме аналогового электронного вольтметра с амплитудным детектором. В этих схемах импульсное напряжение преобразуется в напряжение постоянного тока и измеряется его значение. В этой схеме возможно измерение амплитуды только положительных импульсов, для отрицательных необходимо обратное включение диода. Специальные импульсные вольтметры градуируются в амплитудных значениях. Очень часто используют осциллографические методы измерений, которые позволяют не только измерять амплитуду импульсов, но и наблюдать их форму.

studfiles.net

Как измерить переменное напряжение вольтметром для измерения постоянного

Принцип измерения

Если для измерения постоянного напряжения Вы пользуетесь вольтметром с измерительной головкой магнитоэлектрической системы, то обращали внимание, что при неправильной полярности подключения щупов вольтметра к источнику измеряемого напряжения, стрелка измерительной головки отклоняется в обратную сторону за нуль и зашкаливает. Если таким прибором попытаться измерить переменное напряжение частотой около 50 Гц и выше, стрелка может слегка дёрнуться в первоначальный момент времени, но после будет указывать на ноль. Ненулевое значение будет говорить о наличии постоянной составляющей напряжения.

Самый простой способ выйти из положения – преобразовать переменное напряжение в постоянное, то есть выпрямить его. Это легко сделать с помощью одного единственного диода, как показано в статье "Элементарный выпрямитель на одном диоде". Если желаете измерить напряжение более-менее точно, для выпрямления можно использовать диодный мост.

Схемы измерения

Причина такого поведения магнитоэлектрического измерительного прибора при измерении переменного напряжения проста. В таких приборах присутствует постоянный магнит, а направление отклонения стрелки прибора зависит от направления протекания тока в катушке поворачивающейся рамки. В момент положительного полупериода стрелка прибора пытается отклониться в одну сторону, отрицательного – в другую. При достаточно частой смене полярности, например как в потребительской сети 50 Гц, стрелка просто не успевает отклониться в одну сторону, как вдруг ей нужно отклоняться в обратную. При этом можно заметить просто дрожание стрелки, или не заметить ни чего.

Измерительные головки электромагнитной системы в устройстве своём не имеют постоянного магнита, а их принцип действия основан на явлении втягивания предмета из намагничивающегося материала в область центра катушки с током. Направление действия катушки с током на намагничивающийся объект не зависит от направления тока в обмотке катушки. Поэтому такие приборы легко измеряют как постоянный, так и переменный ток или напряжение.

Если у Вас возникла необходимость измерить напряжение в сети переменного тока, а под рукой только прибор с измерительной головкой магнитоэлектрической системы (с постоянным магнитом), то можно просто выйти из положения, имея под рукой хотя бы один выпрямительный диод с обратным напряжением не ниже амплитудного значения предположительно измеряемой величины. Для этого рассмотрим две схемы.

Схема с одним диодом

Менее точный, но предельно простой вариант. Всё, что нужно, это подключить один из щупов прибора через выпрямительный диод. При этом следует учесть, что к клемме приора с положительной полярностью диод должен быть подключен катодом (к отрицательной – анодом). При действии положительного полупериода стрелку будет отклонять измеряемая величина напряжения в нужную нам сторону. Во время отрицательного полупериода диод будет запираться, разрывая цепь прибора с источником напряжения, которое уже не подействует на стрелку прибора в обратном направлении.

Особенность измерения схемой с одним диодом

Определение значения величины. При измерении по рассмотренной схеме следует учесть, что прибор реагирует только во ремя одного полупериода, и покажет величину в два раза меньше действительного действующего значения напряжения. То есть, если при измерении напряжения такой схемой прибор показал значение 110 В, это показание нужно умножить на два, и получите то, что Вы измерили.

Выбор диода. Для правильного выбора диода нам нужно обязательно учесть обратное напряжение диода, которое должно быть больше амплитудного значения измеряемой величины, иначе диод может пробить, и прибор перестанет показывать, или может врать на несколько порядков. Например, мы собираемся измерить напряжение в розетке. При указании класса напряжения оборудования указывается действующая величина. Чтобы узнать амплитудное значение, нужно действующую величину умножить на корень из двух: . Напряжение потребительской сети 220 В. Амплитуда напряжения будет 220×1,41=311 В. В нашем случае вполне подойдут выпрямительные диоды с обратным напряжением 400 В и выше. Ниже не желательно, т.к. в случае перенапряжения в сети,  амплитуда напряжения может превысить обратное напряжение диода, произойдёт необратимый пробой p-n перехода и диод выйдет из строя.

Кроме того, не выбирайте мощные диоды, чем меньше мощность, тем лучше. У мощных диодов большая площадь p-n перехода, который в запертом состоянии может вести себя как обкладки конденсатора. Таким образом, в отрицательный полупериод может сказаться ёмкостная проводимость, и показания прибора окажутся несколько занижены. Чем больше частота измеряемого напряжения, тем больше влияние, особенно при использовании высокоомных чувствительных измерительных головок.

Схема с диодным мостом

Более сложный вариант, но позволяющий измерять электрические величины более точно. Для этого потребуется 4 диода, либо готовый диодный мост. Принцип работы схемы аналогичен первому варианту, но здесь измерительный элемент чувствует оба полупериода напряжения, которые действуют на него однонаправлено, и прибор показывает действующее значение напряжения. То есть, показания прибора будут соответствовать действительности.

Выбор диодов или диодного моста аналогичен первому случаю.

Меры предосторожности

При модификации Вашего прибора указанными способами, уделите особое внимание безопасности. Диоды или диодный мост используемые в схемах, а так же контактные места рассечки проводов, щупов прибора, клеммы вольтметра должны быть надёжно заизолированы, чтобы предотвратить поражение электрическим током при случайном прикосновении к токоведущим частям прибора во время измерения.

volt-info.ru

Прибор для измерения напряжения. Как измерить напряжение мультиметром

Здравствуйте, уважаемые читатели сайта sesaga.ru. Основной единицей измерения электрического напряжения является вольт. В зависимости от величины напряжение может измеряться в вольтах (В), киловольтах (1 кВ = 1000 В), милливольтах (1 мВ = 0,001 В), микровольтах (1 мкВ = 0,001мВ = 0,000001 В). На практике, чаще всего, приходится сталкиваться с вольтами и милливольтами.

Существует два основных вида напряжений – постоянное и переменное. Источником постоянного напряжения служат батареи, аккумуляторы. Источником переменного напряжения может служить, например, напряжение в электрической сети квартиры или дома.

Для измерения напряжения используют вольтметр. Вольтметры бывают стрелочные (аналоговые) и цифровые.

Цифровые и стрелочные вольтметры

На сегодняшний день стрелочные вольтметры уступают пальму первенства цифровым, так как вторые более удобны в эксплуатации. Если при измерении стрелочным вольтметром показания напряжения приходится вычислять по шкале, то у цифрового результат измерения сразу высвечивается на индикаторе. Да и по габаритам стрелочный прибор проигрывает цифровому.

Но это не значит, что стрелочные приборы совсем не применяются. Есть некоторые процессы, которые цифровым прибором увидеть нельзя, поэтому стрелочные больше применяются на промышленных предприятиях, лабораториях, ремонтных мастерских и т.п.

На электрических принципиальных схемах вольтметр обозначается кружком с заглавной латинской буквой «V» внутри. Рядом с условным обозначением вольтметра указывается его буквенное обозначение «PU» и порядковый номер в схеме. Например. Если вольтметров в схеме будет два, то около первого пишут «PU 1», а около второго «PU 2».

При измерении постоянного напряжения на схеме указывается полярность подключения вольтметра, если же измеряется переменное напряжение, то полярность подключения не указывается.

Обозначение вольтметра на электрической схеме

Напряжение измеряют между двумя точками схемы: в электронных схемах между плюсовым и минусовым полюсами, в электрических схемах между фазой и нулем. Вольтметр подключают параллельно источнику напряжения или параллельно участку цепи — резистору, лампе или другой нагрузке, на которой необходимо измерить напряжение:

Схема подключения вольтметра

Рассмотрим подключение вольтметра: на верхней схеме напряжение измеряется на лампе HL1 и одновременно на источнике питания GB1. На нижней схеме напряжение измеряется на лампе HL1 и резисторе R1.

Перед тем, как измерить напряжение, определяют его вид и приблизительную величину. Дело в том, что у вольтметров измерительная часть рассчитана только для одного вида напряжения, и от этого результаты измерений получаются разными. Вольтметр для измерения постоянного напряжения не видит переменное, а вольтметр для переменного напряжения наоборот, постоянное напряжение измерить сможет, но его показания будут не точными.

Знать приблизительную величину измеряемого напряжения также необходимо, так как вольтметры работают в строго определенном диапазоне напряжений, и если ошибиться с выбором диапазона или величиной, прибор можно повредить. Например. Диапазон измерения вольтметра составляет 0…100 Вольт, значит, напряжение можно измерять только в этих пределах, так как при измерении напряжения выше 100 Вольт прибор выйдет из строя.

Помимо приборов, измеряющих только один параметр (напряжение, ток, сопротивление, емкость, частота), существуют многофункциональные, в которых заложено измерение всех этих параметров в одном приборе. Такой прибор называется тестер (в основном это стрелочные измерительные приборы) или цифровой мультиметр.

Тестер и цифровой мультиметр

На тестере останавливаться не будем, это тема другой статьи, а сразу перейдем к цифровому мультиметру. В основной своей массе мультиметры могут измерять два вида напряжения в пределах 0…1000 Вольт. Для удобства измерения оба напряжения разделены на два сектора, а в секторах на поддиапазоны: у постоянного напряжения поддиапазонов пять, у переменного — два.

Секторы измерения напряжения

У каждого поддиапазона есть свой максимальный предел измерения, который обозначен цифровым значением: 200m, 2V, 20V, 200V, 600V. Например. На пределе «200V» измеряется напряжение, находящееся в диапазоне 0…200 Вольт.

Теперь сам процесс измерения.

1. Измерение постоянного напряжения.

Вначале определяемся с видом измеряемого напряжения (постоянное или переменное) и переводим переключатель в нужный сектор. Для примера возьмем пальчиковую батарейку, постоянное напряжение которой составляет 1,5 Вольта. Выбираем сектор постоянного напряжения, а в нем предел измерения «2V», диапазон измерения которого составляет 0…2 Вольта.

Измерительные щупы должны быть вставлены в гнезда, как показано на нижнем рисунке:

красный щуп принято называть плюсовым, и вставляется он в гнездо, напротив которого изображены значки измеряемых параметров: «VΩmA»;черный щуп называют минусовым или общим и вставляется он в гнездо, напротив которого стоит значок «СОМ». Относительно этого щупа производятся все измерения.

Плюсовым щупом касаемся положительного полюса батарейки, а минусовым — отрицательного. Результат измерения 1,59 Вольта сразу виден на индикаторе мультиметра. Как видите, все очень просто.

Измеряем напряжение на батарейке

Предел измерения мультиметра 2 Вольта

Теперь еще нюанс. Если на батарейке щупы поменять местами, то перед единицей появится знак минуса, сигнализирующий, что перепутана полярность подключения мультиметра. Знак минуса бывает очень удобен в процессе наладке электронных схем, когда на плате нужно определить плюсовую или минусовую шины.

Знак минуса на индикаторе мультиметра

Ну а теперь рассмотрим вариант, когда величина напряжения неизвестна. В качестве источника напряжения оставим пальчиковую батарейку.

Допустим, мы не знаем напряжение батарейки, и чтобы не сжечь прибор измерение начинаем с самого максимального предела «600V», что соответствует диапазону измерения 0…600 Вольт. Щупами мультиметра касаемся полюсов батарейки и на индикаторе видим результат измерения, равный «001». Эти цифры говорят о том, что напряжения нет или его величина слишком мала, или выбран слишком большой диапазон измерения.

Предел измерения мультиметра 600 Вольт

Опускаемся ниже. Переключатель переводим в положение «200V», что соответствует диапазону 0…200 Вольт, и щупами касаемся полюсов батарейки. На индикаторе появились показания равные «01,5». В принципе этих показаний уже достаточно, чтобы сказать, что напряжение пальчиковой батарейки составляет 1,5 Вольта.

Предел измерения мультиметра 200 Вольт

Однако нолик, стоящий впереди, предлагает снизиться еще на предел ниже и точнее измерить напряжение. Снижаемся на предел «20V», что соответствует диапазону 0…20 Вольт, и снова производим измерение. На индикаторе высветились показания «1,58». Теперь можно с точностью сказать, что напряжение пальчиковой батарейки составляет 1,58 Вольта.

Предел измерения мультиметра 20 Вольт

Вот таким образом, не зная величину напряжения, находят ее, постепенно снижаясь от высокого предела измерения к низкому.

Также бывают ситуации, когда при измерении в левом углу индикатора высвечивается единица «1». Единица сигнализирует о том, что измеряемое напряжение или ток выше выбранного предела измерения. Например. Если на пределе «2V» измерить напряжение равное 3 Вольта, то на индикаторе появится единица, так как диапазон измерения этого предела всего 0…2 Вольта.

Единица на индикаторе мультиметра

Остался еще один предел «200m» с диапазоном измерения 0…200 mV. Этот предел предназначен для измерения совсем маленьких напряжений (милливольт), с которыми иногда приходится сталкиваться при наладке какой-нибудь радиолюбительской конструкции.

Предел измерения мультиметра 200m

2. Измерение переменного напряжения.

Процесс измерения переменного напряжения ни чем не отличается от измерения постоянного. Отличие состоит лишь в том, что для переменного напряжения соблюдать полярность щупов не требуется.

Сектор переменного напряжения разбит на два поддиапазона 200V и 600V.На пределе «200V» можно измерять, например, выходное напряжение вторичных обмоток понижающих трансформаторов, либо любое другое находящееся в диапазоне 0…200 Вольт. На пределе «600V» можно измерять напряжения 220 В, 380 В, 440 В или любое другое находящееся в диапазоне 0…600 Вольт.

В качестве примера измерим напряжение домашней сети 220 Вольт.Переводим переключатель в положение «600V» и щупы мультиметра вставляем в розетку. На индикаторе сразу появился результат измерения 229 Вольт. Как видите, все очень просто.

Щупы мультиметра вставляем в розетку

Измерение переменного напряжения 220 Вольт

И еще один момент. Перед измерением высоких напряжений ВСЕГДА лишний раз убеждайтесь в исправности изоляции щупов и проводов вольтметра или мультиметра, а также дополнительно проверяйте выбранный предел измерения. И только после всех этих операций производите измерения. Этим Вы убережете себя и прибор от неожиданных сюрпризов.

А если что осталось не понятно, то посмотрите видеоролик, где показано измерение напряжения и силы тока с помощью мультиметра.

Как Вы убедились, измерить напряжение мультиметром не так уж и сложно. Главное понимать что, где и как. И в заключении хочу предложить Вам прочитать статью прибор для измерения силы тока, как измерить силу тока мультиметром.Удачи!

sesaga.ru

Измерение переменных напряжений

Принцип работы электронного вольтметра переменного напряжения состоит в преобразовании переменного напряжения в постоянное, прямо пропорциональное соответствующему значению переменного напряжения, и измерении постоянного напряжения электромеханическим измерительным прибором либо цифровым вольтметром.

Измеряемое электронным вольтметром значение переменного напряжения определяется типом применяемого измерительного преобразователя переменного напряжения в постоянное. Рассмотрим устройство электронных вольтметров переменных напряжений, требования к отдельным элементам, особенности построения и их метрологические характеристики.

Вольтметры амплитудных значений

Отклонение указателя амплитудного вольтметра прямо пропорционально амплитудному (пиковому) значению переменного напряжения, независимо от формы кривой напряжения. Таким свойством не обладает ни одна из систем электромеханических измерительных приборов. В электронных вольтметрах амплитудного значения используются пиковые детекторы с открытым и закрытым входом.

Амплитудные вольтметры обладают большим диапазоном рабочих частот (от десятков герц до 1...2 ГГц) благодаря тому, что преобразование осуществляется непосредственно на входе прибора. Амплитудный детектор конструктивно размещается в выносном пробнике, благодаря чему удается уменьшить влияние паразитных параметров вольтметра, вывести резонансную частоту входной цепи за пределы диапазона частоты вольтметра.

Необходимая чувствительность (нижний предел измеряемых напряжений – единицы милливольт) достигается применением после детектора УПТ с большим коэффициентом усиления.

На рис. 2 показана упрощенная структурная схема амплитудного вольтметра с закрытым входом, построенного по схеме уравновешивающего преобразования.

Рис.2

Измеряемое напряжение Ux подается через входное устройство на вход пикового детектора с закрытым входом (VD1, С1, R1). На идентичный детектор (VD2, С2, R2) подается компенсирующее напряжение с частотой около 100 кГц, сформированное в цепи обратной связи. Постоянные напряжения, равные амплитудным значениям измеряемого сигнала и компенсирующего напряжения сравниваются на резисторах R1,R2. Следует отметить, что при малых напряжениях детекторы будут работать в квадратичном режиме, что приведет к погрешности вольтметра амплитудного значения.

Разностное напряжение подается на УПТ A1 с высоким коэффициентом усиления. Если напряжение на выходе УПТ имеет положительную полярность, что свидетельствует о превышении напряжения сигнала над компенсирующим или об отсутствии последнего, запускается ранее запертый генератор-модулятор, и компенсирующее напряжение поступает через делитель обратной связи на детектор VD2, R2, С2. Генератор-модулятор представляет собой генератор, собранный по емкостной трехточечной схеме, усилитель и эмиттерный повторитель.

Превышение компенсирующего напряжения над измеряемым приводит к запиранию генератора-модулятора. Выходное напряжение с амплитудой, пропорциональной амплитуде измеряемого напряжения и частотой 100 кГц, подается на детектор средневыпрямленного напряжения U1 и измеряется магнитоэлектрическим вольтметром PV1.

Важным требованием является идентичность передаточных характеристик детекторов сигнала и компенсирующего напряжения. Только при одинаковых характеристиках равенство выходных напряжений детекторов будет свидетельствовать о равенстве входных напряжений.

В установившемся режиме на резисторах R1 и R2 образуется некоторая разность напряжений и равна

(1)

где К и β – коэффициенты передачи цепи прямого преобразования и обратной связи.

В данной схеме в цепь прямого преобразования входят УПТ, генератор-модулятор, в цепь обратного – делитель в цепи обратной связи и детектор компенсирующего сигнала. Таким образом, для обеспечения высокой точности уравновешивания коэффициент усиления УПТ и генератора-модулятора должен быть достаточно высок.

Составляющими погрешности являются: погрешность образцовых средств при градуировке, случайная погрешность измерения постоянного напряжения магнитоэлектрическим прибором, погрешность, обусловленная нестабильностью коэффициента передачи цепи обратной связи и коэффициента передачи детектора средневыпрямленного значения, неидентичность характеристик детекторов, неуравновешенность схемы.

По подобной схеме работают выпускаемые промышленностью серийные амплитудные милливольтметры В3–6, В3–43. Основная погрешность на частотах до 30 МГц составляет 4...6%, на частотах до 1 ГГц – 25%. Шкалы амплитудных вольтметров градуируются в среднеквадратических значениях синусоидального напряжения. Недостатком является большая погрешность при измерении напряжений с большим уровнем гармонических составляющих.

studfiles.net

Измерение напряжения. Виды и принцип измерений. Особенности

Измерение напряжения на практике приходится выполнять довольно часто. Напряжение измеряют в радиотехнических, электротехнических устройствах и цепях и т.д. Вид переменного тока может быть импульсным или синусоидальным. Источниками напряжения являются химические элементы или генераторы тока.

Напряжение импульсного тока имеет параметры амплитудного и среднего напряжения. Источниками такого напряжения могут быть импульсные генераторы. Напряжение измеряется в вольтах, имеет обозначение «В» или «V». Если напряжение переменное, то впереди ставится символ «~», для постоянного напряжения указывается символ «-». Переменное напряжение в домашней бытовой сети маркируют ~220 В.

На аккумуляторах и гальванических элементах при указании напряжения знак «-» не используют, а ставят только цифры, например, «1,5 В». На корпусе гальванического элемента обязательно присутствует обозначение «+» возле положительного полюса. В практических электротехнических измерениях применяются кратные единицы: милливольты, киловольты и т.д.

Переменное напряжение имеет полярность, которая изменяется с течением времени. В бытовой сети напряжение изменяет полярность 50 раз за секунду, что означает частоту 50 герц. Постоянное напряжение имеет неизменную полярность. Поэтому для замеров напряжений переменного и постоянного тока применяют измерительные приборы, имеющие отличие в устройстве – вольтметры. Они могут быть цифровыми или аналоговыми (стрелочные). Однако существуют универсальные приборы, которые способны измерить постоянное и переменное напряжение, не переключая режимы.

Для начала измерений измерительный прибор соединяют параллельно с выводами источника питания или нагрузки специальными щупами.

Кроме вольтметров для измерения напряжения используют электронные осциллографы.

Это приборы, предназначенные для измерения и контроля характеристик электрических сигналов. Осциллографы работают на принципе отклонения электронного луча, который выдает изображение значений переменных величин на дисплее.

Измерение напряжения в сети переменного тока

Согласно нормативным документам величина напряжения в бытовой сети должна быть равной 220 вольт с точностью отклонений 10%, то есть напряжение может меняться в интервале 198-242 вольта. Если в вашем доме освещение стало более тусклым, лампы стали часто выходить из строя, либо бытовые устройства стали работать нестабильно, то для выяснения и устранения этих проблем для начала необходимо измерение напряжения в сети.

Перед измерением следует подготовить имеющийся у вас измерительный прибор к работе:

  1. Проверить целостность изоляции контрольных проводов со щупами и наконечниками.
  2. Установить переключатель на переменное напряжение, с верхним пределом 250 вольт или выше.
  3. Вставить наконечники контрольных проводов в гнезда измерительного прибора, например, мультиметра. Чтобы не ошибиться, лучше смотреть на обозначения гнезд на корпусе.
  4. Включить прибор.

Из рисунка видно, что на тестере выбрана граница измерений 300 вольт, а на мультиметре 700 вольт. Некоторые приборы требуют для измерения напряжения устанавливать в нужное положение несколько разных переключателей: вид тока, вид измерений, а также вставить наконечники проводов в определенные гнезда. Конец черного наконечника в мультиметре воткнут в гнездо СОМ (общее гнездо), красный наконечник вставлен в гнездо с обозначением «V». Это гнездо является общим для измерения любого вида напряжения. Гнездо с маркировкой «ma» применяется для замеров небольших токов. Гнездо с обозначением «10 А» служит для измерения значительной величины тока, который может достичь 10 ампер.

Если измерять напряжение со вставленным проводом в гнездо «10 А», то прибор выйдет из строя, или сгорит предохранитель. Поэтому при выполнении измерительных работ следует быть внимательным. Наиболее часто ошибки возникают в случаях, когда сначала измеряли сопротивление, а затем, забыв переключить на другой режим, начинают измерять напряжение. При этом внутри прибора сгорает резистор, отвечающий за измерение сопротивления.

После подготовки прибора, можно начинать измерения. Если при включении мультиметра на индикаторе ничего не появляется, это означает, что элемент питания, расположенный внутри прибора, отслужил свой срок и требует замены. Чаще всего в мультиметрах стоит «Крона», выдающая напряжение 9 вольт. Срок ее службы составляет около года, в зависимости от производителя. Если мультиметром долго не пользовались, то крона все равно может быть неисправной. Если батарейка исправна, то мультиметр должен показать единицу.

Щупы проводов необходимо вставить в розетку или прикоснуться ими к оголенным проводам.

На дисплее мультиметра сразу появится величина напряжения сети в цифровом виде. На стрелочном приборе стрелка отклонится на некоторый угол. Стрелочный тестер имеет несколько градуированных шкал. Если их внимательно рассмотреть, то все становится понятным. Каждая шкала предназначена для определенных измерений: тока, напряжения или сопротивления.

Граница измерений на приборе была выставлена на 300 вольт, поэтому нужно отсчитывать по второй шкале, имеющий предел 3, при этом показания прибора необходимо умножить на 100. Шкала имеет цену деления, равной 0,1 вольта, поэтому получаем результат, изображенный на рисунке, около 235 вольт. Этот результат находится в допустимых пределах. Если при измерении показания прибора постоянно меняются, возможно, плохой контакт в соединениях электрической проводки, что может привести к искрению и неисправностям в сети.

Измерение постоянного напряжения

Источниками постоянного напряжения являются аккумуляторы, низковольтные блоки питания или батарейки, напряжение которых не более 24 вольт. Поэтому прикосновение к полюсам батарейки не опасно, и нет необходимости в специальных мерах безопасности.

Для оценки работоспособности батарейки или другого источника, необходимо измерение напряжения на его полюсах. У пальчиковых батареек полюсы питания расположены на торцах корпуса. Положительный полюс маркируется «+».

Постоянный ток измеряется аналогичным образом, как и переменный. Отличие заключается только в настройке прибора на соответствующий режим и соблюдении полярности выводов.

Напряжение батарейки обычно обозначено на корпусе. Но результат измерения еще не говорит об исправности батарейки, так как при этом измеряется электродвижущая сила батарейки. Продолжительность эксплуатации прибора, в котором будет установлен элемент питания, зависит от его емкости.

Для точной оценки работоспособности батарейки, необходимо проводить измерение напряжения при подключенной нагрузке. Для пальчиковой батарейки в качестве нагрузки подойдет обычная лампочка для фонарика на 1,5 вольта. Если напряжение при включенной лампочке снижается незначительно, то есть, не более, чем на 15%, следовательно, батарейка пригодна для работы. Если напряжение падает значительно сильнее, то такая батарейка может еще послужить только в настенных часах, которые расходуют очень мало энергии.

Похожие темы:

 

electrosam.ru

Измерение переменного тока.

Приборы для измерения переменного тока могут быть различными.

Для измерения тока промышленной частоты (50 – 100 Гц) используют в основном приборы непосредственной оценки на основе электромагнитной и электродинамической систем, а также термоэлектрической систем.

В маломощных цепях высоких частот ток измеряется выпрямительными, термоэлектрическими, электронными цифровыми и аналоговыми вольтметрами на резисторе с известным сопротивлением. Амперметр должен иметь минимальные значения входного сопротивления, индуктивностей и емкостей.

Приборы электромагнитной системы. Принцип действия этих приборов основан на явлении втягивания стальной пластины, соединенной со стрелкой, магнитным полем катушки. Отклонение подвижной части измерительного механизма зависит от квадрата измеряемого тока и может быть использовано для измерения как постоянного, так и переменного тока с частотой не выше 5 кГц. Подбором формы сердечника удается получить практически равномерную шкалу. Амперметры магнитоэлектрической системы выпускаются в качестве щитовых приборов классов точности 0,5, 1,0, 2,5 на частотах до 1500 Гц, и 0,5, 1,0 – до 2400 Гц. Для расширения пределов измерения тока электромагнитным амперметром применяются не шунты, а секционные катушки или трансформаторы. Достоинства – простота конструкции, дешевизна и надежность. Недостатки – малая точность и чувствительность. Электромагнитные амперметры применяют для непосредственного измерения токов до 200 А, катушка измерительного механизма включается последовательно в цепь измеряемого тока. Предел измерения определяется числом витков катушки. Чем выше предел, тем меньше витков из более толстого провода.

Электродинамические приборы. Принцип действия основан на взаимодействии двух магнитных потоков, создаваемых токами, протекающими по двум катушкам, одна из которых подвижна. В результате взаимодействия магнитных полей катушек и противодействующих пружин, подвижная катушка поворачивается на некоторый угол, пропорциональный токам в катушках. Измеряется этими приборами действующее (среднеквадратическое ) значение тока. Схемы включения обмоток катушек различны. При последовательном включении измеряются малые токи (менее 0,5 А), шкала прибора квадратична. При параллельном включении обмоток измеряются большие токи, шкала тоже квадратичная. Электродинамические амперметры выпускаются различных классов точности до 0,1. Применяются в основном на промышленных частотах. Для расширения пределов применяют переключение катушек измерительного механизма с последовательного на параллельное и трансформаторы тока.

Выпрямительные приборы.

Они широко применяются для измерения тока в звуковом диапазоне частот. Принцип действия основан на выпрямительных свойствах диода. Постоянная составляющая выпрямленного диодом тока измеряется прибором магнитоэлектрической системы. Обычно используются выпрямители однополупериодные и двухполупериодные. Выпрямительные приборы измеряют среднее значение переменного тока, а не среднеквадратическое. Шкалу прибора градуируют в среднеквадратических значениях, поэтому показания пересчитывают через коэффициент формы. Выпрямительные приборы для измерения токов широко применяют как составные элементы комбинированных приборов :тестеров, авометров, используемых для измерения токов, напряжений, сопротивлений. При использовании соответствующих диодов выпрямительные приборы могут применяться в диапазоне СВЧ. Германиевые и кремниевые диоды обеспечивают частотный диапазон до 100 МГц. Основные достоинства выпрямительных приборов – высокая чувствительность, малое собственное потребление и возможность измерения в широком диапазоне частот. Недостаток – невысокая точность. Основные источники погрешностей – изменение параметров диодов со временем. Класс точности выпрямительных приборов 1,5 и 2,5, пределы измерений по току от 2 мА до 600 А, по напряжению от 0,3 до 600 В.

Термоэлектрические приборы.

Они используются для измерения токов высокой частоты. Прибор состоит из термопреобразователя, термоэлемента и измерительного прибора.

Измерительный прибор И выполнен по магнитоэлектрической системе. Простейший термопреобразователь имеет подогреватель 2 и термопару 1 из двух разнородных проводников, спаянных между собой. Если через подогреватель термоэлемента пропускать измеряемый ток, то вследствие нагрева спая в цепи термопары и прибора И будет протекать термоток постоянного напряжения. Прибор измеряет действующее значение переменного тока. Шкала термоэлектрических приборов близка к квадратичной. Чувствительность зависит от материала термопары. Достоинства термоэлектрических приборов – высокая чувствительность, большой диапазон измерения токов, широкий диапазон частот, возможность измерения токов произвольной формы. Недостатки – неравномерность шкалы, которая в начальной части получается сжатой. Кроме того показания зависят от температуры. Общий частотный диапазон термоэлектрических приборов лежит в пределах от 45 Гц до 300 МГц, номинальные токи – от 1 мА до 50 А, классы точности – от 1,0 до 2,5.

Измерение напряжения

Измерение постоянного напряжения

Приборы непосредственной оценки.

При использовании метода непосредственной оценки вольтметр подключается параллельно тому участку цепи, на котором надо измерить напряжение. Относительная погрешность измерения напряжения равна , т.е. чем больше внутреннее сопротивление вольтметра, тем меньше погрешность измерения.

Измерение постоянного напряжения может быть выполнено любыми измерителями напряжений постоянного тока (магнитоэлектрическими, электродинамическими, электромагнитными, электростатическими, аналоговыми и цифровыми вольтметрами.) Выбор вольтметра обусловлен мощностью объекта измерений и необходимой точностью. Диапазон измеряемых напряжений лежит в пределах от долей микровольт до десятков киловольт.

Если необходимая точность может быть обеспечена приборами электромеханической группы, то следует предпочесть этот простой метод непосредственной оценки. При измерении напряжений с более высокой точностью следует использовать приборы, основанные на методе сравнения. При любом методе измерения могут быть использованы аналоговый и цифровой отсчеты.

Приборы непосредственной оценки.

Магнитоэлектрические приборы используются при проверке режимов радиосхем и используются при измерении напряжений в приборах других систем. Кроме того они используются в качестве индикаторов. Вольтметры магнитоэлектрической системы имеют равномерную шкалу, высокую точность, большую чувствительность, но низкое входное сопротивление.

Электростатические вольтметры имеют достоинство малое потребление, независимость от температуры окружающей среды, высокое входное сопротивление, а недостатки – неравномерная шкала и опасность пробоя между пластинами.

Наиболее широко для измерения постоянного напряжения применяют электронные вольтметры. Они могут быть аналоговыми и цифровыми.

Аналоговые электронные вольтметры постоянного тока.

В отличие от вольтметров электромеханической группы электронные вольтметры постоянного тока имеют высокое входное сопротивление и малое потребление тока от измерительной цепи. На рисунке М2-6 представлена структурная схема аналогового электронного вольтметра.

Рисунок М2-6. Структурная схема аналогового электронного вольтметра постоянного напряжения.

Основными элементами являются входное устройство, усилитель постоянного тока и измерительный прибор магнитоэлектрической системы. Входное устройство содержит входные зажимы, делитель напряжения, предварительный усилитель. Высокоомный делитель на резисторах служит для расширения пределов измерения. Усилитель постоянного тока служит для повышения чувствительности вольтметра и является усилителем мощности измеряемого напряжения до значения, необходимого для создания достаточного вращающего момента у измерительного прибора.

К усилителям постоянного напряжения предъявляются такие требования, как высокая линейность характеристики, постоянство коэффициента усиления. Основные технические характеристики вольтметров постоянного тока приведены в таблице М2-3.

Таблица М2-3. Основные технические характеристики вольтметров постоянного тока.

Тип, наименование прибора

Диапазон измеряемых напряжений, В

Основная погрешность измерения, %

В2–34, вольтметр постоянного тока, дифференциальный , цифровой

0,01 мВ – 1000В,

поддиапазоны:

1

10

100,1000

0,005

В2 – 36, вольтметр постоянного тока, цифровой

0,005

В2-38, нановольтметр цифровой постоянного тока

0,05

Измерение постоянного напряжения цифровыми приборами.

Цифровые вольтметры все шире применяются для измерения напряжений и токов. Упрощенная структурная схема цифрового вольтметра представлена на рис.М2-7.

Рисунок М2-7. Структурная схема цифрового вольтметра

Входное устройство содержит делитель напряжения. Аналого-цифровой преобразователь (АЦП) преобразует аналоговый сигнал в цифровую форму и представляет его цифровым кодом. Цифровое отсчетное устройство регистрирует измеряемую величину.

По типу АЦП цифровые вольтметры делятся на кодоимпульсные и времяимпульсные. Поскольку АЦП преобразует сигнал постоянного тока в цифровой код, цифровые вольтметры считают приборами постоянного напряжения. Для измерения переменного напряжения на выходе вольтметра ставится преобразователь.

По виду измеряемой величины цифровые приборы делятся на приборы:

  • для измерения постоянного напряжения;

  • для измерения переменного напряжения;

  • мультиметры (универсальные вольтметры для измерения напряжения, сопротивления, тока)

Цифровые вольтметры обычно имеют высокое входное сопротивление более 100 Мом, диапазоны измерений 100мВ, 1 В, 10В, 100 В, 1000В. Порог чувствительности на диапазоне 1 00 мВ может быть 10 мкВ.

studfiles.net

Измерение постоянного и переменного напряжения (режим вольтметра)

Изучение работы мультиметра начнем с режима измерения напряжения (режим вольтметра), так как для его измерения не требуется выполнять какие-либо переключения или отключения в цепи и технически оно реализуется наиболее просто.

Во-первых, необходимо определить какое напряжение вы собираетесь измерить – постоянное или переменное. Для этого внимательно изучите схемы электрические принципиальные данного щита или прибора, маркировочные бирки и кембрики на кабелях и проводах, маркировку клемм приборов и оборудования и обозначения на печатных платах прибора (если вы производите измерения внутри прибора, например, при его ремонте).

Для измерения постоянного напряжения (батарейки, аккумуляторы, выходы блоков питания постоянного тока, цепи питания большинства современных датчиков КИП, термоЭДС термопар) установите поворотный переключатель в положение DCV (или V=). Для измерения переменного напряжения (бытовая электрическая розетка, выходы источников бесперебойного питания 220В, осветительная сеть, цепи питания двигателей насосов, вентиляторов, трансформаторов и исполнительных механизмов) установите поворотный переключатель в положение ACV (или V~).

Во-вторых, после того как вы определили вид напряжения необходимо выбрать предел измерения. Если величина измеряемого напряжения не известна вам даже ориентировочно (например, у батарейки типа «Крона» постоянное напряжение 9В, а в бытовой розетке 220В переменного напряжения), то начинайте измерение с наибольшего предела измерения, уменьшая предел измерения до тех пор, пока измеренная величина не окажется максимально близка к пределу измерения, но при этом все еще будет меньше его. Например, для измерения постоянного напряжения вы установили предел 200В и при измерении напряжения получили значение равное 12,0В. Полученное значение напряжение 12В меньше следующего за 200В предела измерения мультиметра от 0 до 20В, а значит можно выбрать этот предел измерения. Измерив тоже самое напряжение 12,0В на пределе 20В вы получили более точное значение напряжения 11,98В.

И в-третьих, для измерения напряжения на участке электрической цепи подключать мультиметр следует параллельно участку цепи, на котором необходимо измерить напряжение. Никаких разрывов или отключений цепи при этом выполнять не надо.

При работе с мультиметром в режиме измерения напряжения необходимо помнить, что:

- Измеряемое напряжение может быть опасно для жизни, поэтому при производстве измерений соблюдайте правила электробезопасности. Рекомендую освежить свои знания правил и пройти тест по электробезопасности. При измерении высоких напряжений на дисплее мультиметра высвечиваются символы HV (high voltage - высокое напряжение) предупреждающие о риске поражения электрическим током;

- При измерении напряжения мультиметр подключается параллельно участку цепи, на котором необходимо измерить напряжение. При этом для подключения мультиметра не требуется разрывать измеряемую цепь;

- Чем ближе измеренное значение к выбранному пределу измерения, тем точнее результат измерения;

- Идеальный вольтметр имеет максимально большое активное и реактивное входное сопротивление, стремящееся к бесконечности.

При измерении напряжения важно правильно выбрать точку, относительно которой выполняются измерения. В цепях переменного тока измерения чаще всего выполняют относительно нулевого провода N, а в цепях постоянного тока - относительно общего провода, который также часто называют массой, шасси, землей, GND. Причем в цепях постоянного тока может быть несколько независимых и полностью гальванически развязанных между собой общих проводов, например GNDa (аналоговая "земля" аналоговой части схемы прибора) и GNDd (цифровая "земля" цифровой части прибора). В этом случае производить измерения в аналоговой части схемы прибора нужно относительно аналоговой земля GNDa, а в цифровой части схемы - относительно цифровой земли GNDd.

Следует помнить, что мультиметр DT 830B предназначен для измерения постоянного напряжения и переменного синусоидального напряжения с частотой от 45 до 450 Гц. Поэтому, для измерения напряжения (амплитуды) импульсов, напряжения высокой частоты, напряжения имеющего постоянную и переменную составляющую следует использовать осциллограф.

Если установить переключатель вида измерений мультиметра в положение измерения переменного напряжения и попробовать измерить постоянное напряжение, то мультиметр покажет нуль. Это связано с особенностями схемотехники цифрового мультиметра. Если же попытаться измерить переменное напряжение, установив переключатель в измерение постоянного напряжения, то мультиметр может выйти из строя. Коме того, мультиметром крайне не рекомендуется выполнять измерения переменного напряжения свыше 500В - с большой долей вероятности прибор может выйти из строя.

studfiles.net


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта