Роторный ветрогенератор своими руками: чертежи, схемы, инструкция по сборке. Роторный ветрогенераторчертежи, схемы, инструкция по сборкеВетровая электростанция, которая имеет горизонтальную ось вращения, хоть и обладает высокими показателями КПД, имеет некоторые недостатки. Например, осуществляемая передача через коллектор тока в состоянии вызвать значительные потери энергии и привести к таким неприятностям, как нарушение контактов из-за их окисления, снижение упругости пластин. Во многих ситуациях более практичным и выгодным будет вертикальный (роторный) ветрогенератор, который имеет свойство работать при ветре любого направления. Роторный ветрогенератор, как правило, устанавливается на мачте или столбе. Интересно, что сделать своими руками данное устройство не так сложно, как может показаться на первый взгляд, так как простота конструкции – одно из главных достоинств роторного ветрогенератора. Для того, чтобы соорудить роторный ветрогенератор своими руками, необходимо:
После того, как была осуществлена предварительная сборка, ветряк полностью разбирается для того, чтобы все элементы из фанеры примерно три раза пропитать олифой. Только после этого процесса и полного высыхания покрытия конструкция собирается в окончательно и после окрашивается алкидной эмалью. В качестве подшипникового узла можно использовать специальный тормозной мотоциклетный барабан. Ротор устанавливается на него посредством дистанционных втулок и болтов уже марки М8 с шайбами и гайками. В процессе монтажа между узлом и самим ротором необходимо установить самодельную ведущую звездочку цепного мультипликатора, также ведомая звездочка должна быть установлена на вал генератора. Звездочка, обладающая ведущими функциями, вырезается из дюралюминиевого листа, который имеет толщину около 4 мм. Технология изготовления состоит в том, чтобы сначала на ее делительной окружности разметить центры отверстий, которые образуют впадины для зубьев, потом при помощи сверла, напильника и ножовки следует сформировать сами зубья. Как правило, роторный генератор оснащен практически таким же тормозным устройством, как и на ВЭС. Его привод может быть таким же аэродинамическим. При сборе конструкции на ось тормозного кулачка рекомендуется закрепить стальную втулку, которая, в свою очередь, имеет четыре приваренные трубчатые штанги. На концах каждой из них могут быть расположены специальные полуцилиндрические лопасти из фанеры. Важно осуществить замену пружины, стягивающей колодки тормозов на ту, которая обладает немного меньшими показателями жесткости. Данное устройство, как правило, срабатывает при скорости ветра больше, чем 10 м/с. Во многих роторных генераторах есть одно достоинство – присутствие автоматического оригинального устройства, которое устанавливает лопатки ротора в самое оптимальное положение, причем в строгой зависимости от скорости ветра. Подобная конструкция производится из фанеры толщиной 3 мм, из пластика, имеющего слоистую структуру или из дюралюминия с показателями толщины до 0,8 мм. Кроме того, устройство может быть установлено на металлическом каркасе. Нижняя и верхняя крестовины, которые относятся к креплению лопаток ротора, производятся из стальных полос, имеющих толщину около 5 мм. Для того, чтобы максимально укрепить нижнюю крестовину, ее усиливают специальными стальными подкосами, которые определенным способом привариваются снизу. Крепятся такие детали непосредственно на валу двигателя при помощи стопорных винтов М8. Если генератор обладает возможностью автоматически устанавливать лопатки, то будет обеспечена постоянная скорость его вращения вне зависимости от того, какой силы ветер дует. Состоит данная часть конструкции из самой крестовины, пружины и тяги. Что касается принципа работы такого автомата, то он достаточно прост. Если скорость ветра небольшая, пружина при сжимании поставит лопатки в такое положение, которое оптимально подойдет для максимального использования пусть и не большой силы ветра. По мере того, как частота вращения ротора увеличивается, тяги, которые одновременно играют роль грузов-балансиров, будут под действием центробежной силы поворачивать роторные лопатки внутрь. В результате данного процесса будет достигнута максимальная стабильность вращения конструкции. При изготовлении данного автоматического устройства важно обратить внимание на балансировку всей конструкции в целом. Только опытным путем должна подбираться жесткость пружины, которая работает исключительно на растяжение. Если есть на то необходимость, могут быть установлены специальные дополнительные грузы на все стороны лопаток, которые обращены к оси генератора. Именно они в состоянии обеспечить автоматическое срабатывание автомата, когда скорость его вращения будет увеличиваться. Подводя итог всему вышесказанному, можно отметить, что ветровой генератор состоит из верхней крестовины, лопаток ротора, нижней крестовины, тяги-балансира, пружины, вала ротора, крестовины автомата установки лопаток, основания ветродвигателя и шкива. Существует еще одна деталь – рама привода двигателя ротора. Она изготавливается из стальных уголков, имеющих сечение 5x50x50 мм. Сами площадки для монтажа корпуса подшипников вырезаются из листа стали толщиной 5 мм. Последние закрепляются при помощи сварки, при этом нижняя их площадка должна быть подвижной, для того чтобы осуществлять центровку вала ротора. Используемые в этом процессе подшипники должны иметь маркировку № 106 и № 206. Если есть желание или необходимость применить электрогенератор под ветродвигатель, то рекомендуется использовать тот, который предназначен легковому транспортному средству. Стоит отметить, что данная конструкция совсем неплохо работает вместе с насосом, при необходимости поднять из скважины воду или из колодца и направить в водонапорную башню. Для этой цели можно использовать топливный автомобильный насос или специальную водяную помпу, которая раньше находилась в стиральной машине. Первый изготавливается при помощи одного или нескольких кулачков, на одинаковом расстоянии расположенных по всему валу ветродвигателя, вторая – посредством ременной передачи. Есть еще один способ изготовления ветрогенератора. Для него необходимо:
При желании можно сделать ветряк разборным, тогда появляется возможность применять его в походах для того, чтобы осуществить подзарядку аккумуляторов фотоаппаратов, мобильных телефонов или батарей от ноутбука. Кроме того, с помощью данного приспособления можно легко провести освещение всей палатки, опять же в походе, а при необходимости осветить вообще весь палаточный городок, если установить несколько подобных конструкций. Переносить такой генератор очень удобно, так как в разобранном виде он занимает совсем немного места. Чаши из пластика можно уложить одна в другую, а затем в них же уложит сам электрогенератор. Для того, чтобы стационарно установить данную конструкцию, например, на садовом участке или на даче, лучше соорудить более надежный вид генератора – неразборный – и капитально закрепить его на крыше. batsol.ru О ветрогенераторах для самостоятельного изготовленияЧасто приходится видеть в интернете готовые самодельные ветрогенераторы, которые совсем не оправдали надежды своих создателей. А все потому что при их создании люди руководствовались лишь внешним сходством понравившегося типа ветрогенератора, не применяли ни каких расчетов и делали все на глазок, так, как им казалось правильно. В этой статье я не буду приводить формул, я попытаюсь донести общую картину принципов работы ветрогенератора для начинающий, а более на возникшие вопросы есть ответы в других моих статьях.Но ветрогенератор, не важно какого типа и размеров, это целый комплекс элементов, от параметров которых зависят характеристики законченного ветрогенератора. Конечно самая важная часть ветрогенератора это генератор, от его параметров зависят размеры всех остальных элементов. Для горизотальных ветрогенераторов расчеты правильнее проводить под имеющийся генератор. То-есть уже под имеющийся генератор подгоняется ветроколесо, рама и все остальные элементы. Но и сам генератор нужен более-менее подходящий для ветрогенератора. Для вертикальных ветрогенераторов проще наоборот, сначала рассчитать размеры ротора, и уже после подбирать подходящий генератор по оборотам и мощности. О лопастях горизонтального ветрякаДля горизонтальных винтов ветрогенераторов есть такое понятие как быстроходность винта. Быстроходность это отношение скорости кончика лопасти к скорости ветра. Обычно трехлопастные винты имеют быстроходность Z5. Чем больше лопастей, тем меньше быстроходность так-как лопасти при вращении попадают в турбулентный поток, созданный впереди идущими лопастями, и тормозятся теряя обороты и мощность.> Еще один значимый фактор это заполнение ометаемой площади винта лопастями, чем больше лопастей и чем они шире, тем меньше за единицу времени они пропускают через себя ветра. Ветер просто не успевает проваливаться сквозь лопасти и образуется воздушная подушка перед винтом, о которую тормозятся новые порции ветра, из-за этого винт получает уже приостановленный ветер потерявший часть энергии, который частично отражается от воздушной подушки и уходил в сторону. Поэтому КИЭВ (коэффициент использования энергии ветра) много-лопастных ветрогенераторов значительно меньше чем у двух-трехлопастных. Так-же на быстроходность влияет и ширина лопастей, чем они уже, тем меньше их сопротивление потоку воздуха по ходу вращения. > Так-же хочу отметить что на мощность абсолютно не влияет количество лопастей. Когда обороты ветроколеса маленькие, то лопасти за единицу времени успевают отнять энергию у меньшего количества ветра и тут мощность можно поднять количеством лопастей, но обороты при этом не поднимутся, а наоборот чем больше лопастей тем меньше будут обороты. Когда лопастей всего две-три, то им ничто не мешает раскручиваться до больших оборотов, и они за единицу времени проходят больший путь и отнимают энергию у большего количества ветра. То-есть например мощность будет одинаковая если три лопасти за секунду сделают 1оборот, или 1лопасть сделает три оборота за секунду. Мощность одинаковая на валу, но обороты в три раза выше у одной лопасти в сравнении с тремя лопастями. Так-же если сравнить например классические 3 лопасти и 6 лопастей, или 12. > Так-же на быстроходность влияет и угол установки лопастей относительно набегающего потока ветра. Если говорить по просту, то максимальная тяга лопасти будет при установке лопасти под углом 45градусов. Но это справедливо если лопасть стоит и не вращается. Когда лопасть начинает вращаться, то реальный угол набегания ветра изменяется. Представьте что вы сидите в машине, а на улице идет снег или дождь, ветер дует вам в бок и снежинки бьют в боковое стекло, но как только вы начнете движение ветер будет дуть уже не в бок и снег бивший вам в боковое стекло бьет под углом уже и в лобовое стекло, а если скорость еще увеличить, то снег будет бить уже прямо в лобовое стекло. Так и с лопастью, когда она вращается, то реальный угол набегания ветра на нее изменяется, и тот угол 45градусов, под который установлена лопасть при движении лопасти изменяется. Если изменяется угол, то изменятся и тяга лопасти, падает мощность, и когда угол между набегающим ветром и углом установки лопасти сравняются, то лопасть больше не сможет набирать обороты и ее мощность упадет до нуля. Так-же понятно что лопасть по своей длинне имеет разную быстроходность, например если скорость кончика лопасти Z5, то-есть он вращается со скоростью в 5 раз больше скорости ветра, то середина лопасти вращается с в два раза меньшей скоростью, значит быстроходность в середине лопасти равна Z2,5. Это значит что поток ветра набегает на лопасть под разными углами, и чтобы лопасть имела максимальную тягу по всей свей длине, ей нужна правильная крутка. Если проанализировать ктутку лопастей заводских ветрогенераторов с быстроходностью Z5, то можно увидеть некоторую закономерность, так например кончик лопастей имеет угол около 3-4 градуса, середина лопасти около 12градусов, а у корня угол около 24градуса. Эти углы можно применять для создания самодельных лопастей с хорошим КИЭВ. Но правильнее рассчитывать лопасти конкретно под генератор, чтобы генератор был оптимально нагружен в большом диапазоне оборотов винта. Как известно зависимость мощности ветра от его скорости кубическая, это значит что при увеличении скорости ветра в два раза, мощность ветра увеличится в 8 раз. Поэтому и генератор должен быть с такой-же кривой роста мощности что и винт, чтобы от ветра забирать максимум и при этом не перегрузить винт и не давать винту пойти в разнос при сильном ветре. Ротор вертикального ветрякаРотор вертикальных ветрогенераторов типа "Бочка" в отличие от пропеллеров не может иметь быстроходность выше скорости ветра, и быстроходность концов лопастей может быть максимум Z1. Это связано с тем что лопасти здесь проваливаются под давлением, а не выдавливаются ветром как в пропеллере, и следовательно чем быстрей ветер тем быстрей лопасть поворачивает ветром. Но когда ротор имеет максимальную скорость вращения, мощность вся уходит на это вращение. Максимальная мощность будет на валу ротора примерно при вдвое меньшей скорости вращения концов лопастей относительно скорости ветра.Так-же так-как площадь ротора большая, то на нем сразу-же образуется воздушная подушка набегающим ветром, и новые порции ветра набегая тормозятся о нее теряя часть энергии и частично отражаясь от нее в стороны. Именно этот фактор и снижает КИЭВ вертикального ветрогенератора, так-как из-за образования этой воздушной подушки набегающий ветер теряет на ней до трети мощности, особенно на высоких скоростях, плюс сопротивление возвращающихся лопастей добавляет сопротивление и общая мощность очень низкая для вертикальных ветрогенераторов типа "Бочка". Реальный КИЭВ обычно равен 10-20% использования энергии ветра. Для примера вот небольшой расчет ротора вертикального ветряка.Например диаметр ротора 1м, значит длинна окружности ротора равна 3,14м, это значит что при скорости 3,14м/с ротор сделает 1оборот. То-есть при ветре 3,14м/с скорость вращения ротора будет 60об/м, но мощность на валу будет близка к нулю. Стоит чуть нагрузить ротор как тут-же присядут обороты. Максимальная мощность будет при примерно вдвое меньшей скорости вращения. Значит на ветре 3,14м/с максимальная мощность ротора будет при 30об/м. Если диаметр ротора 2метра сделать, то максимальная мощность будет при 15об/м на этом ветре. С оборотами я думаю понятно.Теперь посчитаем какую мощность можно снять при этих оборотах. У нас к примеру ротор диаметром 1м и высотой 1м. Площадь ротора значит равна 1м^2. Так-как на роторе образуется воздушная подушка, то не все 100% энергии ветра приходятся на ротор. Этот коэффициент принято брать 0,6. Тогда по известной формуле 0,6*1*3,14*3,14*3,14=18,5 ватт/ч. Ротор получит на ветре 3,14м/с 18,5 ватт/ч, но еще нужно учесть КПД мультипликатора и генератора, другие потери в подшипниках и провалах, тогда смело можно делить мощность на 2 и реально можно увидеть только около 9ватт/ч. На так-как зависимость мощности ветра от скорости кубическая, то при 6,28м/с мощность будет уже не 9ватт/ч, а примерно72ватт/ч. С ветроколесами я думаю понятно, для понимания расчета ветроколес можно прочитать другие статьи в разделе "Расчеты ВГ". Теперь немного про генераторы. Понятно что кривая мощности генератора должна хотя-бы примерно совпадать с кривой мощности винта. Но генераторов очень много видов и типов и что лучше тут спорный вопрос. Первое что попадается в интернете это дисковый генератор на постоянных магнитах. Его преимущество в том что он легко делается в домашних условиях, не имеет магнитного залипания и лопасти стартуют гораздо раньше чем на традиционные ветрогенераторы с генераторами из ЭТС. Но есть и минусы, первое это то что магнитов надо на генератор в два раза больше, так-как катушки не имеют сердечников. И второе это точный расчет, из-за ошибок в расчете генератор будет мизерной мощности или не тех характеристик что от него требуется. Но все типы описывать не буду, я уже описал эти моменты в других статьях, поэтому пока все. e-veterok.ru Ветрогенератор с вертикальным ротором | СинтезгазСамодельный ветрогенератор в сборе Группой умельцев была разработана конструкция ветрогенераторной установки с вертикально расположенной осью вращения. Ниже, представлено подробное руководство по изготовлению этой установки. Внимательно прочитав это руководство, вы сможете сделать подобный вертикальный ветрогенератор своими руками. Конструкция ветрогенератора получилась достаточно надежной, с низкой стоимостью обслуживания, простой в изготовлении и не дорогой по комплектующим. Представленный ниже список деталей носит ознакомительный и ориентировочный характер. Соблюдать его не обязательно, можно внести какие-то свои коррективы, что-то улучшить, что-то использовать свое, т.к. не везде можно найти именно то, что в списке. Для изготовления этого ветрогенератора использовались недорогие и качественные детали. Схема вертикального ветрогенератора
Ветрогенераторы с вертикальной осью вращения не настолько эффективны, как их горизонтальные собратья, однако вертикальные ветрогенераторы менее требовательны к месту их установки. Описание изготовления турбины ветрогенератораТурбина ветрогенератора
Крепление лопастей уголками Если не уверены в чем то, шаблоны из картона помогут избежать ошибок и дальнейших переделываний. Общий вид расположения уголков, крепящих лопасти Последовательность действий изготовления турбины:
Описание изготовления ротора ветрогенератораРазметка роторов с помощью бумажных шаблонов Последовательность действий по изготовлению ротора:
Крепление магнитов на основании ротора Описание изготовления статора ветрогенератораИзготовление статора – это очень трудоемкая часть процесса изготовления ветрогенератора. Можно, конечно попробовать купить готовый статор (его еще надо найти у нас) или генератор, но не факт, что они подойдут для конкретного ветряка со своими индивидуальными характеристиками Катушка статора Статор ветрогенератора – электрический компонент, состоящий из 9-ти катушек. Катушка статора изображена на фото выше. Катушки разделены на 3 группы, по 3 катушки в каждой группе. Каждая катушка намотана проводом 24AWG (0.51мм) и содержит в себе 320 витков. Большее количество витков, но более тонким проводом даст более высокое напряжение, но меньший ток. Поэтому, параметры катушек могут быть изменены, в зависимости от того, какое напряжение вам требуется на выходе ветрогенератора. Нижеследующая таблица поможет вам определиться:
Вручную наматывать катушки – это скучное и трудное занятие. Поэтому, чтобы облегчить процесс намотки рекомендуется изготовить простое приспособление – намоточный станок. Тем более, что конструкция его достаточно проста и сделать его можно из подручных материалов. Витки всех катушек должны быть намотаны одинаково, в одном и том же направлении и обращайте внимание или отмечайте, где начало, а где конец катушки. Для предотвращения разматывания катушек, они обмотаны изолентой и промазаны эпоксидкой. Приспособление для намотки катушек Приспособление сделано из двух кусков фанеры, изогнутой шпильки, куска ПВХ-трубы и гвоздей. Перед тем, как изогнуть шпильку, нагрейте ее горелкой. Приспособление для намотки катушек, сделанное из двух кусков фанеры, изогнутой шпильки, куска ПВХ-трубы и гвоздей Небольшой кусок трубы между дощечками обеспечивает заданную толщину, а четыря гвоздя обеспечивают необходимые размеры катушек. Крупный вид приспособления для намотки катушек Вы можете придумать свою конструкцию намоточного станка, или возможно у вас уже имеется готовый. После того, как все катушки намотаны их необходимо проверить на идентичность друг к другу. Это можно сделать при помощи весов, а также нужно померить сопротивления катушек мультиметром. Подробный вид приспособления для намотки катушек Схема соединения катушек статора Внимание! Категорически запрещается подключать домашние бытовые потребители напрямую к ветрогенератору во избежании выхода их из строя! Также соблюдайте меры безопасности при обращении с электричеством! Схема соединения катушек статора Последовательность действий соединения катушек:
Для того, чтобы стало более понятно, рассмотрим весь процесс в картинках: Изготовление статора Готовые катушки помещаются на вощеную бумагу с начерченной схемой расположения. Три небольших круга по углам на фото выше – места отверстий для крепления кронштейна статора. Кольцо в центре предотвращает попадание эпоксидки в центральную окружность. Вокруг катушек помещается стеклоткань Катушки закреплены на своих местах. Стеклоткань, небольшими кусочками помещается вокруг катушек. Выводы катушек можно вывести внутрь или наружу статора. Не забудьте оставить достаточный запас длины выводов. Обязательно еще раз проверьте все соединения и прозвоните мультиметром. Статор, залитый эпоксидкой с кронштейном Статор практически готов. Отверстия для крепления кронштейна, сверлятся в статоре. При сверлении отверстий смотрите не попадите в выводы катушек. После завершения операции, обрежьте лишнюю стеклоткань и если необходимо, шкуркой зачистите поверхность статора. Изготовление кронштейна статораТруба для крепления оси хаба была обрезана под нужный размер. В ней были просверлены отверстия и нарезана резьба. В дальнейшем в них будут вкручены болты, которые будут удерживать ось. Крепление оси Эскиз (чертеж) кронштейна На рисунке выше показан кронштейн, к которому будет крепиться статор, находящийся между двумя роторами. Шпилька с гайками и втулкой На фото выше показана шпилька с гайками и втулкой. Четыре таких шпильки обеспечивают необходимый зазор между роторами . Вместо втулки можно использовать гайки большего размера, либо самому вырезать шайбы из алюминия. Окончательная сборка генератораНебольшое уточнение: малый воздушный зазор между связкой ротор-статор-ротор (который задается шпилькой с втулкой), обеспечивает более высокую отдаваемую мощность, но возрастает риск повреждения статора или ротора при перекосе оси, который может возникнуть при сильном ветре. Сборочный чертеж генератора На левом рисунке ниже, показан ротор с 4-мя шпильками для обеспечения зазора и двумя алюминиевыми пластинами (которые в дальнейшем будут убраны). На правом рисунке показан собранный и покрашенный в зеленый цвет статор, установленный на место. Ротор и статор Процесс сборки:
Этапы сборки генератора Генератор готов! Генератор будущего ветрогенератора в сборе После установки шпилек (1) и фланца (2) ваш генератор должен выглядеть приблизительно так, ка на рисунке выше. Установка и крепление клемм Болты из нержавейки служат для обеспечения электрического контакта. На провода удобно использовать кольцевые наконечники. Установка клемм Колпачковые гайки и шайбы служат для крепления соединительной платы и опоры лопастей к генератору. Итак, ветрогенератор полностью собран и готов к тестам. Для начала, лучше всего рукой раскручивать ветряк и измерять параметры. Если все три выходные клеммы закоротить между собой, то ветряк должен вращаться очень туго. Это может быть использовано для остановки ветрогенератора для сервисного обслуживания или в целях безопасности. Ветрогенератор можно использовать не только для обеспечения дома электричеством. К примеру данный экземпляр, сделан так, чтобы статор вырабатывал большое напряжение, которое затем используется для нагрева.Рассматриваемый выше генератор выдает 3-х фазное напряжение с различной частотой (зависит от силы ветра), а к примеру в России используется однофазная сеть 220-230В, с фиксированной частотой сети 50 Гц. Это отнюдь не означает, что данный генератор не подойдет для питания бытовых приборов. Переменный ток с данного генератора может быть преобразован в постоянный ток, с фиксированным напряжением. А постоянный ток уже может использоваться для питания светильников, нагрева воды, заряда аккумуляторов, а может быть поставлен преобразователь для преобразования постоянного тока в переменный. Но это уже выходит за рамки данной статьи. Мостовой выпрямитель На рисунке выше простая схема мостового выпрямителя, состоящего из 6-ти диодов. Он преобразовывает переменный ток в постоянный. Рекомендации по выбору места установки ветрогенератораВетрогенератор, описываемый здесь, установлен на 4-х метровой опоре на краю горы. Трубный фланец, который установлен снизу генератора обеспечивает легкую и быструю установку ветрогенератора – достаточно прикрутить 4 болта. Хотя для надежности, лучше приварить. Обычно, горизонтальные ветрогенераторы «любят» когда ветер дует с одного направления, в отличии от вертикальных ветряков, где за счет флюгера, они могут поворачиваться и им не важно направление ветра. Т.к. данный ветряк установлен на берегу скалы, то ветер там создает турбулентные потоки с разных направлений, что не очень эффективно для данной конструкции. Другим фактором, который необходимо учитывать при подборе места размещения, является сила ветра. Архив данных по силе ветра для вашей местности можно найти в интернете, правда это будет очень приблизительно, т.к. все зависит от конкретного места. Также, в выборе месторасположения установки ветрогенератора поможет анемометр (прибор для измерения силы ветра). Немного о механике ветрогенератораКак известно, ветер возникает из-за разности температур поверхности земли. Когда ветер вращает турбины ветрогенератора, он создает три силы: подьемную, торможения и импульсную. Подьемная сила обычно возникает над выпуклой поверхностью и является следствием разности давлений. Сила торможения ветра возникает за лопастями ветрогенератора, она является нежелательной и тормозит ветряк. Импульсная сила возникает из-за изогнутой формы лопастей. Когда молекулы воздуха толкают лопасти сзади, то им некуда потом деваться и они собираются позади них. В результате, они толкают лопасти в направлении ветра. Чем больше подьемная и импульсная силы и меньше сила торможения, тем быстрее лопасти будет вращаться. Соответственно вращается ротор, который создает магнитное поле на статоре. В результате чего вырабатывается электрическая энергия. Скачать схему расположения магнитов Комментарии:Что такое газ БраунаХронология водородных топливных элементов sintezgaz.org.ua На что способен ротор ОнипкоМногие наверно уже видели красивые ролики на yutube, где крутится красивый и необычный ротор Онипко. Создатель этого ветрогенератора Алексей Онипко, проект был создан на базе "Украинской академии наук". Я особо не изучал этот вопрос, но судя по всему команда занимающаяся продвижением ротора Онипко как бренда работает именно в этом институте.Есть официальный сайт Онипко-ротор, который красочно показывает как крутится и как выглядит этот ветрогенератор, и естественно нацелен на поиск инвесторов и покупателей. Сам ветрогенератор выглядит конечно красиво и украсил-бы любой участок на даче или в загородном доме. Все-бы смотрели и спрашивали что это такое и сколько энергии даёт. > На сайте указаны такие характеристики: > Понятно что ротор Онипко это ветрогенератор, который впитал в себя черты вертикальных ветроустановок, но при этом работает как горизонтально-осевой ветрогенератор.На видео весело крутится. А вот сколько энергии он вырабатывает и на каком ветре не известно до сих пор. Мне так и не удалось найти данные по выработке электроэнергии "ротором Онипко". Я посмотрел более десятка видео, и статей, больше половины из них просто реклама этого ветрогенератора без каких то конкретных цифр, лишь заманчивая картинка и сладкое описание, нацеленное на неграмотное в этом вопросе население. Отдельно хочу отметить что изобретение это, а этот ветрогенратор презентуется как высокоэффективный ветрогенератор запатентованной конструкции, очень широко рекламировалось в интернете и в Украинских СМИ. Но я так и не нашёл материалы о реальном использовании этого ветрогенератора, неужели никто не купил и не поставил на своём участке. Нашёл не рекламное видео с самодельным ротором Онипко. В качестве генератора используется мотор-колесо, но данных по мощности ветрогенератора нет.
Я убеждён что "ротор Онипко" это рекламный проект, а не конкретный продукт так-как нет ни одной реально работающей конструкции, есть только то что просто крутится, так-же нет никакой конкретной информации и на сайте. Даже в характеристиках они указали не данные о том сколько ватт энергии он даёт и на каком ветре, а просто написали общие достоинства ветрогенератора, которые довольно спорны. Девайте разберёмся в правдивости приведённых ниже характеристик:Выше на видео ротор Онипко диаметром около 1 метр. Мощность ветрового потока при 2м/с составляет всего 50 ватт, это энергия в ветре. А ротор преобразует энергию ветра в механическую с КПД 20%, хотя автор заявляет что эффективность преобразования энергии выше чем у современных ветрогенераторов. В итоге механическая энергия крутящая генератор составил 10 ватт, а генератор с учётом своего КПД примерно 0.8 отдаст 8 ватт мощности. В итоге этот ротор при 2м/с выдаст всего 8 ватт энергии, на маленькую лампочку хватит и не более. Низкий уровень шума Здесь тоже автор лукавит так-как ветрогенераторы любого типа практически бесшумны, и проблема шумности известна только в самодельных высоко-оборотистых конструкциях. А бытовые ветрогенераторы практически бесшумны. Шумность может быть только на ветрах от 8м/с для высокооборотистых высокоэффективных ветогенераторов так-как скорость движения кончиков лопастей в 6-8 раз быстрее скорости ветра, но этот шум не громче чем шум естественный шум деревьев. А тихоходные ветрогенераторы шумят меньше, но и энергии дают значительно меньше при одинаковых размерах ротора. КПД такого типа ветрогенераторов не более 0.25 и этот ветрогенератор работает в основном за счёт давления ветра, а не много за счет подъёмной силы. Но всё это с низким КПД и очень низкими оборотами. На видео выше видно что ветер 4-6м/с, а ротор диаметром 1 метр вращается со скоростью 60-80об/м. При этом аналогичные современные ветрогенераторы имеют около 400-500об/м ветроколеса. Теперь понятно что ротору Онипко понадобится генератор в 10 раз больше и дороже чтобы он выдал энергии при 60об/м столько-же сколько выдаст современный ветряк при 500об/м. Так-же никакая у этого ветрогенератора мощность на единицу веса. К примеру всё тот-же ротор диаметром 1 метр весит около 50кг, а горизонтальный трех-лопастной ветряк не более 5-6кг. Понятно что только по материалозатратам классический ветряк будет дешевле в 10 раз чем ротор Онипко отсюда и цена ветрогенератора. Фотографии Ротора Онипко>> > > > Ротор Онипко Это ничто иное как обычный ветрогенератор впитавший в себя черты горизонтально-осевого классического ветрогенератора, но при этом он работает по принципу вертикальных и парусных ветрогенераторов, за счёт силы давоъления ветра. Эффективность таких ветрогенераторрв всего 0.2, то есть они преобразуют всего 20% энергии ветра в механическую. При этом они в 10 раз более материалозатратнее, от этого и цена на такие ветряки просто космическая. Так-же и про работу более эффективную работу на слабом ветре выдумка так-как КПД ветроколеса всего 0,2 в сравнении с КПД 0.4 у классических ветрогенераторов. Есть ветрогенераторы созданные для более сильных ветров, яхтенные ветряки и прибрежные, которые часто покупают так-как они дешевле. Вот они рассчитаны на более сильные ветра и не работают на ветрах меньше 5м/с, да им это и не нужно, на море ветер всегда сильнее. А вот современные бытовые ветрогенераторы начинают работать с 3м/с, это тот ветер с которого можно хоть что-то взять, а делать ветрогенератор под ветер менее 3м/с бессмысленно так-как энергии там очень мало и её хватает только на вялое вращение ветроколеса. e-veterok.ru Ветрогенератор энергии своими рукамиИметь свой ветрогенератор очень выгодно. Во-первых, человек получает бесплатную электроэнергию. Во-вторых, электричество можно добыть в удаленных от цивилизации местах, где не проходит ЛЭП. Ветряк представляет собой устройство, предназначенное для генерирования кинетической энергии ветра. Многие умельцы научились собирать вертикальный ветрогенератор своими руками, а как это делается мы сейчас и узнаем. Устройство и разновидности ветряковВетрогенераторы имеют много названий, но правильней их обозначить как ветровая электростанция. Состоит ВЭС из электрооборудования и механического сооружения – ветряка, которые связаны между собой в единую систему. Электроустановка помогает превратить ветер в источник энергии. Разновидностей ветрогенераторов много, но по расположению рабочей оси их условно разделяют на две группы:
Различаются ветрогенераторы по типу рабочего колеса:
Для генерирования кинетической энергии ветра в промышленных масштабах обычно используют пропеллерные ветрогенераторы. Модели барабанного и карусельного типа отличаются большими габаритами, а также менее эффективным устройством механизма. Все ветряки могут комплектоваться мультипликатором. Этот редуктор во время работы создает много шума. В домашних ветряках мультипликаторы обычно не используют. Принцип работы ветряка
Стоит отметить, что принцип работы ветрогенератора одинаков, независимо от его конструкции и внешнего вида. Генерирование энергии начинается с момента вращения лопастей ветряка. В это время между ротором и статором генератора создается магнитное поле. Оно и служит источником энергии, вырабатывающим электричество. Итак, как мы выяснили, ветрогенератор состоит из двух основных частей: вращающегося механизма с лопастями и генератора. Теперь о работе мультипликатора. Этот редуктор устанавливают на ветряк, чтобы увеличить обороты рабочего вала. Важно! Мультипликаторы устанавливают только на мощные ветрогенераторы. Во время вращения ротора генератора вырабатывается переменный ток, то есть, выходит три фазы. Сгенерированная энергия попадает на контроллер, а от него идет к аккумулятору. В этой цепочке стоит еще один важный прибор – инвертор. Он преобразовывает ток до стабильных параметров и подает через сеть потребителю. Ветряк industrial craft 2В сфере ветроэнергетики большую известность имеет кинетический ветрогенератор industrial craft 2, имеющий модифицированный блок для генерирования энергии ветра. Для расчета мощности электроустановки сумму скоростей его рабочих органов умножают на значение 0,1. Размер рабочей области обусловлен габаритами ротора. Во время вращения он вырабатывает кинетическую kU, а не электрическую EU энергию. Вращение лопастей зависит от порывов ветра. Самая оптимальная скорость наблюдается на высоте 160–162 м. Гроза увеличивает скорость ветра на 50%, а простой дождь – до 20%. Роторы ветрогенератора industrial craft 2 различаются габаритами и материалом лопастей, а также предельными показателями силы ветра, при которых они способны работать:
Кинетические ветрогенераторы industrial craft 2 не ставят близко на одном уровне спиной друг к другу. Самостоятельное изготовление вертикального ветрогенератораВ самостоятельном изготовлении ветряк с вертикальным валом самый простой. Лопасти изготавливают с любого материала, главное, чтобы он был устойчив к влаге и солнцу, а также был легкий. Для лопастей домашнего ветрогенератора можно использовать ПВХ трубу, применяемую при строительстве канализации. Этот материал отвечает всем вышеперечисленным требованиям. Из пластика вырезают четыре лопасти высотой 70 см, плюс две таких же делают из оцинковки. Жестяным элементам придают форму полукруга, после чего фиксируют с обеих сторон трубы. Остальные лопасти крепят на одинаковом расстоянии по кругу. Радиус вращения такого ветряка будет составлять 69 см.
Следующий этап – сборка ротора. Здесь понадобятся магниты. Сначала берут два ферритовых диска диаметром 23 см. С помощью клея шесть неодимовых магнитов крепят на один диск. При диаметре магнита 165 см между ними образуют угол 60о. Если эти элементы меньшего размера, то их количество увеличивают. Приклеивают магниты не просто, как попало, а меняют поочередно полярность. На второй диск по аналогичной схеме крепят ферритовые магниты. Всю конструкцию обильно заливают клеем.
Самое сложное – это изготовление статора. Нужно найти медный провод толщиной 1 мм и из него сделать девять катушек. Каждый элемент должен содержать ровно по 60 витков. Далее, из готовых катушек собирают электрическую схему статора. Все их девять штук выкладывают по кругу. Сначала соединяют концы первой и четвертой катушки. Далее, соединяют второй свободный конец четвертой с выходом седьмой катушки. В итоге получился элемент одной фазы из трех катушек. Схему второй фазы собирают со следующих по очередности трех катушек, начиная со второго элемента. Последней собирают точно так же третью фазу, начиная с третьей катушки. Для крепления схемы, из фанеры вырезают форму. На нее сверху кладут стеклоткань, а по ней раскладывают схему из девяти катушек. Все это заливают клеем, после чего оставляют до полного застывания. Не ранее, чем через сутки ротор со статором можно соединять. Сначала кладут ротор магнитами вверх, на нем располагают статор, а сверху укладывают второй диск магнитами вниз. Принцип соединения можно увидеть на фото.
Теперь настало время собрать ветрогенератор. Вся его схема будет состоять из рабочего колеса с лопастями, аккумулятора и инвертора. Для увеличения крутящего момента желательно установить редуктор. Работы по монтажу имеют следующий порядок:
Когда механическая часть ветрогенератора готова, начинают собирать электрическую схему. Генератор на выходе даст трехфазный ток. Для получения постоянного напряжения в схему ставят выпрямитель из диодов. Контроль зарядки аккумулятора осуществляется через автомобильное реле. Заканчивает цепочку схемы инвертор, из которого выходит в домашнюю сеть требуемые 220 вольт.
Выходная мощность такого ветрогенератора зависит от скорости ветра. Например, при 5 м/с электроустановка выдаст около 15 Вт, а при 18 м/с можно получить на выходе до 163 Вт. Чтобы повысить производительность, мачту ветряка удлиняют до 26 м. На такой высоте скорость ветра на 30% больше, а, значит, электричества получится примерно в полтора раза больше. На видео показана сборка генератора для ветряка:
Сборка ветрогенератора – дело сложное. Нужно знать основы электротехники, уметь читать схемы и пользоваться паяльником. fermilon.ru Ветрогенератор своими руками - как сделать роторный, аксиальный, трехфазного и однофазного типа, особенности монтажа, инструкции +видеоВ современных реалиях каждый домовладелец хорошо знаком с постоянным ростом стоимости коммунальных услуг – это касается и электрической энергии. Поэтому для создания комфортных условий обитания в загородном домостроении, как летом, так и зимой, придётся или оплачивать услуги по энергоснабжению, или найти альтернативный выход из сложившейся ситуации, благо природные источники энергии бесплатны. Как сделать ветрогенератор своими руками — пошаговое руководствоТерритория нашего государства – это по большей части равнины. Несмотря на то, что в городах доступ ветра перекрыт высотными постройками, за городом буйствуют сильные воздушные потоки. Поэтому самостоятельное изготовление ветряного генератора — единственно правильное решение для обеспечения загородного дома электричеством. Но для начала нужно разобраться, какая модель подходит для самостоятельного изготовления. РоторныйРоторный ветряк – несложное преобразовательное устройство, которое просто сделать своими руками. Естественно, такое изделие не сможет обеспечить электроэнергией загородный особняк, но для дачного домика вполне сгодится. Он позволит осветить не только жиле домостроение а, и хозяйственные постройки и даже дорожки в саду. Для самостоятельной сборки агрегата мощностью до 1500 ватт нужно подготовить расходные материалы и комплектующие из следующего перечня:
Естественно, нужно иметь и минимальный комплект инструмента: ножницы для резки металла, болгарка, измерительная рулетка, карандаш, набор гаечных ключей и отвёрток, дрель со свёрлами и пассатижи. Пошаговые действияСборку начинают с изготовления ротора и переделки шкива для чего придерживаются определённой последовательности работ.
Для подсоединения аккумуляторной батареи используются проводники с 4 мм сечением и длиной не более 100 см. Потребители подключаются проводниками с сечением в 2 мм. Важно в разрыв цепи включить преобразователь постоянного напряжения в переменное значение 220В согласно схеме клеммных контактов. Плюсы и минусы конструкцииЕсли все манипуляции проделаны, верно, то аппарат прослужит достаточно долго. При использовании достаточно мощной аккумуляторной батареи и подходящего инвертора до 1,5 кВт можно обеспечить питанием уличное и внутридомовое освещение, холодильник и телевизор. Сделать такой ветряк очень просто и экономически выгодно. Такое изделие легко ремонтируется и неприхотливо в использовании. Оно очень надёжно в плане работы и не шумит, надоедая обитателям дома. Однако роторный ветряк имеет низкую производительность, и его работа зависит от наличия ветра. Аксиальный ветряк на магнитахАксиальная конструкция с без железным статором на основе неодимовых постоянных магнитов, на территории нашего государства появились не так давно из-за недоступности комплектующих частей. Но на сегодняшний день, мощные магниты не являются редкостью, да и стоимость на них значительно упала по сравнению с несколькими годами тому назад. Основой такого генератора является ступица с тормозными дисками от легковой машины. Если это будет не новая деталь, то целесообразно её перебрать и сменить смазочные материалы и подшипники. Размещение и установка неодимовых магнитовРаботы начинают с наклеивания магнитов на диск ротора. С этой целью используются магниты в количестве 20 шт. и размерами 2,5 на 0,8 см. Для изменения количества полюсов нужно придерживаться следующих правил:
По возможности целесообразно использовать магниты прямоугольной формы, так как в круглых аналогах сосредоточение магнитных полей идёт в центре, а не по всей поверхности. Важно соблюсти условие, чтобы стоящие друг напротив друга магниты имели противоположные полюса. С целью определения полюсов магниты подносятся друг к другу, и притягивающиеся стороны являются положительными, следовательно, отталкивающиеся края отрицательными. Для крепления магнитов используется специальный клеевой состав, после чего для увеличения прочности выполняют усиление посредством эпоксидной смолы. С этой целью, ею заливают магнитные элементы. Для предотвращения растекания смолы делают бортики при помощи обычного пластилина. Агрегат трёхфазного и однофазного типаОднофазные статоры по своим параметрам уступают трёхфазным аналогам, так как при увеличении нагрузки возрастает вибрация. Это обусловлено разницей амплитуды тока возникающей в результате непостоянности его отдачи за определённый промежуток времени. В свою очередь, в трёхфазном аналоге такой проблемы нет. Это позволило увеличить отдачу трёхфазного генератора почти на 50% в сравнении с однофазной моделью. Плюс ко всему из-за отсутствия дополнительной вибрации во время работы устройства не создаются посторонние шумы. Намотка катушекКаждый электрик в курсе, что прежде чем начинать намотку катушки, важно выполнить предварительные расчёты. Самодельный ветрогенератор на 220В – устройство, работающее на малых скоростях. Необходимо добиться, чтобы зарядка аккумуляторной батареи стартовала со 100 оборотов в минуту. Если исходить из таких параметров, то для намотки всех катушек потребуется не более 1200 витков. Для определения витков для одной катушки нужно выполнить простое деление общих показателей на число отдельных элементов. Для поднятия мощности ветряка с низкими оборотами увеличивается число полюсов. При этом будет происходить увеличение частоты тока в катушках. Намотка катушек должна, выполнятся толстыми медными проводами. Это позволит уменьшить величину сопротивления а, следовательно, увеличить силу тока. Важно учитывать, что с резким увеличением напряжения ток может полностью расходоваться на сопротивление обмоток. Для упрощения намотки можно использовать специальный станок. В соответствии с числом и толщиной магнитов, закреплённых на дисках, изменяются рабочие характеристики аппарата. Чтобы выяснить, какие показатели мощности получатся в конечном счёте, достаточно выполнить намотку одного элемента и прокрутить его в агрегате. Для определения мощностных характеристик замеряется напряжение при определённых оборотах. Зачастую катушка выполняется круглой, но целесообразно её слегка вытянуть. В таком случае меди в каждом секторе будет больше, а расположение витков становится плотнее. По диаметру внутреннее отверстие катушки должно равняться габаритам магнита. При изготовлении статора важно учитывать, что он по толщине должен равняться параметрам магнитов. Обычно в качестве заготовки для статора используется фанера, но, вполне возможно, выполнить разметку на бумажном листе расчертив сектора для катушек, а для бордюров использовать обычный пластилин. Для придания прочности изделию используется стеклоткань, располагаемая на дне формы сверху катушек. Важно чтобы не происходило прилипания эпоксидной смолы к форме. Для этого её покрывают сверху воском. Катушки неподвижно фиксируются друг с другом, а концы фаз выводятся наружу. После чего выполняется соединение всех проводов по схеме звезда или треугольник. Для тестирования готового устройства его вращают вручную. Изготовление мачты и винтаОбычно конечная высота мачты составляет 6 метров, но по возможности лучше её увеличить в 2 раза. Из-за этого для её крепления используется бетонное основание. Крепление должно быть таким, чтобы труба легко поднималась и опускалась с помощью лебёдки. На верхнем конце трубы выполняется фиксация винта. Чтобы сделать винт, понадобиться ПВХ труба, сечение которой должно составлять 16 см. Из трубы вырезается винт двухметровой длины с шестью лопастями. Оптимальная форма лопастей определяется экспериментальным путём, что позволяет увеличить крутящий момент при минимальных оборотах. Для отвода винта от сильных порывов ветра используется хвост складной конструкции. Вырабатываемая электроэнергия накапливается в аккумуляторных батареях. Видео: самодельный ветряной генераторПосле рассмотрения доступных вариантов ветрогенераторов каждый домовладелец сможет определиться с подходящим для его целей устройством. Каждый из них имеет как свои положительные стороны, так и отрицательные качества. Особенно прочувствовать эффективность ветряка можно за городом, где происходит постоянное движение воздушных масс. Оцените статью: Поделитесь с друзьями!elektro.guru Ветрогенератор с вертикальным ротором | АльтерСинтезСамодельный ветрогенератор в сборе Группой умельцев была разработана конструкция ветрогенераторной установки с вертикально расположенной осью вращения. Ниже, представлено подробное руководство по изготовлению этой установки. Внимательно прочитав это руководство, вы сможете сделать подобный вертикальный ветрогенератор своими руками. Конструкция ветрогенератора получилась достаточно надежной, с низкой стоимостью обслуживания, простой в изготовлении и не дорогой по комплектующим. Представленный ниже список деталей носит ознакомительный и ориентировочный характер. Соблюдать его не обязательно, можно внести какие-то свои коррективы, что-то улучшить, что-то использовать свое, т.к. не везде можно найти именно то, что в списке. Для изготовления этого ветрогенератора использовались недорогие и качественные детали. Схема вертикального ветрогенератора
Ветрогенераторы с вертикальной осью вращения не настолько эффективны, как их горизонтальные собратья, однако вертикальные ветрогенераторы менее требовательны к месту их установки. Описание изготовления турбины ветрогенератораТурбина ветрогенератора
Крепление лопастей уголками Если не уверены в чем то, шаблоны из картона помогут избежать ошибок и дальнейших переделываний. Общий вид расположения уголков, крепящих лопасти Последовательность действий изготовления турбины:
Описание изготовления ротора ветрогенератораРазметка роторов с помощью бумажных шаблонов Последовательность действий по изготовлению ротора:
Крепление магнитов на основании ротора Описание изготовления статора ветрогенератораИзготовление статора – это очень трудоемкая часть процесса изготовления ветрогенератора. Можно, конечно попробовать купить готовый статор (его еще надо найти у нас) или генератор, но не факт, что они подойдут для конкретного ветряка со своими индивидуальными характеристиками Катушка статора Статор ветрогенератора – электрический компонент, состоящий из 9-ти катушек. Катушка статора изображена на фото выше. Катушки разделены на 3 группы, по 3 катушки в каждой группе. Каждая катушка намотана проводом 24AWG (0.51мм) и содержит в себе 320 витков. Большее количество витков, но более тонким проводом даст более высокое напряжение, но меньший ток. Поэтому, параметры катушек могут быть изменены, в зависимости от того, какое напряжение вам требуется на выходе ветрогенератора. Нижеследующая таблица поможет вам определиться:
Вручную наматывать катушки – это скучное и трудное занятие. Поэтому, чтобы облегчить процесс намотки рекомендуется изготовить простое приспособление – намоточный станок. Тем более, что конструкция его достаточно проста и сделать его можно из подручных материалов. Витки всех катушек должны быть намотаны одинаково, в одном и том же направлении и обращайте внимание или отмечайте, где начало, а где конец катушки. Для предотвращения разматывания катушек, они обмотаны изолентой и промазаны эпоксидкой. Приспособление для намотки катушек Приспособление сделано из двух кусков фанеры, изогнутой шпильки, куска ПВХ-трубы и гвоздей. Перед тем, как изогнуть шпильку, нагрейте ее горелкой. Приспособление для намотки катушек, сделанное из двух кусков фанеры, изогнутой шпильки, куска ПВХ-трубы и гвоздей Небольшой кусок трубы между дощечками обеспечивает заданную толщину, а четыря гвоздя обеспечивают необходимые размеры катушек. Крупный вид приспособления для намотки катушек Вы можете придумать свою конструкцию намоточного станка, или возможно у вас уже имеется готовый. После того, как все катушки намотаны их необходимо проверить на идентичность друг к другу. Это можно сделать при помощи весов, а также нужно померить сопротивления катушек мультиметром. Подробный вид приспособления для намотки катушек Схема соединения катушек статора Внимание! Категорически запрещается подключать домашние бытовые потребители напрямую к ветрогенератору во избежании выхода их из строя! Также соблюдайте меры безопасности при обращении с электричеством! Схема соединения катушек статора Последовательность действий соединения катушек:
Для того, чтобы стало более понятно, рассмотрим весь процесс в картинках: Изготовление статора Готовые катушки помещаются на вощеную бумагу с начерченной схемой расположения. Три небольших круга по углам на фото выше – места отверстий для крепления кронштейна статора. Кольцо в центре предотвращает попадание эпоксидки в центральную окружность. Вокруг катушек помещается стеклоткань Катушки закреплены на своих местах. Стеклоткань, небольшими кусочками помещается вокруг катушек. Выводы катушек можно вывести внутрь или наружу статора. Не забудьте оставить достаточный запас длины выводов. Обязательно еще раз проверьте все соединения и прозвоните мультиметром. Статор, залитый эпоксидкой с кронштейном Статор практически готов. Отверстия для крепления кронштейна, сверлятся в статоре. При сверлении отверстий смотрите не попадите в выводы катушек. После завершения операции, обрежьте лишнюю стеклоткань и если необходимо, шкуркой зачистите поверхность статора. Изготовление кронштейна статораТруба для крепления оси хаба была обрезана под нужный размер. В ней были просверлены отверстия и нарезана резьба. В дальнейшем в них будут вкручены болты, которые будут удерживать ось. Крепление оси Эскиз (чертеж) кронштейна На рисунке выше показан кронштейн, к которому будет крепиться статор, находящийся между двумя роторами. Шпилька с гайками и втулкой На фото выше показана шпилька с гайками и втулкой. Четыре таких шпильки обеспечивают необходимый зазор между роторами . Вместо втулки можно использовать гайки большего размера, либо самому вырезать шайбы из алюминия. Окончательная сборка генератораНебольшое уточнение: малый воздушный зазор между связкой ротор-статор-ротор (который задается шпилькой с втулкой), обеспечивает более высокую отдаваемую мощность, но возрастает риск повреждения статора или ротора при перекосе оси, который может возникнуть при сильном ветре. Сборочный чертеж генератора На левом рисунке ниже, показан ротор с 4-мя шпильками для обеспечения зазора и двумя алюминиевыми пластинами (которые в дальнейшем будут убраны). На правом рисунке показан собранный и покрашенный в зеленый цвет статор, установленный на место. Ротор и статор Процесс сборки:
Этапы сборки генератора Генератор готов! Генератор будущего ветрогенератора в сборе После установки шпилек (1) и фланца (2) ваш генератор должен выглядеть приблизительно так, ка на рисунке выше. Установка и крепление клемм Болты из нержавейки служат для обеспечения электрического контакта. На провода удобно использовать кольцевые наконечники. Установка клемм Колпачковые гайки и шайбы служат для крепления соединительной платы и опоры лопастей к генератору. Итак, ветрогенератор полностью собран и готов к тестам. Для начала, лучше всего рукой раскручивать ветряк и измерять параметры. Если все три выходные клеммы закоротить между собой, то ветряк должен вращаться очень туго. Это может быть использовано для остановки ветрогенератора для сервисного обслуживания или в целях безопасности. Ветрогенератор можно использовать не только для обеспечения дома электричеством. К примеру данный экземпляр, сделан так, чтобы статор вырабатывал большое напряжение, которое затем используется для нагрева.Рассматриваемый выше генератор выдает 3-х фазное напряжение с различной частотой (зависит от силы ветра), а к примеру в России используется однофазная сеть 220-230В, с фиксированной частотой сети 50 Гц. Это отнюдь не означает, что данный генератор не подойдет для питания бытовых приборов. Переменный ток с данного генератора может быть преобразован в постоянный ток, с фиксированным напряжением. А постоянный ток уже может использоваться для питания светильников, нагрева воды, заряда аккумуляторов, а может быть поставлен преобразователь для преобразования постоянного тока в переменный. Но это уже выходит за рамки данной статьи. Мостовой выпрямитель На рисунке выше простая схема мостового выпрямителя, состоящего из 6-ти диодов. Он преобразовывает переменный ток в постоянный. Рекомендации по выбору места установки ветрогенератораВетрогенератор, описываемый здесь, установлен на 4-х метровой опоре на краю горы. Трубный фланец, который установлен снизу генератора обеспечивает легкую и быструю установку ветрогенератора – достаточно прикрутить 4 болта. Хотя для надежности, лучше приварить. Обычно, горизонтальные ветрогенераторы “любят” когда ветер дует с одного направления, в отличии от вертикальных ветряков, где за счет флюгера, они могут поворачиваться и им не важно направление ветра. Т.к. данный ветряк установлен на берегу скалы, то ветер там создает турбулентные потоки с разных направлений, что не очень эффективно для данной конструкции. Другим фактором, который необходимо учитывать при подборе места размещения, является сила ветра. Архив данных по силе ветра для вашей местности можно найти в интернете, правда это будет очень приблизительно, т.к. все зависит от конкретного места. Также, в выборе месторасположения установки ветрогенератора поможет анемометр (прибор для измерения силы ветра). Немного о механике ветрогенератораКак известно, ветер возникает из-за разности температур поверхности земли. Когда ветер вращает турбины ветрогенератора, он создает три силы: подьемную, торможения и импульсную. Подьемная сила обычно возникает над выпуклой поверхностью и является следствием разности давлений. Сила торможения ветра возникает за лопастями ветрогенератора, она является нежелательной и тормозит ветряк. Импульсная сила возникает из-за изогнутой формы лопастей. Когда молекулы воздуха толкают лопасти сзади, то им некуда потом деваться и они собираются позади них. В результате, они толкают лопасти в направлении ветра. Чем больше подьемная и импульсная силы и меньше сила торможения, тем быстрее лопасти будет вращаться. Соответственно вращается ротор, который создает магнитное поле на статоре. В результате чего вырабатывается электрическая энергия. Скачать схему расположения магнитов — cxem.net —Комментарии:Что такое газ БраунаХронология водородных топливных элементов www.altsyn.com |