Принципиальные схемы генераторов на микросхеме К155ЛАЗ. Схема принципиальная генератораПринципиальная электрическая схема подключения автомобильного генератора к аккумулятору с датчиком мощности из вольтметраЭто продолжение статьи о создании генератора электроэнергии своими руками на базе велосипеда. В предыдущей части описаны необходимые компоненты для самодельного генератора. Электрическая схема управления генератором.Очень многие думают, что самое сложное в педальном генераторе — это электрические схемы подключения генератора, но на самом деле схемы управления генератором простые. При разработке электрической схемы важно исключить возможность неправильного подключения аккумулятора, при котором мгновенно повреждается автомобильный генератор. На всех наших педальных генераторах и солнечных панелях мы используем полярные штекеры и сокеты, подключающиеся одним и тем же способом. Другая важная деталь — предохранитель правильного номинала, близко расположенный к положительной клемме аккумулятора, который перегорает раньше, чем сгорят провода. В идеальном случае электропроводка от генератора к аккумулятору должна быть рассчитана не меньше, чем на 20 Ампер, иметь сечение от 2.5 мм2 и защищена предохранителем на 10 А. Старайтесь использовать гибкий кабель. Не пытайтесь использовать кабель со сплошной металлической жилой, так как он всё время гнётся и в какой-то момент сломается, что может привести к удару электрическим током. Вольтметр на руле можно подсоединить с помощью тонкого провода и защитить маленьким предохранителем на один или два ампера. Это самая простая версия принципиальной электрической схемы подключения автомобильного генератора. Вот так выглядит её демонстрационная версия. В таблице представлен список основных компонентов с шифрами Maplin и Farnell. Maplin прекратили продавать некоторые 25 Вт резисторы, включая используемый в исходной схеме резистор на 0.47 Ом 25 Вт и многие другие компоненты.
Возможно вам самостоятельно придется подобрать лампочку, чтобы она соответствовала генератору. Если лампочка включается на слишком низких оборотах, то потребуется лампочка, работающая на низком токе. В принципиальной схеме отсутствуют критически важные компоненты, так что можно использовать даже бывшие в употреблении лампочки. Люди, хорошо разбирающиеся в электротехнике, могут заметить, что значение 25 Вт для резистора слишком завышено. Это сделано на случай протекания очень высоких токов в аварийных ситуациях до момента сгорания предохранителя. Если планируется использовать генератор для публичных демонстраций, то в целях обеспечения дополнительной безопасности неплохо будет прикрепить его к металлической плите или радиатору. К тому же радиатор производит впечатление — с ним генератор кажется более мощным. Датчик мощности.Хороший вольтметр достаточно важная часть генератора. Он нужен для оценки результата затрачиваемых сил и для демонстрации аудитории. Генератор может работать и без него, но всё же нужно как-то оценивать свои результаты. Подходят только аналоговые вольтметры, так как цифровые не подходят для измерения постоянно меняющегося напряжения. По этой причине в автомобильных спидометрах и датчиках по прежнему используются аналоговые приборы. Мы используем аналоговый вольтметр со смещённым нулём, который может показывать только напряжение больше 12 вольт. Если напряжение опустилось ниже 12 вольт, то это может произойти только при неисправном аккумуляторе. У вольтметра со смещённым нулём при запуске генератора резко дёргается стрелка — это смотрится достаточно эффектно. Обычно я использую схему, основанную на самом дешёвом измерительном приборе из каталога Maplin, но вы можете купить более серьёзные измерительные приборы. Схема измерительного прибора довольно простая. Опорный диод не проводит ток ниже 11 В, то есть можно сказать, что он вычитает 11 В напряжения. С помощью резистора мы превратили вольтметр с диапазоном измерения 0 - 4 вольт в измерительный прибор с диапазоном от 11 до 15 вольт. У вольтметров, установленных на наших генераторах, в действительности даже ещё более узкий диапазон, с опорным диодом на 12 В и диапазоном 2,5 В. В схему управляющего модуля добавили дополнительный резистор и переключатель на три позиции, распределив сопротивление между аккумулятором и генератором и тем самым мы адаптировав генератор для людей с любой физической форме. Если требуется минимизировать потери энергии в цепочке резисторов, то можно добавить переключатель, замыкающий все резисторы, что позволит людям в хорошей физической форме быстрее заряжать аккумулятор. Читайте продолжение, в котором будут даны инструкции по правильной эксплуатации генератора.
Электрическая схема - генератор - Большая Энциклопедия Нефти и Газа, статья, страница 1Электрическая схема - генераторCтраница 1 Электрическая схема генератора ( рис. 58) состоит из задающего генератора, каскадов предварительного усиления мощности и усилителя мощности. Трансформаторы и выпрямители питания, защитные и пусковые устройства, двигатель с вентилятором для нагретого воздуха не показаны. [2] Электрическая схема генератора с независимым возбуждением изображена на рис. 245, а. Якорь генератора на схемах условно обозначается окружностью с двумя щетками и буквой Г в середине, а обмотка возбуждения - в виде ломаной линии. [3] Электрическая схема генератора представлена на фиг. Генератор имеет две обмотки возбуждения: намагничивающую параллельную Н и размагничивающую последовательную С. Последовательно в эту обмотку включен регулировочный реостат РТ для плавной регулировки сварочного тока. Последовательная обмотка включается последовательно внешней цепи генератора и секционируется для грубой, ступенчатой регулировки сварочного тока. [4] Электрическая схема генератора пмпульсн лх токов. [5] Электрическая схема генератора представлена на фиг. [6] Электрическая схема генератора ( см. рис. 66) включает две пары щеток. Плюсовые - щетки установлены в изолированных от корпуса щеткодержателях л сое. Минусовые щетки не ИЗОЛИРУЮТСЯ и соединяются с массой генератора, с которой соединены и по одному концу двух пар катушек обмотки возбуждения. Вторые кон мы этих катушек, обозначенные буквой Ш, выведены вместе е выводом VI в специальную экранирующую коробку, закрепленную на корил се генератора. [7] Электрическая схема генератора ( рис. 5 - 4) построена на транзисторе Т с положительной обратной связью. Входной контур настраивается на частоту 50 Гц изменением индуктивности L1 вторичной обмотки трансформатора Тр путем регулировки воздушного зазора в его магнитопроводе. Ре-ристоры Rl - R4 предусмотрены для стабилизации режима работы, причем резистор R4 образует отрицательную обратную связь по току. [9] Электрическая схема генератора ГАБ-2-0 / 230 и процесс его работы ничем не отличаются от описанного выше. [10] Электрические схемы генераторов ВЧД-16 / 40 - НП-Л01, ЛД1 - 4 и ЛД4 - 10 принципиально не отличаются. Автогенератор с общим анодом выполнен по П - образной схеме. Настройка на заданный диапазон частоты и требуемый режим производится на заводе-изготовителе катушками переменной индуктивности и конденсатором. В эксплуатационных условиях режим регулируют только ручкой рабочего конденсатора. [12] Электрическая схема генератора импульсов приведена на рис. 5.14. Его подключают в сварочную цепь параллельно сварочному трансформатору, конденсатор С заряжается от повышающего трансформатора ТП через выпрямительное устройство В. А, при этом импульс имеет ту же полярность, что и напряжение дуги в данный момент. После разряда конденсатора синхронизирующее устройство размыкает выключатель, а конденсатор заряжается вновь для подачи следующего импульса. [14] Электрическая схема генератора Г-304 изображена на рисунке 7.1, а. Фазовые обмотки генератора ФО соединены в треугольник, а концы фаз выведены на панель переменного тока и подключены к выпрямителю В. [15] Страницы: 1 2 3 www.ngpedia.ru Принципиальные схемы генераторов на микросхеме К155ЛАЗНа микросхемах серии K155ЛA3 можно собирать низкочастотные и высокочастотные генераторы небольших размеров, которые могут быть полезны при проверке, ремонте и налаживании различной радиоэлектронной аппаратуры. Рассмотрим принцип действия ВЧ генератора, собранного на трех инверторах (рис. 20.9). Конденсатор СІ обеспечивает положительную обратную связь между выходом второго и входом первого инвертора необходимую для возбуждения генератора. Резистор Rl обеспечивает необходимое смещение по постоянному току, а также позволяет осуществлять небольшую отрицательную обратную связь на частоте генератора. В результате преобладания положительной обратной связи над отрицательной на выходе генератора получается напряжение прямоугольной формы. Изменение частоты генератора в широких пределах производится подбором емкости СІ и сопротивления резистора Rl. Генерируемая частота равна fген = 1/(С1 * R1). С понижением питания эта частота уменьшается. По аналогичной схеме собирается и НЧ генератор подбором соответствующим образом СІ и Rl.
Рис. 20.9. Структурная схема генератора на логической микросхеме Исходя из вышеизложенного, на рис. 20.10 представлена принципиальная схема универсального генератора, собранная на двух микросхемах типа K155ЛA3. Генератор позволяет получить три диапазона частот: 120…500 кГц (длинные волны), 400…1600 кГц (средние волны), 2,5…10 МГц (короткие волны) и фиксированную частоту 1000 Гц. На микросхеме DD2 собран генератор низкой частоты, частота генерации которого составляет примерно 1000 Гц. В качестве буферного каскада между генератором и внешней нагрузкой используется инвертор DD2.4. Низкочастотный генератор включается выключателем SA2, о чем свидетельствует красное свечение светодиода VD1. Плавное изменение выходного сигнала генератора НЧ производится переменным резистором R10. Частота генерируемых колебаний устанавливается грубо подбором емкости конденсатора С4, а точно подбором сопротивления резистора R3.
Рис. 20.10. Принципиальная схема генератора на микросхемах К155ЛАЗ Детали В универсальном генераторе используются постоянные резисторы типа МЛТ-0,125, переменные СП-1. Конденсаторы С1…СЗ КСО, С4 и С6 К53-1, С5 МБМ. Вместо указанной серии микросхем на схеме можно использовать микросхемы серии К133. Все детали генератора монтируют на печатной плате. Конструктивно генератор выполняется исходя из вкусов радиолюбителя. Настройка Настройку генератора при отсутствии ГСС производят по радиовещательному радиоприемнику, имеющему диапазоны волн: КВ, СВ и ДВ. С этой целью устанавливают приемник на обзорный КВ диапазон. Установив переключатель SA1 генератора в положение КВ, подают на антенный вход приемника сигнал. Вращая ручку настройки приемника пытаются найти сигнал генератора. На шкале приемника будет прослушиваться несколько сигналов, выбирают наиболее громкий. Это будет первая гармоника. Подбирая конденсатор С1, добиваются приема сигнала генератора на волне 30 м, что соответствует частоте 10 МГц. Затем устанавливают переключатель SA1 генератора в положение СВ, а приемник переключают на средневолновый диапазон. Подбирая конденсатор С2, добиваются прослушивания сигнала генератора на метке шкалы приемника соответствующей волне 180 м. Аналогично производят настройку генератора в диапазоне ДВ. Изменяют емкость конденсатора СЗ таким образом, чтобы сигнал генератора прослушивался на конце средневолнового диапазона приемника, отметка 600 м. Аналогичным способом производится градуировка шкалы переменного резистора R2. Для градуировки генератора, а также его проверки, должны быть включены оба выключатели SA2 и SA3. Литература: В.М. Пестриков. Энциклопедия радиолюбителя. nauchebe.net СХЕМА ГЕНЕРАТОРА СИГНАЛОВГенератор различных стабильных частот является необходимым лабораторным оборудованием. В интернете есть немало аналогичных по функциям схем, но они либо морально устарели, либо не обеспечивают достаточно широкого перекрытия частот. Устройство, описываемое здесь, основано на высоком качестве работы специализированной микросхемы XR2206. Диапазон перекрываемых генератором частот впечатляет: 1 Гц - 1 МГц! XR2206 способна генерировать качественные синусоидальные, прямоугольные и треугольные формы сигналов высокой точности и стабильности. У выходных сигналов может быть как амплитудная и частотная модуляция. Параметры генератораСинусоидальный сигнал: - Амплитуда: 0 - 3В при питании 9В- Искажения: менее 1% (1 кГц)- Неравномерность: +0,05 дБ 1 Гц - 100 кГц Прямоугольный сигнал: - Амплитуда: 8В при питании 9В - Время нарастания: менее 50 нс (при 1 кГц)- Время спада: менее 30 нс (на 1 кГц)- Рассимметрия: менее 5% (1 кГц) Треугольный сигнал: - Амплитуда: 0 - 3 В при питании 9 В- Нелинейность: менее 1% (до 100 кГц) Схемы и ПП
Схема принципиальная генератора сигналов 1 Гц - 1 МГц
Второй вариант схемы функционального генератора на XR2206
Рисунки печатных плат Грубая регулировка частоты осуществляется с помощью 4-х позиционного переключателя для частотных диапазонов; (1) 1 Гц-100 Гц, (2) 100 Гц-20 кГц, (3) 20 кГц-1 МГц (4) 150 кГц-1 МГц. Несмотря на то, что в схеме указан верхний предел 3 мегагерца, гарантированная предельная частота составляет именно 1 Мгц, далее генерируемый сигнал может быть менее стабильным. Частотный выход может быть точно настроены при помощи потенциометров P1 и P2. Из минусов можно отметить лишь некоторую труднодоступность данной микросхемы. Скачать файл платы генератора и описание микросхемы можно тут. Поделитесь полезной информацией с друзьями: elwo.ru Принципиальная схема - генератор - Большая Энциклопедия Нефти и Газа, статья, страница 2Принципиальная схема - генераторCтраница 2 От принципиальных схем соответствующих генераторов ( см. рис, 64 - 30, г и в) эти схемы отличаются только тем, что в них предусматриваются дополнительные реостаты, предназначенные для осуществления пуска и регулирования частоты вращения двигателей. [16] Рассмотрим принципиальную схему генератора, приведенную на рис. 8.1. Сначала о самом простом - о блоке питания. В него входит трансформатор с двумя вторичными обмотками с напряжением 18 В и током 0 5 А, а также мостовой выпрямитель, выход которого выполнен со средней точкой. Относительно этой точки получают один номинал напряжения разной полярности - положительной и отрицательной. На выходе выпрямителя включены два регулятора на интегральных микросхемах, обеспечивающие стабильное напряжение питания 15 В. [17] Поэтому в принципиальной схеме генератора развертки осциллографа С1 - 5 уменьшение времени ждущей развертки осуществляется уменьшением внутреннего сопротивления разрядного пентода Л3 путем увеличения напряжения на экранной сетке. [18] На рис. 2.1 представлена принципиальная схема генератора на органическом топливе, в котором отвод тепла осуществляется окружающим воздухом, движущимся в охлаждающем контуре за счет естественной конвекции. Ввиду того что коэффициент теплоотдачи воздуха имеет небольшую величину, поверхность теплообмена необходимо развивать. С этой делью обычно используются радиаторы с плоскими ребрами, которые обеспечивают достаточно интенсивный теплоотвод и имеют сравнительно невысокое гидравлическое сопротивление. [19] На рис. 67 представлена принципиальная схема генератора. [21] На рис. 4.12 представлена принципиальная схема генератора RC с конкретными данными деталей. [22] На рис. 7 изображена принципиальная схема пьезоэлектрического генератора с кварцем, включенным между сеткой и катодом вакуумного триода. [24] На рис. VII.1 показана принципиальная схема генератора импульсов RC, обеспечивающего на электроискровом станке модели ЛК318 питание межэлектродного промежутка прерывистым током, а на рис. VII.2 - электрокинематическая схема этого станка, предназначенного для обработки отверстий и полостей. [26] Рассмотрим принцип действия и принципиальные схемы генераторов перечисленных систем. [27] На рис. 3.17 показана принципиальная схема генератора акустических колебаний газоанализатора Трель, возбуждение акустических колебаний в котором происходит следующим образом. [28] На рис. 7.1 представлена принципиальная схема генератора постоянного тока независимого возбуждения. Обмотка возбуждения его питается постоянным током от постороннего источника. [30] Страницы: 1 2 3 4 5 www.ngpedia.ru Схемы генераторов и генераторных установок применяемых на иномаркахСхемы генераторных установок
Соединение генератора с регулятором напряжения и элементами контроля работоспособности генераторной установки выполняются, в основном, по схемам, приведенным на рис.6. Обозначения выводов на схемах 6а,б соответствует принятому фирмой Bosch, а 6в - Nippon Dense. Однако другие фирмы могут применять отличные от этих обозначения. Схема 6а применяется наиболее широко особенно на автомобилях европейского производства Volvo, Audi,Mercedes и др. В зависимости от типа генератора, его мощности, фирмы изготовителя и особенно от времени начала его выпуска, силовой выпрямитель может не содержать дополнительного плеча выпрямителя, соединенного с нулевой точкой обмотки статора, т. е. иметь не 8, а 6 диодов, собираться на силовых стабилитронах как показано на рис.6 б,вВ генераторах повышенной мощности применяют параллельное включение диодов выпрямителя или парал лельное включение выпрямительных блоков. Это объясняется тем, что ток через диод равен трети тока, отдаваемого генератором, поэтому, например, если применяются диоды, на максимально допустимый ток 25 А, то генератор может иметь максимальный ток только 75 А. При больших токах диоды приходится включать параллельно. Конденсатор 11 вводится в схему для подавления радиопомех, источником которых служит генераторная установка. Резистор 8 , включенный параллельно лампе контроля заряда, обеспечивает под-возбуждение генератора даже в случае перегорания этой лампы. Резистор 6, расширяющий, как было показано выше, диагностические способности лампы 9 контроля работоспособного состояния генераторной установки, применяется далеко не всеми фирмами. Фирма Toyota, например, применяет включение лампы контроля работоспособного состояния генераторной установки через разделительный диод. Ею же применяется на некоторых марках автомобилей включение этой лампы через контакты реле. В этом случае обмотка реле установлена на место контрольной лампы 9 по схеме 6а, а сама лампа включается через нормально разомкнутые контакты этого реле на "массу". Иногда вывод "D+" используется там, где для управления включением или отключением потребителя постоянного тока требуется напряжение, появляющееся только после пуска двигателя автомобиля. Однако величина тока, которую может отдать дополнительный выпрямитель обмотки возбуждения, подсоединенный к этому выводу, весьма ограничена и не превышает обычно 6 А из которых до 5 А забирает сама обмотка возбуждения. На выводе "W" напряжение тоже появляется только после пуска двигателя, но это напряжение пульсирующее, частота пульсации которого, как было показано выше, связана с частотой вращения коленчатого вала двигателя.Этот вывод используется для питания устройств , реагирующих на частоту вращения, например, тахометра.Рис .6. Принципиальные схемы генераторных установок:1 -генератор; 2 - обмотка статора генератора; 3 -обмотка возбуждения генератора; 4 - силовой выпрямитель: 5 - регулятор напряжения; 6, 8 -резисторы в системе контроля работоспособности генераторной установки; 7 - дополнительный выпрями- тель обмотки возбуждения ;9 - лампа контроля работоспособного состояния генераторной установки; 10-выключатель зажигания; II -конденсатор; 12 - аккумуляторная батарея Недостатком схемы по рис.6.а является то, что регулятор поддерживает напряжение на выводе "D+" генератора, а потребители, в том числе, аккумуляторная батарея, включены на вывод "В+". Кроме того, при таком включении регулятор не воспринимает падения напряжения в соединительных проводах между генератором и аккумуляторной батареей и не вносит корректировок в напряжение генератора, чтобы компенсировать это падение. Эти недостатки устранены в схеме рис .6,б, где на входную цепь регулятора напряжение подается от того места, где его следует стабилизировать — либо это вывод аккумуляторной батареи, либо вывод "В+" генератора, а иногда, как показанона рис .6,б, сразу от двух этих точек, чем предотвращается возможность возникновения аварийного режима при обрыве этого соединения.Соединение регулятора напряжения с аккумуляторной ба тареей обычно осуществляется, минуя выключатель зажигания. В этом случае сила тока в этом соединении не превышает нескольких миллиампер, что не опасно с точки зрения разряда аккумуляторной батареи при неработающем двигателе автомобиля.Генераторные установки без дополнительного выпрямите ля, применение которых расширяется, особенно японскими и американскими фирмами выполняются по схеме рис.бв. В этом случае схема генератора упрощается, но усложняется схема регулятора напряжения, т. к. на него переносятся функ-ции предотвращения разряда аккумуляторной батареи на цепь возбуждения генератора при неработающем дви гателе автомобиля и управления лампой контроля работоспособного состояния генераторной установки.В некоторых случаях на автомобилях находят применение двухуровневые системы напряжения , при которых вся бортовая сеть выполняется на номинальное напряжение (у легковых автомобилей на 12В), а отдельные потребители включаются на повышенное напряжение. К числу таких последних относятся стеклообогреватели, выполняемые напылением токопроводящего слоя на стекло. Повышенное сопротивление стеклообогревателя требует подведения к нему и повышенного напряжения для обеспечения нужной мощности для оттаивания стекла. Например, на американских автомобилях Ford Taurus и Sable, на питание обогревателя подводится напряжение 75 В. При включении стеклообогревателя все потребители, кроме стеклообогревателя, переходят на питание от аккумуляторной батареи, генератор же питает только обогрев стекла, причем регулятор напряжения отключается. Применяются и варианты питания стеклообогревателей переменным током, забираемым с обмоток фаз генератора. Цепи генераторной установки снабжаются предохранителями и переходными колодками. Вчастности , предохранители обычно устанавливаются в цепь контрольной лампы 9 (см. рис.б), а также в цепях,соединяющих регулятор с аккумуляторной батареей и в цепи питания самой аккумуляторной батареи. Соединение генератора с аккумуляторной батареей у европейских автомобилей в большинстве случаев производится на выводе стартера, однако встречаются и соединения на переходных колодках. Если регулятор напряжения расположен вне генератора, то их "массы" должны соединяться проводом.На некоторых генераторах , например, у автомобилей Chrysler, Mercedes с целью максимального исключения влияний вибрации двигателя, посадочные места в крепежных лапах снабжены резиновыми втулками. В таком случае генератор соединяется с "массой" автомобиля специальным проводом. Кроме приведенных на рис.6 выводов генераторные установки некоторых фирм имеют выводы или гнезда, используемые для диагностирования или управления от бортового компьютера, а также соединения обмотки возбуждения непосредственно с "массой".Autocop.ru ® 2007 All rights reserved © | [email protected] | 8 (49449) 5 48 26 www.autocop.ru Устройства регулирования напряжения на дизельных электростанцияхУстройства регулирования напряжения на дизельных электростанциях. Принципиальная схема дизель-генератора АД-20М. Угольный регулятор напряженияОдним из основных требований потребителей к качеству электроэнергии является стабильность напряжения на шинах ДЭС в условиях изменения значения и характера (cosφ) нагрузки станции. При переходе от одного режима нагрузки ДЭС к другому напряжение на шинах ДЭС будет оставаться неизменным, если ток возбуждения генератора будет изменяться в соответствии с изменением нагрузки. Поддержание стабильного напряжения генераторов дизельной электростанции (ДЭС) осуществляется устройствами (блоками) регулирования напряжения. Автоматические регуляторы напряжения по конструкции регулирующего органа подразделяются на два типа: электромеханические и электромагнитные. Электромеханические регуляторы состоят из подвижных частей (электромагнитов с подвижными якорями, пружин и др.) и воздействуют на ток возбуждения с помощью изменения активного сопротивления цепи обмотки возбуждения. К этому виду относятся угольные регуляторы, которые совместно с другой аппаратурой (трансформаторами, выпрямителями и другими деталями) входят в блок регулирования напряжения (БРН). На генераторах с машинным возбуждением серий ДГС и ПС-93-4 устанавливаются блоки БРН с угольными регуляторами возбуждения. Электромагнитные регуляторы состоят из статических (неподвижных) частей (трансформаторов, магнитных усилителей, конденсаторов, реакторов и др.) и изменяют ток возбуждения генератора с помощью дополнительного тока от регулятора обмотки возбуждения. К этому виду регуляторов относятся компаундирующие устройства с электромагнитной коррекцией, с магнитными усилителями и др. На генераторах серии ЕСС устанавливают БРН, выполненные на принципе компаундирования, а для увеличения точности регулирования используется электромагнитный корректор напряжения. На генераторах серий ДГФ и ГСФ БРН выполнен на принципе фазового компаундирования с полупроводниковым корректором напряжения. На генераторах серии СГД устанавливают регуляторы напряжения типа РНА-60, работающие на принципе фазового компаундирования с управлением от электромагнитного корректора напряжения. Блок БРН с угольным регулятором имеет четыре исполнения: 412, 421, 422, 423. Устройство и принцип работы всех блоков БРН одинаков. Блок БРН состоит из угольного регулятора УРН, трансформатора регулятора напряжения Тр2, стабилизующего трансформатора Тр1, селеновых выпрямителей ВС1 и ВС2, конденсаторов С1, С2 и резисторов R3, R4, R5. Все элементы БРН укреплены на каркасе и закрыты съемным кожухом. Угольный регулятор напряжения типа УРН представляет собой прямоходовой электромеханический регулятор реостатного типа. Рис.1. Угольный регулятор напряжения типа УРН-423. а - общий вид; б - продольный разрез; 1 - слюдяные прокладки; 2 - фарфоровая втулка; 3,12,22,29 - винты; 4 - скоба; 5 - нажимный винт; 6 - стопорный винт; 7 - неподвижный угольный контакт; 8 - корпус регулятора; 9 - керамическая (фарфоровая) трубка; 10 - угольный столб; 11 - подвижный угольный контакт; 13 - колпак; 14 - контактная пластина; 15 - пластина для магнитопровода; 19 - стопорный винт сердечника; 20 - сердечник; 21 - основание магнитопровода; 23 - обмотка электромагнита; 24 - диамагнитная шайба; 25 - опорное коническое кольцо; 26 - пакеты пружин; 27 - якорь; 28 - пластина для крепления пружин; 30 - плунжер; 31 - амортизатор. Регулятор типа УРН (рис.1) состоит из электромагнита с сердечником, якоря подвижной системы регулятора, над которым расположены пакеты пружин, угольных столбов, помещенных в фарфоровую трубку, расположенную на корпусе регулятора, неподвижного и подвижного угольных контактов, к которым подключены проводники. Угольный столб 10, набранный из шероховатых отдельных шайб, включен с помощью контактов 7 и 11 в цепь обмотки возбуждения возбудителя. На угольный столб действует пружина 26, сжимающая угольные шайбы столба, и якорь 27, противодействующий сжатию пружины. Общая площадь соприкосновения угольных шайб столба, а следовательно, и его сопротивление зависят от давления, поэтому разность этих двух сил определяет сопротивление цепи обмотки возбуждения возбудителя. При номинальном напряжении генератора подвижная система угольного регулятора находится в равновесии (усилия якоря электромагнита и пружины, сжимающей шайбы угольного столба УРН, равны). При увеличении нагрузки генератора напряжение на его выводах уменьшится, в связи с этим уменьшится ток в обмотке электромагнита УРН. Под действием пружины 26 подвижная система УРН сместится, что вызовет сжатие угольного столба и изменение (уменьшение) его сопротивления. Уменьшение сопротивления приведет к увеличению тока в обмотках возбуждения возбудителя и генератора, напряжение на выводах генератора увеличится. При повышении напряжения генератора, вызванного сбросом нагрузки, сопротивление угольного столба Ур увеличится, а напряжение на выводах генератора уменьшится. Рис.2. Принципиальная схема БРН генератора с угольным регулятором УРН. Г - генератор; В - возбудитель; ОВГ - обмотка возбуждения генератора; ОВВ - обмотка возбуждения возбудителя. Обмотка электромагнита УРН (рис.2) включена на напряжение генератора через понижающий трансформатор Тр2 и выпрямитель ВС1. Конденсаторы C1 и С2 установлены для сглаживания пульсаций выпрямленного напряжения выпрямителя ВС1. Последовательно с первичной обмоткой Тр2 включен резистор R5, служащий для компенсации температурного изменения сопротивления обмотки Тр2. Реостат установки РУ включен в цепь вторичной обмотки Тр2 для установки уровня автоматического peгулирования напряжения. Угольный столб УРН и резистор R3 включены последовательно в цепь обмотки возбуждения возбудителя. Резистор R3 служит для уменьшения мощности рассеивания в угольном столбе УРН. Стабилизирующий трансформатор Тр1 служит для устранения неустановившихся колебаний напряжения генератора, возникающих при работе УРН. Первичная обмотка трансформатора Тр1 включена через сопротивление R4 на напряжение якоря возбудителя, а вторичная - последовательно в цепь электромагнита УРН. Параллельно обмотке возбуждения возбудителя подключен выпрямитель ВС2 для предохранения угольного столба УРН от подгара при перенапряжениях на зажимах обмотки возбуждения возбудителя. При уменьшении напряжения генератора напряжение на первичной и вторичной обмотках трансформатора Тр2 понизится, что вызовет уменьшение тока в цепи электромагнита УРН и сопротивления угольного столба УРН. Использование схемы компаундирования обеспечивает точность поддержания напряжения ±5%, а применение электромагнитного корректора увеличивает точное поддержания напряжения до ±2%. Блок регулирования напряжения с электромагнитным корректором состоит из блока компаундирования, установленного на генераторе, и блока электромагнитного корректора. Рис.3. Принципиальная схема дизель-генератора АД-20М На рис.3 изображена принципиальная схема регулятора напряжения с электромагнитным корректором. В регуляторе использован принцип фазовою компаундирования и применены три однофазных четырехобмоточных трансформатора ТТП с подмагничиванием от корректора напряжения. Одна из первичных обмоток ТТП включена последовательно с нагрузкой генератора, а другая - через линейный реактор Р параллельно нагрузке. Вторичная обмотка ТТП через выпрямитель СВ1 соединена с обмоткой возбудителя генератора. Корректор напряжения состоит из автотрансформатора АТН, магнитного усилителя МУ и измерительного органа, имеющего нелинейный реактор НР, линейный реактор ЛP и конденсатор С2. Небольшое увеличение напряжения на выводах генератора приводит к резкому увеличению тока реактора НР, который увеличивает ток в обмотке управления МУ. Возросший выходной ток МУ проходит через выпрямитель СВ2 и подается на обмотку подмагничивания трансформатора ТТП. Увеличение тока в обмотке подмагничивания вызовет уменьшение тока во вторичной обмотке ТТП и в обмотке возбуждения генератора, что приведет к уменьшению напряжения на выводах генератора. При уменьшении напряжения на зажимах генератора наблюдается обратная картина. На дизель-генераторах кроме напряжения часто меняется и частота, поэтому в корректоре предусмотрена частотная компенсация. В схеме корректора частотная компенсация осуществляется реактором ЛР и конденсатором С2, которые изменяют напряжение на реакторе ИР пропорционально изменению частоты генератора и оставляют ток HP неизменным. Эта схема обеспечивает независимость тока HP от изменения частоты и позволяет при изменении частоты от 48 до 52 Гц обеспечить изменение напряжения генератора в пределах ±2%. Блок регулирования напряжения с полупроводниковым корректором напряжения. Полупроводниковый корректор напряжения в БРН предназначен для поддержания стабильного напряжения на выводах генератора в пределах ±2%. Рис.4. Принципиальная схема полупроводникового корректора напряжения Корректор напряжения (рис.4) собран на полупроводниковых элементах и работает в импульсном режиме. Он состоит из измерительного органа и усилителя. Измерительный орган корректора измеряет напряжение на зажимах генератора и сравнивает его с заданным. Разность между действительным и заданным напряжениями служит сигналом, который управляет полупроводниковым усилителем, соединенным с обмоткой управления трансформатора компаундирования. Измерительный орган состоит из трансформатора ТИ, первичная обмотка которого подключена на линейное напряжение генератора через резистор R15 и регулируемый резистор РУН, выпрямителя В1, кремниевого опорного диода В2, конденсаторов С1-С2, резисторов R1, R2, R3, R5, R6, терморезисторов R7-R9, транзистора Т1. Напряжение генератора после выпрямителя В2 и сглаживающего фильтра R8-С1 поступает на вход транзистора Т1. Входной сигнал Т1 будет тем больше, чем больше напряжение генератора превышает опорное напряжение диода В2, т.е. измерительный орган корректора преобразует превышение напряжения генератора над опорным напряжением В2 в выходной ток транзистора Т1, поступающий на вход усилителя. Если UгВ2, то на вход транзистора Т1 не поступит никакого сигнала и ток обмотки управления на выходе корректора будет равен нулю. Резистор R2 смещает диапазон регулирования уставки напряжения. Цепочка С2-R5 служит для устранения автоколебаний при регулировании напряжения генератора, а регулирование чувствительности корректора производится резистором R*. Схема усилителя состоит из транзисторов Т2, ТЗ, Т4, конденсатора С3, делителей напряжения R11, R12 и резистора R10. Напряжение подается на зажимы усилителя «+» и «-» от обмотки Wn через выпрямитель ВПУ. Параметры элементов схемы выбраны так, что при отсутствии сигнала с измерительного органа транзисторы Т2 и ТЗ усилителя полностью открыты (режим насыщения), транзистор Т4 закрыт, т.е. обмотка управления, соединенная с коллектором транзистора Т4, отключена от выпрямителя питания корректора и в ней отсутствует подмагничивающий ток. При появлении импульса выходного тока измерительного органа конденсатор СЗ заряжается этим импульсом и разряжается на сопротивление резистора R10. Образующееся на резисторе R10 падение напряжения закрывает транзистор Т2, так как оно приложено своим минусом к базе транзистора, а плюсом - к эмиттеру. Исчезновение тока через транзистор Т2, являющегося одновременно током смещения транзистора ТЗ, приводит к закрытию транзистора ТЗ и открытию транзистора Т4, так как по его переходу база - эмиттер будет протекать ток, ранее протекавший через транзистор ТЗ. С открытием транзистора Т4 напряжение питания корректора целиком прикладывается к обмотке управления. С появлением нового импульса от измерительного органа процесс повторяется. Напряжение генератора на входе измерительного органа выпрямляется двухполупериодным выпрямителем и сглаживается фильтром C1-R8 только частично, поэтому выходной ток измерительного органа будет иметь вид узких импульсов, следующих с частотой 100 Гц. Частота импульса выходного напряжения транзистора Т4 будет также 100 Гц. Выходное напряжение будет иметь вид прямоугольников, ширина которых зависит от напряжения на входе корректора. При большем напряжении на входе корректора растут импульсы выходного тока измерительного органа, т.е. до большего напряжения будет заряжаться емкость СЗ. Соответственно увеличивается время, в течение которого конденсатор, разряжаясь на резистор R10, удерживает транзистор Т2 в закрытом состоянии, а транзистор Т4 - в открытом. Время воздействия напряжения питания корректора на обмотку управления увеличивается, среднее значение тока управления возрастает; напряжение генератора поддерживается на заданном уровне. Для термокомпенсации режимов работы транзисторов Т2-Т4 в цепь усилителя включены резисторы R14, R13 и выпрямитель В4, а для предупреждения ложного срабатывания корректора от пульсаций выпрямленного напряжения в цепь СЗ - база Т2 - эмиттер Т2 включен диод ВЗ. Все элементы, входящие в состав корректора напряжения, смонтированы в алюминиевом корпусе и закрыты крышкой. Корректор имеет доску с зажимами, к которой с внутренней стороны подключены соответствующие элементы корректора. www.gigavat.com |