ЦИФРОВОЙ ВОЛЬТМЕТР СЕТЕВОГО НАПРЯЖЕНИЯ НА МИКРОКОНТРОЛЛЕРЕ ATTINY. Схема цифровой вольтметрСхема цифрового вольтметраЗдесь предлагается схема цифрового вольтметра, модернизировав которую можно собрать и амперметр. Вольтметр имеет возможность измерять напряжение от 0 до 99,9 вольт. При этом его диапазон разделен на две части – от 0 до 9,999 вольт и от 10 до 99,99 вольт. Выбор диапазона происходит в автоматическом режиме, что очень удобно и приводит к более точным измерениям. Сопротивление по входу при измерениях в первой части диапазона составляет 470 килоом, а во второй части примерно 100 килоом. Погрешность измерений составляет 3 милливольта. Питается схема напряжением от 15 до 20 вольт (при желании это можно изменить) и потребляет ток в районе 60 миллиампер. Время между измерениями составляет 100 миллисекунд, а время цикла измерений при наличии на входе 10 вольт будет 100 миллисекунд. В случае, если измеряемое напряжение будет выше 99,99 вольт, то на индикаторе отобразится число «9999» и будет мигать 2 раза в секунду. Измеряет данный прибор положительное напряжение. Работа вольтметра основана на принципе преобразования напряжения, которое измеряется в частоту, однократно интегрируя. Такой метод, в сравнении с контроллерами которые имеют в своем составе АЦП с десятиразрядным преобразованием, позволяет достичь более увеличенной разрешающей способности в более широком диапазоне измеряемых напряжений. Расчет частоты преобразования, выбор пределов измерения и отображение результатов измерений на семисегментном индикаторе выполняет микроконтроллер. Исходный код программы, файл с прошивкой, печатную плату, нарисованную в программе Sprint Layout и плату для сборки в SMD варианте можно скачать по ссылке. Для того чтобы точно подобрать сопротивление резистора R2 в делителе напряжения на входе цифрового вольтметра желательно его заменить на последовательно соединенные резисторы 100 килоом и многооборотный 22 килоома. И R5 так же заменить на подстроечный 15 кОм. Так будет более удобно во время настройки схемы. Сам контроллер прошивается программой CodeVisionAVR с помощью программатора STK 200/300. Но можно использовать и другие программы и программаторы. Ниже показаны Fuse для CodeVisionAVR и Pony Prog. Питается схема цифрового вольтметра от обычного блока питания на основе трансформатора и микросхемы стабилизатора 7815 по схеме из datasheet. Кроме того на плате блока питания расположены и резисторы R2,R5. Рисунок печатной платы данного блока находится также в архиве, ссылка на который указана выше. В настройке схемы то же нет ничего сложного. Необходимо с помощью резистора R3 установить ток зарядки С2 и подобрать сопротивление делителя напряжения на входе. Настроив подстроечные резисторы на 117 килоом и 13 килоом соответственно. Далее, подав на вход напряжение, в пределах от 9 до 9,8 вольт и сверяя показания с эталонным вольтметром, с помощью подстроечного резистора R3, выставляется одинаковое отображение измерений. На следующем этапе настройки медленно увеличивается напряжение до момента переключения вольтметра на второй диапазон. Если на индикаторе показания зависли, то с помощью резисторов R2 и R5 добиваются состояния переключения и далее повторяется настройка резистора R3. После этого необходимо подать на вход максимально измеряемое напряжение, это около 100 вольт и с помощью резисторов R2 и R5 производится корректировка показаний. И последнее. На вход подается напряжение 5-10 вольт и в случае рассогласования производится корректировка с помощью R3. Отличительной особенностью цифрового вольтметра на основе данного принципа измерения является его высокая точность. Анекдот:- Папа, меня в школе все дразнят, говорят, что я страшный. - Да сейчас ты ничего так выглядишь, сынок. А вот когда ты родился, доктор сказал:"Шевельнется-стреляйте!". mikroshema-k.ru Цифровой вольтметр | Все своими рукамиЦифровой вольтметр для блока питанияЦифровой вольтметр имеет два предела измерения, от 00,00… 10,23 В, второй предел измерения от 000,0… 102,3 В. Переключение пределов осуществляется при помощи переключателя. Основой схемы вольтметра является микроконтроллер PIC16F676. Данные об измеряемом напряжении выводятся на однострочный жидкокристаллический индикатор. Электрическая схема вольтметра показана на рисунке 1.
В качестве источника опорного напряжения для модуля аналого-цифрового преобразования используется внешний источник с выходным напряжением 1,023 вольта. Такая величина опорного напряжения при десятиразрядном модуле АЦП данного микроконтроллера, позволяет производить оцифровку входного сигнала с точностью до 0,001 вольта. Десять разрядов АЦП, это в двоичной системе счисления — 11 1111 1111, а в десятичной – 1023, т.о. 1,023 вольта делим на 1023, получаем значение напряжения одного разряда, т.е. 0,001 вольта. В качестве стабилизатора напряжения питания применена микросхема К157ХП2, имеющая в своем составе внутренний ИОН с напряжением 1,3 В. И самое главное его внешний вывод 8. Такое же схемное решение применено в схеме милливольтметра, рассмотренной в статье «Милливольтметр на PIC16F676». Чтобы исключить влияние входа микроконтроллера на выход 8 DA1, в схему введен повторитель напряжения, выполненный на одном из двух ОУ микросхемы DA2 – DA2.1. Конденсаторы С2 и С5, это конденсаторы фильтра напряжения ИОН. Величина напряжения ИОН на входе RA1 микроконтроллера DD1 регулируется резистором R6. Этим резистором производится калибровка показаний прибора по контрольному цифровому вольтметру. Общее напряжение питания схемы можно регулировать подстроечным резистором R3. Резистор R8 включен последовательно со светодиодом подсветки LCD. Меняя его величину, можно изменять уровень освещенности индикатора. Контрастность выводимых символов на индикаторе зависит от напряжения, подаваемого на вывод V0 LCD. То есть от номиналов делителя напряжения, состоящего из резисторов R9 и R10. Конденсатор С8, это конденсатор фильтра питающего напряжения, его лучше впаивать непосредственно между выводами питания микроконтроллера 1 и 14. Переключатель S1 служит для переключения измеряемого напряжения на тот или иной вход АЦП микроконтроллера. Если контакт переключателя находится в нижнем положении, то измеряемое напряжение через делитель напряжения 1:10, состоящий из резисторов R2 и R5, подается на еще один повторитель, собранный на втором ОУ микросхемы DA2. Применение ОУ, включенного по схеме повторителя со 100% отрицательной обратной связью, позволяет резко уменьшить шумовую составляющую измеряемого напряжения, еще не маловажное назначение данного повторителя, это защита входов микроконтроллера. По идее, такой же каскад надо ввести и в цепь измерения напряжения до 100 вольт. При верхнем положении переключателя, измеряемое напряжение через делитель 1:100, R1 и R4, подается на вход RA2 микроконтроллера DD1. В качестве стабилитронов VD1 и VD2 можно применить КС147А. Это защищающие элементы схемы и предназначены для защиты от повышенных напряжений при внештатных ситуациях. В случае применения вышеуказанных стабилитронов, напряжение на входе будет ограничиваться на уровне 4,7 вольта. Это напряжение безопасно, как для ОУ, так и для входов микроконтроллера DD1. При отсутствии этой марки стабилитронов, можно использовать КС133А. Вид устройства собранного на макетной плате показан на фото 1. Скачать файл прошивки можно здесь. Успехов. К.В.Ю. Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".Просмотров:5 422 www.kondratev-v.ru ЦИФРОВОЙ ВОЛЬТМЕТР СЕТЕВОГО НАПРЯЖЕНИЯ НА МИКРОКОНТРОЛЛЕРЕ ATTINYЦИФРОВОЙ ВОЛЬТМЕТР СЕТЕВОГО НАПРЯЖЕНИЯ НА МИКРОКОНТРОЛЛЕРЕ ATTINY Целью написания данной статьи является разработка встраиваемого цифрового вольтметра для измерения сетевого напряжения 220 В. Все началось с того, что у моего товарища возникла необходимость контролировать напряжение сети, для этого есть много способов. Самый простой – это контроль с помощью китайского цифрового мультиметра, т.к. он обеспечивает с приемлемой точностью измерение напряжения переменного тока. Не совсем удобно, его нужно периодически подключать к измеряемой цепи, а постоянное подключение нецелесообразно, т.к. бесполезно расходуется энергия «Кроны», а попытки запитать мультиметр от сетевого адаптера питания на 9 В и измерения напряжения сети привели к выходу мультиметра из строя. Второй способ – купить готовое устройство – реле напряжения щитового исполнения типа «Барьер». Тут есть некоторые факторы – в распределительном щитке не осталось лишнего места для установки хоть самого маломощного реле напряжения (2 модуля), и слегка завышенная цена на эти устройства. Покупные стрелочные вольтметры не обеспечивают приемлемой точности. Значит – есть выход из положения – изготовить цифровой встраиваемый вольтметр. Но и тут есть два варианта – изготовить на базе специализированной БИС АЦП КР572ПВ2 и изготовить на МК с встроенным АЦП. Первый вариант не устроил меня сразу, 40-выводный ДИП-корпус, два напряжения питания +5 В и -5 В, статическая индикация, сложная разводка платы, много навесных компонентов и т.п. Второй вариант – МК с встроенным АЦП. Был выбран второй вариант – собрать цифровой вольтметр сетевого напряжения на микроконтроллере ATTINY26, который содержит 10-разрядный АЦП, трехразрядный светодиодный индикатор с динамической индикацией, линейный стабилизатор 7805, ну еще несколько токоограничительных резисторов. Конечно, большая часть рассыпухи используется для работы бестрансформаторного БП. Ниже приведена схема. Для удобства чтения схемы условно разделил схему источника питания и цифровую часть. Детали: все диоды в схеме использованы типа 1N4007, но подойдут и любые другие с прямым током от 0,5 А и обратным напряжением 400 В, конденсатор C1 – обязательно пленочный, 1,5 мкФ 400 В, но лучше 630 В (надежнее). Все выводные резисторы, кроме R2 рассчитаны на 0,125-0,25 Вт, R2 – на 1-2 Вт, SMD резисторы применены типоразмера 1206. Подстроечный резистор RV1 лучше применить многооборотный типа 3296, это позволит более точно откалибровать вольтметр по образцовому вольтметру. Стабилитрон D1 мощностью 0,5 Вт 8,2 В, можно и на другое напряжение стабилизации, не рекомендую ниже 7,5 В и выше 10 В. Конденсаторы электролитические выбраны на 16 В, керамические SMD 100 нФ типоразмер 0805. МК – Attiny26 в дип-20 корпусе, светодиодный индикатор ТОТ3361 красного цвета свечения, такие светодиоды раньше применяли в телефонах с АОН «Русь 27». Для удобства подключения питающих проводов применен двухконтактный клеммник на плату. Сборка. Итак, приступаем к сборке цифрового вольтметра на микроконтроллере, рисунок платы прилагается ниже. Устройство собрано на плате из односторонне фольгированного текстолита, размером 83х30 мм. Все выводные детали размещаем со стороны компонентов. Гасящий конденсатор С1 1,5 мкФ 400 В размещаем со стороны монтажа. Все запаяно, проверено на предмет обрыва/КЗ. В микроконтроллере программируются фьюзы так, что он тактировался от внутреннего RC-генератора 8МГц, т.е установить фьюзы CKSEL = 0100. Остальные фьюзы можно не трогать. Можно включать в сеть для проверки и настройки. Внимание: данное устройство не имеет гальванической развязки от питающей сети, а значит, все перепайки в схеме производить только после отключения схемы от сети, а настройку производить с помощью отвертки с хорошо изолированной ручкой Производим пробное включение, собранное без ошибок устройство начинает работать сразу. Убедились, что на светодиодах есть какие-нибудь цифры, хоть далекие от идеала. Потом в ту же розетку включаем цифровой мультиметр для измерения действующего напряжения сети и с помощью движка подстроечного резистора (с соблюдением правил техники безопасности) устанавливаем на индикаторе напряжение, соответствующее показаниям контрольного вольтметра (мультиметра). После этого несколько раз проверяем соответствие показаний показаниям контрольного вольтметра. В случае необходимости корректируем все тем же подстроечником. На фото ниже показано работающее устройство. Судя по яркости, не мешало бы применить светофильтр, это повысит контрастность изображения и читаемость в светлое время суток. Габариты собранного устройства 83х30х20 мм, что позволяет установить его в пластиковый квартирный щиток. А роль светофильтра выполняет его крышка с темного прозрачного пластика. Вот и все, цифровой вольтметр сетевого напряжения на микроконтроллере ATTINY26 готов к применению. В архиве прилагается схема, рисунок печатной платы в формате Sprint Layout 5.0, а также исходный код на CodeVision AVR 1.25, прошивка МК. Скачать файлы можно на ФОРУМЕ Материал предоставил i8086. Поделитесь полезной информацией с друзьями: elwo.ru Структурные схемы и принцип действия электронных вольтметров — МегаобучалкаОбобщенная структурная схема вольтметра постоянного тока приведена на рис. 1,а. Она включает входное устройство, усилитель постоянного тока А1 и электромеханический измерительный прибор PV1. Входное устройство предназначено для создания высокого входного сопротивления, чтобы уменьшить влияние вольтметра на измеряемую цепь. Оно состоит из делителей напряжения – аттенюаторов, с их помощью изменяют пределы измеряемых величин. В некоторых вольтметрах входное устройство содержит эмиттерный повторитель (или истоковый – при использовании полевых транзисторов). К УПТ предъявляются высокие требования: малый дрейф нуля, высокая стабильность усиления, малый уровень шумов.
В вольтметрах постоянного тока высокой чувствительности входной сигнал преобразуется в переменный, усиливается и затем вновь преобразуется в напряжение постоянного тока. Обобщенная структурная схема вольтметра переменного тока показана на рис. 1,б. Принцип действия такого вольтметра состоит в преобразовании переменного напряжения в постоянное, которое измеряется стрелочным электромеханическим прибором. В качестве преобразователей переменного напряжения в постоянное используются пиковые (амплитудные) детекторы, детекторы среднеквадратического и средневыпрямленного значения напряжения. Применение того или иного преобразователя переменного тока в постоянный определяет способность вольтметра измерять то или иное значение напряжения. На обобщенной схеме показаны усилитель переменного напряжения А1 и УПТ А2, включенный после преобразователя V1. Однако в практических приборах применение обоих усилителей встречается очень редко. Используется либо додетекторное усиление, либо последетекторное. В высокочувствительные измерители напряжения вводят усилители переменного напряжения, обычно широкополосные, с полосой пропускания от единиц герц до десятков мегагерц. Для обеспечения широкой области рабочих частот вплотьдо 1 ГГц усилители переменного напряжения не применяют, а применяют усилители постоянного тока. ЦИФРОВЫЕ ВОЛЬТМЕТРЫ
В цифровых вольтметрах переменного напряжения используется аналоговое преобразование измеряемого переменного напряжения в постоянное. В импульсных цифровых вольтметрах находят применение специальные АЦП – амплитудно-временные преобразователи. В вольтметрах с уравновешивающим преобразованием используются соответствующие АЦП. Цифровые вольтметры прямого преобразования более просты по устройству, но имеют меньшую точность. По используемому способу аналого-цифрового преобразования они бывают: с временным, временным с интегрированием и частотным преобразованием. Интегрирующие цифровые вольтметры, измеряющие среднее значение напряжения за время измерения, обладают повышенной помехозащищенностью. Входное устройство (рис. 2) содержит делители напряжения и предназначено для расширения пределов измерения. Оно обеспечивает достаточно высокое входное сопротивление вольтметра. Устройство определения полярности измеряемого напряжения основано на определении последовательности срабатывания двух устройств сравнения. На первое подается пилообразное напряжение, принимающее значения от –U до +U, и измеряемое напряжение. Устройство срабатывает (выдает импульс) в момент равенства напряжений. Другое устройство сравнения срабатывает в момент равенства пилообразного напряжения нулю. Сигнал полярности подается в цифровое отсчетное устройство. Устройство автоматического выбора пределов измерения сравнивает измеряемое напряжение с набором напряжений и управляет делителем. Цифровые вольтметры с уравновешивающим преобразованием строятся в основном по двум типам структурных схем: с использованием программирующего устройства и цифрового счетчика. В них измеряемое напряжение уравновешивается дискретно-изменяющимся компенсирующим образцовым напряжением. На рис. 3,а,б показаны эти структурные схемы. Рассмотрим работу вольтметра, построенного по схеме с цифровым счетчиком (рис. 3,б). Тактовые импульсы поступают на цифровой счетчик через управляющее устройство, определяющее порядок заполнения ячеек. Счетчик изменяет состояние элементов преобразователя кода и компенсирующее напряжение. Измеряемое напряжение, поступающее на устройство сравнения, сравнивается с компенсирующим напряжением. В зависимости от знака этой разности на выходе устройства сравнения управляющее устройство либо продолжает пропускать тактовые импульсы на счетчик, либо нет. Новый цикл измерений начинается с момента сбрасывания на нуль показаний счетчика. В этот же момент в исходное состояние приводится компенсирующее напряжение и на счетчик начинают поступать счетные импульсы. megaobuchalka.ru Подключаем китайский цифровой вольтамперметрСамодельщики, конструируя, разрабатывая и осуществляя самые разные схемы зарядных устройств или блоков питания, постоянно сталкиваются с немаловажным фактором - визуальным контролем за выходным напряжением и потребляемым током. Здесь весьма часто протягивает руку помощи Алиэкспресс, оперативно поставляя китайские цифровые измерительные приборы. В частности: цифровой ампервольтметр - прибор очень простой, доступный по цене и отображает вполне точные информационные данные.Но новичкам ввод в эксплуатацию (подключение в схему ампервольтметра) может оказаться задачей проблематичной, т. к. измерительный приборчик приходит без документации и подключить быстро обозначенные цветом провода не каждому по плечу.Изображение одного из популярнейших среди самодельщиков вольтамперметра выложено ниже,это ампервольтметр на 100 вольт/10 ампер, он поставляется уже со встроенным шунтом. Многие радиолюбители такие измерительные приборы довольно часто приобретают для своих самоделок. Цифровой прибор может запитываться как от отдельных источников,так и от одного эксплуатируемого и измеряемого источника напряжения. Но тут скрыт небольшой нюанс, необходимо соблюдать условие - напряжение используемого источника питания находилось в рамках 4,5-30 В.Самодельщикам, которым еще не совсем понятно: толстый проводок черного цвета подключаем на минус блока питания, толстый проводок красного цвета - на плюс блока питания (засветятся показания шкалы вольтметра),толстый проводок синего цвета подключаем к нагрузке, второй конец от нагрузки приходит на плюс блока питания (засветятся показания шкалы амперметра).Стоимость: ~186 Подробнее на Aliexpress usamodelkina.ru Амперметр цифровой своими руками. Цифровые амперметры и вольтметрыАмперметры – это устройства, которые используются с целью определения силы тока в цепи. Цифровые модификации изготавливаются на базе компараторов. По точности измерения они различаются. Также важно отметить, что приборы могут устанавливаться в цепи с постоянным и переменным током. По типу конструкции различают щитовые, переносные, а также встроенные модификации. По назначению есть импульсные и фазочувствительные устройства. В отдельную категорию выделены селективные модели. Для того чтобы более подробно разораться в приборах, важно узнать устройство амперметра. Схема амперметраОбычная схема цифрового амперметра включает в себя компаратор вместе с резисторами. Для преобразования напряжения применяется микроконтроллер. Чаще всего он используется с опорными диодами. Стабилизаторы устанавливаются только в селективных модификациях. Для увеличения точности измерений используются широкополосные фильтры. Фазовые устройства оснащаются трансиверами. Модель своими рукамиСобрать цифровой амперметр своими руками довольно сложно. В первую очередь для этого потребуется качественный компаратор. Параметр чувствительности должен составлять не менее 2.2 мк. Минимальное разрешение он обязан выдерживать на уровне в 1 мА. Микроконтроллер в устройстве устанавливается с опорными диодами. Система индикации подсоединяется к нему через фильтр. Далее, чтобы собрать цифровой амперметр своими руками нужно установить резисторы. Чаще всего они подбираются коммутируемого типа. Шунт в данном случае должен располагаться за компаратором. Коэффициент деления прибора зависит от трансивера. Если говорить про простую модель, то он используется динамического типа. Современные устройства оснащаются сверхточными аналогами. Источником стабильного тока может выступать обычная батарейка литий-ионного типа. Устройства постоянного токаЦифровой амперметр постоянного тока выпускается на базе высокочувствительных компараторов. Также важно отметить, что в приборах устанавливаются стабилизаторы. Резисторы подходят только коммутируемого типа. Микроконтроллер в данном случае устанавливается с опорными диодами. Если говорить про параметры, то минимальное разрешение устройств равняется 1 мА. Модификации переменного токаАмперметр (цифровой) переменного тока можно сделать самостоятельно. Микроконтроллеры у моделей используются с выпрямителями. Для увеличения точности измерения применяются фильтры широкополосного типа. Сопротивление шунта в данном случае не должно быть меньше 2 Ом. Чувствительность у резисторов обязана составлять 3 мк. Стабилизаторы чаще всего устанавливаются расширительного типа. Также важно отметить, что для сборки понадобится триод. Припаивать его необходимо непосредственно к компаратору. Допустимая ошибка приборов данного типа колеблется в районе 0.2 %. Импульсные приборы измеренияИмпульсные модификации отличаются наличием счетчиков. Современные модели выпускаются на базе трехразрядных устройств. Резисторы используются только ортогонального типа. Как правило, коэффициент деления у них равняется 0.8. Допустимая ошибка в свою очередь составляет 0.2%. К недостаткам устройств можно отнести чувствительность к влажности среды. Также их запрещается использовать при минусовых температурах. Самостоятельно собрать модификацию проблематично. Трансиверы в моделях применяются только динамического типа. Устройство фазочувствительных модификацийФазочувствительные модели продаются на 10 и 12 В. Параметр допустимой ошибки у моделей колеблется в районе 0.2%. Счетчики в устройствах применяются только двухразрядного типа. Микроконтроллеры используются с выпрямителями. Повышенной влажности амперметры данного типа не боятся. У некоторых модификаций имеются усилители. Если заниматься сборкой устройства, то потребуются коммутируемые резисторы. Источником стабильного тока может выступать обычная литий-ионная батарейка. Диод в данном случае не нужен. Перед установкой микроконтроллера важно припаять фильтр. Преобразователь для литий-ионной потребуется переменного типа. Показатель чувствительности у него находится на уровне 4.5 мк. При резком падении напряжения в цепи необходимо проверить резисторы. Коэффициент деления в данном случае зависит от пропускной способности компаратора. Минимальное давление приборов данного типа не превышает 45 кПа. Непосредственно процесс преобразования тока занимает около 230 мс. Скорость передачи тактового сигнала зависит от качества счетчика. Схема селективных устройствСелективный цифровой амперметр постоянного тока изготавливается на базе компараторов с высокой пропускной способностью. Допустимая ошибка моделей равняется 0.3 %. Работают устройства по принципу одностадийного интегрирования. Счетчики используются только двухразрядного типа. Источники стабильного тока устанавливаются за компаратором. Резисторы применяются коммутируемого типа. Для самостоятельной сборки модели потребуются два трансивера. Фильтры в данном случае могут значительно повысить точность измерений. Минимальное давление приборов лежит в районе 23 кПа. Резкое падение напряжения наблюдается довольно редко. Сопротивление шунта, как правило, не превышает 2 Ом. Токоизмерительная частота зависит от работы компаратора. Универсальные приборы измеренийУниверсальные приборы измерений подходят больше для бытового использования. Компараторы в устройствах часто устанавливаются не большой чувствительности. Таким образом, допустимая ошибка лежит в районе 0.5%. Счетчики используются трехразрядного типа. Резисторы применяются на базе конденсаторов. Триоды встречаются как фазового, так и импульсного типа. Максимальное разрешение приборов не превышает 12 мА. Сопротивления шунта, как правило, лежит в районе 3 Ом. Допустимая влажность для устройств составляет 7 %. Предельное давление в данном случае зависит от установленной системы защиты. Щитовые моделиЩитовые модификации производятся на 10 и 15 В. Компараторы в устройствах устанавливаются с выпрямителями. Допустимая ошибка приборов составляет не менее 0.4 5. Минимальное давление устройств равняется около 10 кПа. Преобразователи применяются в основном переменного типа. Для самостоятельной сборки устройства не обойтись без двухразрядного счетчика. Резисторы в данном случае устанавливаются со стабилизаторами. Встраиваемые модификацииЦифровой встраиваемый амперметр выпускается на базе опорных компараторов. Пропускная способность у моделей довольно высокая, и допустимая погрешность равняется около 0.2 %. Минимальное разрешение приборов не превышает 2 мА. Стабилизаторы используются как расширительного, так и импульсного типа. Резисторы устанавливаются высокой чувствительности. Микроконтроллеры часто применяются без выпрямителей. В среднем процесс преобразования тока не превышает 140 мс. Модели DMKЦифровые амперметры и вольтметры данной компании пользуются большим спросом. В ассортименте указанной фирмы имеется множество стационарных моделей. Если рассматривать вольтметры, то они выдерживают максимальное давление 35 кПа. В данном случае транзисторы применяются тороидального типа. Микроконтроллеры, как правило, устанавливаются с преобразователями. Для лабораторных исследований устройства данного типа подходят идеально. Цифровые амперметры и вольтметры этой компании производятся с защищенными корпусами. Устройство ТорехУказанный амперметр (цифровой) производится с повышенной проводимостью тока. Максимальное давление устройство выдерживает в 80 кПа. Минимальная допустимая температура амперметра равняется -10 градусов. Повышенной влажности указанный измерительный прибор не боится. Устанавливать его рекомендуется рядом с источником тока. Коэффициент деления равняется только 0.8. Максимальное давление амперметр (цифровой) выдерживает в 12 кПа. Потребляемый ток устройства составляет около 0.6 А. Триод используется фазового типа. Для бытового использования данная модификация подходит. Устройство LovatУказанный амперметр (цифровой) делается на базе двухразрядного счетчика. Проводимость тока модели равняется только 2.2 мк. Однако важно отметить высокую чувствительность компаратора. Система индикации используется простая, и пользоваться прибором очень комфортно. Резисторы в этот амперметр (цифровой) установлены коммутируемого типа. Также важно отметить, что они способны выдерживать большую нагрузку. Сопротивление шунта в данном случае не превышает 3 Ом. Процесс преобразования тока происходит довольно быстро. Резкое падение напряжения может быть связано только с нарушением температурного режима прибора. Допустимая влажность указанного амперметра равняется целых 70 %. В свою очередь максимальное разрешение составляет 10 мА. Модель DigiTOPЭтот цифровой вольтметр-амперметр постоянного тока выпускается с опорными диодами. Счетчик в нем предусмотрен двухразрядного типа. Проводимость компаратора находится на отметке в 3.5 мк. Микроконтроллер применяется с выпрямителем. Чувствительность тока у него довольно высокая. Источником питания выступает обычная батарейка. Резисторы используются в приборе коммутируемого типа. Стабилизатор в данном случае не предусмотрен. Триод установлен только один. Непосредственно преобразование тока происходит довольно быстро. Для бытового использования этот прибор подходит хорошо. Фильтры для увеличения точности измерения предусмотрены. Если говорить про параметры вольтметра–амперметра, то важно отметить, что рабочее напряжение находится на уровне 12 В. Потребление тока в данном случае равняется 0.5 А. Минимальное разрешение представленного прибора составляет 1 мА. Сопротивление шунта располагается на отметке в 2 Ом. Коэффициент деления вольтметра-амперметра только 0.7. Максимальное разрешение указанной модели составляет 15 мА. Непосредственно процесс преобразования тока занимает не более 340 мс. Допустимая ошибка указанного прибора располагается на уровне в 0.1 %. Минимальное давление система выдерживает в 12 кПа. fb.ru Вольтметр, двухканальный вольтметр, милливольтметр, универсальный прибор на PIC контроллереВОЛЬТМЕТР ДЛЯ ЗАРЯДНОГО УСТРОЙСТВА.Вольтметр предназначен для индикации напряжения на заряжаемом аккумуляторе. Он может измерять напряжение в пределах от б до 20 V, что позволяет его встроить практически в любое зарядное устройство. Вольтметр питается от измеряемой цепи. В то же время, если разъединить измеряемую и питающую цепи (использовать отдельный источник питания, не зависящий от измеряемой цепи) можно будет измерять напряжение в пределах 0-20V.схема || продолжитьДВУХКАНАЛЬНЫЙ ВОЛЬТМЕТР ДЛЯ ЛАБОР БЛОКА ПИТАНИЯ.Встраиваемый вольтметр предназначен для измерения выходных напряжений двухполярного регулируемого лабораторного блока питания в интервале от 0 до ±24 В с точностью 0.01 В. Широкораспространенные микроконтроллеры содержат, как правило, 10-разрядные АЦП, что не позволяет получить разрешение лучше, чем 0,1 В. Если требуется разрешение 0,01 В в интервале до 24 В, АЦП должен быть как минимум 12-разрядным.схема || продолжитьМИЛЛИВОЛЬТМЕТР.В данной статье описано применение трехразрядного цифрового милливольтметра, который можно использовать как вольтметр или амперметр постоянного тока в зависимости от того, где измеряется напряжение - на делителе или на шунте. По сути, предлагаемый милливольтметр является аналогом известной микросхемы 572ПВ2 с трехразрядной индикацией.схема || продолжить || архивМОНИТОР ЭЛЕКТРОСЕТИ.В статье автор рассказывает об устройстве контроля и регистрации различных параметров работы электросети (220 в/50 Гц), что позволяет оценить качество электроснабжения, что немаловажмо как бытовым, так и промышленным потребителям (особенно в сельской местности).схема || продолжитьУНИВЕРСАЛЬНЫЙ ПРИБОР.Прибор для радиолаборатории из категории «очень много в одном». Он может быть логическим пробником, генератором импульсов, частотомером, счетчиком импульсов, вольтметром, тестером диодов и транзисторов, измерителем емкости, индуктивности, генератором видеосигнала, генератором случайных чисел. Практически приличная лаборатория в одном приборе. Прибор сделан на микроконтроллере PIC16F870.схема || продолжитьЦИФРОВОЙ ВОЛЬТМЕТР.Предлагается схема простого цифрового вольтметра с использованием аналого-цифрового преобразоватепя |АЦП]. В устройстве применен быстродействующий 100 кГц 16-разрядный преобразователь ADS8321. Микроконтроллер PIC16F84A производит считывание информации с АЦП и формирует управляющие сигналы для роботы ЖКИ типа МТ10Т7-7. В качестве опорного источника использована микросхема REF195. Режим работы устройства задается переключателями S0 и S1.схема || продолжитьЦИФРОВОЙ ВОЛЬТМЕТР СЕТЕВОГО НАПРЯЖЕНИЯ.Напряжение электрических сетей не отличается высокой стабильностью, поэтому важно знать его текущее значение. Предлагаемый прибор имеет малые габариты и размещён в сетевом разветвителе. Он рассчитан на круглосуточную работу.схема || продолжить|| архивmimik.esy.es |