Eng Ru
Отправить письмо

ПАРАЛЛЕЛЬНАЯ РАБОТА СИНХРОННОГО ГЕНЕРАТОРА С МОЩНОЙ СЕТЬЮ. Параллельная работа генератора с сетью


31.Параллельная работа синхронного генератора с сетью.

Особенности работы генератора на сеть большой мощности. Обычно на электростанциях устанавливают несколько синхронных генераторов для параллельной работы на общую электрическую сеть. Это обеспечивает увеличение общей мощности электростанции (при ограниченной мощности каждого из установленных на ней генераторов), повышает надежность энергоснабжения потребителей и позволяет лучше организовать обслуживание агрегатов. Электрические станции, в свою очередь, объединяют для параллельной работы в мощные энергосистемы, позволяющие наилучшим образом решать задачу производства и распределения электрической энергии. Таким образом, для синхронной машины, установленной на электрической станции или на каком-либо объекте, подключенном к энергосистеме, типичным является режим работы на сеть большой мощности, по сравнению с которой собственная мощность генератора является очень малой. В этом случае с большой степенью точности можно принять, что генератор работает параллельно с сетью бесконечно большой мощности т. е. что напряжение сети Uc и ее частота fc являются постоянными, не зависящими от нагрузки данного генератора.

Включение генератора на параллельную работу с сетью. В рассматриваемом режиме необходимо обеспечить возможно меньший бросок тока в момент присоединения генератора к сети. В противном случае возможны срабатывание защиты поломка генератора или первичного двигателя.

Ток в момент подключения генератора к сети будет равен нулю, если удастся обеспечить равенство мгновенных значений напряжений сети uс и генератора иг :

(6.27)

Ucm sin (ωct - αс ) = Uгm sin (ωг - αг ).

На практике выполнение условия (6.27) сводится к выполнению трех равенств: значений напряжений сети и генератора Ucm = Uгm или Uc = Uг ; частот ωc = ωг или fс = fг ; их начальных фаз αс = αг (совпадение по фазе векторов Úc и Úг). Кроме того, для трехфазных генераторов нужно согласовать порядок чередования фаз.

Совокупность операций, проводимых при подключении генератора к сети, называют синхронизацией. Практически при синхронизации генератора сначала устанавливают номинальную частоту вращения ротора, что обеспечивает приближенное равенство частот fс ≈ fг а затем, регулируя ток возбуждения, добиваются равенства напряжения Uc = Uг. Совпадение по фазе векторов напряжений сети и генератора (αс = αг) контролируется специальными приборами — ламповым и стрелочными синхроноскопами.

Условия и способы включения синхронного генератора с сетью.

Существует три способа синхронизации:

1. Точная;

2. Грубая;

3. Самосинхронизация.

Эти способы рассмотрены ниже.

Для безударного включения СГ на параллельную работу необходимо выполнить следующие условия синхронизации:

1. равенство напряжения Uсети и ЭДС Еподключаемого генера­тора, т. е.

|U| = | Е| .

2. равенство частот сети fи подключаемого генератора f ,т. е. f= f .

3. совпадение по фазе одноименных векторов фазных напряжений обоих

генераторов, или, иначе, равенство нулю угла сдвига по фазе указанных векторов, т. е. φ = 0°.

4. одинаковый порядок чередования фаз 3-фазных генераторов, т.е. А- В-Си

А-В- С. На практике это означает, что выводы А, В и С каждого генератора должны

при включении на шины, подключаться к шинам соответственно А, В и С ГЭРЩ.

studfiles.net

Регулирование реактивной мощности

Рассмотрим параллельную работу генератора с сетью очень большой мощности при изменении тока в обмотке возбуждения. Допустим, что после включения генератора на параллельную работу он работает вхолостую и его ЭДС Ео уравновешивает напряжение сети Uс, тогда в его якорной обмотке не будет возникать ток.

Если увеличить ток возбуждения (перевозбудить машину), то напряжение сетиUс не будет уравновешивать ЭДС Ео. Появится избыток ЭДС - небалансная ЭДС , которая вызовет токв обмотках всех параллельно работающих машин, и который согласно уравнению определяется только индуктивным сопротивлением хСН машины. Сопротивлением обмоток всех других машин можно пренебречь, как и активным сопротивлением данной машины. Угол θ при этом не изменится.

Следовательно - реактивный, он отстает по фазе отΔE и от напряжения генератора на 900 или опережает на 900 (рис. Б). Этот ток будет тем больше, чем больше машина перевозбуждена и чем меньше сопротивление хСН.

При уменьшении тока возбуждения (при недовозбуждении) напряжение сети будет больше ЭДС Ео. В цепи обмоток параллельно работающих машин будет действовать небалансная ЭДС, создавая реактивный ток. Теперь этот токIа изменяет свое направление - он опережает на (рис.В) и отстает на от∆E и .

рис.А рис.Б рис. В

Таким образом, при изменении тока возбуждения Iв изменяется лишь реактивная составляющая , т.е. реактивная мощность машины Q. Активная составляющая тока в рассмотренных случаях равна 0. Следовательно активная мощность Р = 0 и машина работает в режиме ХХ.

При работе машины под нагрузкой создаются те же условия: при изменении тока возбуждения изменяется лишь реактивная составляющая, т.е. реактивная мощность машины Q.

Режим возбуждения синхронной машины с током , при котором реактивная составляющая токаравна 0, называютрежимом полного или нормального возбуждения.

- Если ток Iв > Iв.п, при котором имеется режим полного возбуждения, то ток содержит отстающую отU реактивную составляющую, что соответствует активно-индуктивной нагрузке генератора. Такой режим называют режимом перевозбуждения.

- Если , тосоздают реактивную составляющую, опережающуюU, что соответствует активно-емкостной нагрузке генератора. Такой режим – недовозбуждения.

и используют для повышения Cosφ (коэффициент мощности электроустановок) и стабилизации напряжения в электросетях.

Недовозбужденная СМ работающая в режиме х.х. относительно сети эквивалентна индуктивности.

Возникновение реактивной составляющей физически объясняется тем, что при работе СМ на сеть бесконечно большой мощности суммарный магнитный поток, сцепленный с каждой из фаз, не зависит от тока возбужденияи при всех условиях остается неизменным, т.к.

Следовательно, если Iв > Iв.п требуемого для полного возбуждения, то возникает отстающая составляющая , которая создаетразмагничивающий поток реакции якоря .

Если , то возникает опережающая составляющая, создающаяподмагничивающий поток реакции якоря . Во всех случаяхавтоматически поддерживается неизменным.

Зависимость тока якоря от токаназываетсяU-образной характеристикой.

Для каждой мощности существует такое возбуждение (определенный ток ), при котором тока якоряСГ будет минимальным. Этому току соответствуетCosφ=1 (штриховая кривая – представляет собой регулировочную характеристику Iв= f(Ia) при Cosφ=1). Чем больше мощность Р, тем больше , соответствующий минимальному току якоря (линии).

Отклонение вправо кривой полного возбуждения Cosφ = 1 показывает, что при повышении нагрузки повысится, т.е. необходимо увеличитьдля компенсации активного падения напряжения.

studfiles.net

31.Параллельная работа синхронного генератора с сетью.

Особенности работы генератора на сеть большой мощности. Обычно на электростанциях устанавливают несколько синхронных генераторов для параллельной работы на общую электрическую сеть. Это обеспечивает увеличение общей мощности электростанции (при ограниченной мощности каждого из установленных на ней генераторов), повышает надежность энергоснабжения потребителей и позволяет лучше организовать обслуживание агрегатов. Электрические станции, в свою очередь, объединяют для параллельной работы в мощные энергосистемы, позволяющие наилучшим образом решать задачу производства и распределения электрической энергии. Таким образом, для синхронной машины, установленной на электрической станции или на каком-либо объекте, подключенном к энергосистеме, типичным является режим работы на сеть большой мощности, по сравнению с которой собственная мощность генератора является очень малой. В этом случае с большой степенью точности можно принять, что генератор работает параллельно с сетью бесконечно большой мощности т. е. что напряжение сети Uc и ее частота fc являются постоянными, не зависящими от нагрузки данного генератора.

Включение генератора на параллельную работу с сетью. В рассматриваемом режиме необходимо обеспечить возможно меньший бросок тока в момент присоединения генератора к сети. В противном случае возможны срабатывание защиты поломка генератора или первичного двигателя.

Ток в момент подключения генератора к сети будет равен нулю, если удастся обеспечить равенство мгновенных значений напряжений сети uс и генератора иг :

(6.27)

Ucm sin (ωct -–αс ) = Uгm sin (ωг -–αг ).

На практике выполнение условия (6.27) сводится к выполнению трех равенств: значений напряжений сети и генератора Ucm = Uгm или Uc = Uг ; частот ωc = ωг или fс = fг ; их начальных фаз αс = αг (совпадение по фазе векторов Úc и Úг). Кроме того, для трехфазных генераторов нужно согласовать порядок чередования фаз.

Совокупность операций, проводимых при подключении генератора к сети, называют синхронизацией. Практически при синхронизации генератора сначала устанавливают номинальную частоту вращения ротора, что обеспечивает приближенное равенство частот fс ≈ fг а затем, регулируя ток возбуждения, добиваются равенства напряжения Uc = Uг. Совпадение по фазе векторов напряжений сети и генератора (αс = αг) контролируется специальными приборами — ламповым и стрелочными синхроноскопами.

Условия и способы включения синхронного генератора с сетью.

Существует три способа синхронизации:

1. Точная;

2. Грубая;

3. Самосинхронизация.

Эти способы рассмотрены ниже.

Для безударного включения СГ на параллельную работу необходимо выполнить следующие условия синхронизации:

1авенство напряжения Uсети и ЭДС Еподключаемого генера­тора, т. е.

  1. |U| = | Е| .

2. равенство частот сети fи подключаемого генератора f ,т. е. f= f .

3. совпадение по фазе одноименных векторов фазных напряжений обоих

генераторов, или, иначе, равенство нулю угла сдвига по фазе указанных векторов, т. е. φ = 0°.

4динаковый порядок чередования фаз 3-фазных генераторов, т.е. А- В-Си

  1. А-В- С. На практике это означает, что выводы А, В и С каждого генератора должны

при включении на шины, подключаться к шинам соответственно А, В и С ГЭРЩ.

studfiles.net

Параллельная работа синхронного генератора с мощной сетью

Проводится включение синхронного генератора (СГ) на параллельную работу, снимаются зависимость тока якоря от активной нагрузки генератора, U-образные характеристики при различных значениях полезной мощности генератора.

КОНТРОЛЬНЫЕ ВОПРОСЫ ПРИ ЗАЩИТЕ ЛАБОРАТОРНОЙ РАБОТЫ

4.1. Что понимают под параллельной работой СГ с сетью?

4.2.Что понимают под синхронизацией СГ с сетью?

4.3.Какими методами можно включить СГ на параллельную работу с сетью?

4.4.Что означает грубая синхронизация?

4.5.Перечислите условия точной синхронизации СГ с сетью при включении его на параллельную работу.

4.6.Почему нельзя включать СГ на параллельную работу при разном чередовании фаз сети и генератора?

4.7.Как обеспечить равенство частот напряжения сети и ЭДС СГ?

4.8. Как обеспечивают равенство напряжения сети и ЭДС СГ?

4.9. Как проверить чередование фаз сети и синхронного генератора?

4.10. Поясните назначение и правила пользования синхроноскопом.

4.11. Как изменяют реактивную мощность СГ при параллельной работе с сетью?

4.12. Как изменяют активную мощность СГ при параллельной работе с сетью?

4.13. Как осуществить режим перевозбуждения СГ?

4.14. Как осуществить режим недовозбуждения СГ?

4.15. С каким реактивным током (индуктивным или емкостным) и почему работает СГ параллельно с сетью в режиме перевозбуждения?

4.16.Как перевести СГ, после завершения синхронизации, в режим синхронного компенсатора?

4.17. Изобразите и объясните зависимость I = f(P2), запишите условия, при которых она получена.

19

4.18. Изобразите и объясните U-образные характеристики СГ, запишите условия, при которых они получены.

4.19 Как по U-образной характеристике рассчитать зависимость cosφ=f( If )?

4.20. Изобразите и объясните зависимость cosφ=f( If ), запишите условия, при которых она получена.

4. Машины постоянного тока

Наибольшее применение машины постоянного тока находят в качестве двигателей, где требуется широкое и плавное регулирование частоты вращения (прокатные станы, электрическая тяга на транспорте, мощные металлорежущие станки). Генераторы постоянного тока используются в различных транспортных и других установках (для питания электроприводов с широким регулированием частоты вращения, в электролизной промышленности и т.д.), кроме того, они являются возбудителями и подвозбудителями крупных синхронных генераторов.

4.1. Устройство простейшей машины постоянного тока и принцип ее действия

На рис. 4.1 представлена простейшая машина постоянного тока. Неподвижная часть машины, называемая индуктором, состоит из полюсов и стального ярма, к которому прикрепляются полюсы. Назначением индуктора является создание в машине основного магнитного потока. Индуктор простейшей машины имеет два полюса (1) и ярмо (на рис. не показано). Вращающаяся часть машины состоит из укрепленных на валу цилиндрического якоря (2) и коллектора (3). Якорь состоит из сердечника, набранного из листов электротехнической стали, и обмотки, уложенной в пазах сердечника якоря. Обмотка якоря имеет один виток, соединенный с изолированными от вала двумя медными пластинами коллектора. Обмотка якоря соединяется с внешней цепью коллектором и щетками (4).

Рис. 4.1

1 - полюс; 2 - якорь; 3 - коллектор; 4 - неподвижная щетка

Основной магнитный поток в машинах постоянного тока обычно создается обмоткой возбуждения, которая расположена на сердечниках полюсов и питается постоянным током. Магнитный поток проходит от северного полюса N через якорь к южному полюсу S, и от него через ярмо снова к северному полюсу, преодолевая дважды воздушный зазор. Сердечники полюсов выполняются из электротехнической стали.

Принцип действия генератора. При вращении якоря машины в направлении по часовой стрелке в проводниках обмотки якоря индуктируется ЭДС, направление которой может быть определено по

Рис. 4.2

1 - вал; 2 - задний подшипниковый щит; 3 - коллектор; 4 - щетки;

5 - сердечник якоря; 6 - сердечник главного полюса; 7 - обмотка

возбуждения; 8 - станина; 9 - передний подшипниковый щит; 10 -

вентилятор; 11 - лапы для крепления; 12 - подшипники

правилу правой руки. Значение индуктируемой в проводнике ЭДС

,

где В – магнитная индукция; l - активная длина проводника; v - линейная скорость перемещения проводника.

Полная ЭДС якоря рассматриваемой машины равна . ЭДСявляется переменной, так как проводники обмотки якоря проходят попеременно под северным и южным полюсами, в результате чего направление ЭДС в проводниках меняется.

Если обмотка якоря с помощью щеток замкнута через внешнюю цепь, то в обмотке возникает переменный ток, а во внешней цепи – постоянный. Это объясняется тем, что под верхней щеткой всегда находится пластина, соединенная с проводником, расположенным под северным полюсом, а под нижней щеткой – пластина, соединенная с проводником, расположенным под южным полюсом. В результате этого полярность щеток и направление тока во внешней цепи остаются неизменными. Таким образом, в генераторе коллектор является механическим выпрямителем, который преобразует переменный ток обмотки якоря в постоянный ток внешней цепи. Для улучшения условий токосъема с коллектора в машинах с мощностью более 0,5кВт между главными полюсами устанавливаются добавочные полюсы. Обмотка добавочных полюсов включается последовательно в цепь обмотки якоря. Сердечник добавочного полюса изготавливается из стали и имеет обычно монолитную конструкцию. Общий вид машины постоянного тока приведен на рис. 4.2.

studfiles.net

ПАРАЛЛЕЛЬНАЯ РАБОТА СИНХРОННОГО ГЕНЕРАТОРА С СЕТЬЮ

Количество просмотров публикации ПАРАЛЛЕЛЬНАЯ РАБОТА СИНХРОННОГО ГЕНЕРАТОРА С СЕТЬЮ - 1221

Особенности работы генератора на сеть большой мощности. Обычно на электростанциях устанавливают несколько синхрон­ных генераторов для параллельной работы на общую электрическую сеть. Это обеспечивает увеличение общей мощности электростанции (при ограниченной мощности каждого из установленных на ней генераторов), повышает надежность энергоснабжения потребителœей и позволяет лучше организовать обслуживание агрегатов. Электрические станции, в свою очередь, объединяют для параллельной работы в мощные энергосистемы, позволяющие наилучшим образом решать задачу производства и распределœения электрической энергии. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, для синхронной машины, установленной на электрической станции или на каком-либо объекте, подключенном к энергосистеме, типичным является режим работы на сеть большой мощности, по сравнению с которой собственная мощность генератора является очень малой. В этом случае с большой степенью точности можно принять, что генератор работает параллельно с сетью бесконечно большой мощности т. е. чтонапряжение сети Ucи ее частота fcявляются постоянными, не зависящими от нагрузки данного генератора.

Включение генератора на параллельную работу с сетью.В рассматриваемом режиме крайне важно обеспечить возможно меньший бросок тока в момент присоединœения генератора к сети. В противном случае возможны срабатывание защиты поломка генератора или первичного двигателя.

Ток в момент подключения генератора к сети будет равен нулю, в случае если удастся обеспечить равенство мгновенных значений напряжений сети uс и генератора иг :

(6.27)

Ucm sin (ωct - αс ) = Uгm sin (ωг - αг ).

На практике выполнение условия (6.27) сводится к выполнению трех равенств: значений напряжений сети и генератора Ucm = Uгm или Uc = Uг ; частот ωc = ωг или fс = fг ; их начальных фазαс = αг (совпадение по фазе векторов Úc и Úг). Вместе с тем, для трехфазных генераторов нужно согласовать порядок чередования фаз.

Совокупность операций, проводимых при подключении генератора к сети, называют синхронизацией. Практически при синхронизации генератора сначала устанавливают номинальную частоту вращения ротора, что обеспечивает приближенное равенство частот fс ≈ fга затем, регулируя ток возбуждения, добиваются равенства напряжения Uc = Uг . Совпадение по фазе векторов напряжений сети и генератора (αс = αг) контролируется специальными приборами — ламповым и стрелочными синхроноскопами.

Ламповые синхроноскопы применяют для синхронизации генераторов малой мощности, в связи с этим обычно их используют в лабораторной практике. Этот прибор представляет собой три лампы, включенные между фазами генератора и сети (рис. 6.32, а). На каждую лампу действует напряжение Δu = uс — uг , ĸᴏᴛᴏᴩᴏᴇ при fс ≠ fг изменяется с частотой Δf = fc - fг , называемойчастотой биений (рис. 6.32,б). В этом случае лампы мигают. При fс ≈ fг разность Δи изменяется медленно, вследствие чего лампы постепенно загораются и погасают.

Рис. 6.32. Схема подключения синхронного генератора к сети с помощью лампового синхроноскопа (а) и кривые изменения напряжений ис и игперед включением генератора (б)

Обычно генератор подключают к сети в тот момент, когда разность напряжений Δu на короткое время становится близкой нулю, т. е. в серединœе периода погасания ламп. В этом случае выполняется условие совпадения по фазе векторов Úc и Úг . Для более точного определœения этого момента часто применяют нулевой вольтметр, имеющий растянутую шкалу в области нуля. После включения генератора в сеть дальнейшая синхронизация частоты его вращения, т. е. обеспечение условия n2 = n1 , происходит автоматически.

Генераторы большой мощности синхронизируют с помощью стрелочных синхроноскопов, работающих по принципу вращающегося магнитного поля. В этих приборах при fс ≠ fг стрелка вращается с частотой, пропорциональной разности. частот fс - fг , в одну или другую сторону исходя из того, какая из этих частот больше. При fс = fг стрелка устанавливается на нуль; в данный момент и следует подключать генератор к сети. На электрических станциях обычно используют автоматические приборы для синхронизации генераторов без участия обслуживающего персонала.

Довольно часто применяют метод самосинхронизации, при котором генератор подключают к сети при отсутствии возбуждения (обмотка возбуждения замыкается на активное сопротивление). При этом ротор разгоняют до частоты вращения, близкой к синхронной (допускается скольжение до 2%), за счёт вращающего момента первичного двигателя и асинхронного момента͵ обусловленного индуцированием тока

Рис. 6.33. Упрощенные векторные диаграммы неявнополюсного генератора при параллельной работе с сетью

в демпферной обмотке. После этого в обмотку возбуждения подают постоянный ток, что приводит к втягиванию ротора в синхронизм. При методе самосинхронизации в момент включения генератора возникает сравнительно большой бросок тока, который не должен превышать 3,5Ia ном .

Регулирование активной мощности. После включения генератора в сеть его напряжение Uстановится равным напряжению сети Uc . Относительно внешней нагрузки напряжения Uи Uc совпадают по фазе, а по контуру ʼʼгенератор — сетьʼʼ находятся в противофазе, т. е. Ú = - Úc (рис. 6.33, а). При точном выполнении указанных трех условий, необходимых для синхронизации генератора, его ток Ia после подключения машины к сети равняется нулю. Рассмотрим, какими способами можно регулировать ток Ia при работе генератора параллельно с сетью на примере неявнополюсного генератора.

Ток, проходящий по обмотке якоря неявнополюсного генератора, можно определить из уравнения (6.23)

(6.28)

Ía = (É0 - Ú)/(jXсн ) = -j(É0 - Ú)/Xсн .

Так как U = Uc = const, то силу тока Iа можно изменять только двумя способами — изменяя ЭДС Е0 по величинœе или по фазе. В случае если к валу генератора приложить внешний момент, больший момента͵ крайне важно го для компенсации магнитных потерь мощности в стали и механических потерь, то ротор приобретает ускорение, вследствие чего вектор É0 смещается относительно вектора Ú на некоторый угол θ в направлении вращения векторов (рис. 6.33,б). При этом возникает некоторая небалансная ЭДС ΔЕ, приводящая согласно (6.28) к появлению тока Iа . Возникающую небалансную ЭДС ΔÉ = É0 - Ú = É0 + Úc = jÍaXсн можно показать на векторной диаграмме (рис. 6.33, б). Вектор тока Iа отстает от вектора ΔЕ на 90°, поскольку его величина и направление определяются индуктивным сопротивлением Xсн .

При работе в рассматриваемом режиме генератор отдает в сеть активную мощность

Р = mUIacos φ и на вал его действует электромагнитный тормозной момент, который уравновешивает вращающий момент первичного двигателя, вследствие чего частота вращения ротора остается неизменной. Чем больше внешний момент, приложенный к валу генератора, тем больше угол θ, а следовательно, ток и мощность, отдаваемые генератором в сеть.

В случае если к валу ротора приложить внешний тормозной момент, то вектор É0будет отставать от вектора напряжения Ú на угол θ (рис. 6.33, в). При этом возникают небалансная ЭДС ΔÉ и ток Ía , вектор которого отстает от вектора ΔÉ на 90°. Так как угол φ > 90°, активная составляющая тока находится в противофазе с напряжением генератора. Следовательно, в рассматриваемом режиме активная мощность Р = mUIacos φ забирается из сети, и машина работает двигателœем, создавая электромагнитный вращающий момент, который уравновешивает внешний тормозной момент; частота вращения ротора при этом снова остается неизменной.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, для увеличения нагрузки генератора крайне важно увеличивать приложенный кего валу внешний момент (т. е. вращающий момент первичного двигателя), а для уменьшения нагрузки — уменьшать данный момент. При изменении направления внешнего момента (если вал ротора не вращать, а тормозить) машина автоматически переходит из генераторного в двигательный режим.

Регулирование реактивной мощности. В случае если в машинœе, подключенной к сети и работающей в режиме холостого хода (рис. 6.34, а), увеличить ток возбуждения Iв, то возрастет ЭДС Е0 (рис. 6.34, б),возникнет небалансная ЭДС ΔÉ = - jIа Xсн и по обмотке якоря будет проходить ток Iа ,который согласно (6.28) определяется только индуктивным сопротивлением Хсн машины. Следовательно, ток Ía реактивный: он отстает по фазе от напряжения Ú на угол 90° или опережает на тот же угол напряжение сети Úc . При уменьшении тока возбуждения ток Íaизменяет свое направление: он опережает на 90° напряжение Ú (рис. 6.34, в) и отстает на 90° от напряжения Úc .Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, при изменении тока возбуждения изменяется лишь реактивная составляющая тока Iа , т. е. реактивная мощность машины Q. Активная составляющая тока Iа в рассматриваемых случаях равна нулю. Следовательно, активная мощность Р = 0, и машина работает в режиме холостого хода.

При работе машины под нагрузкой создаются те же условия: при изменении тока возбуждения изменяется лишь реактивная составляющая тока Iа , т. е. реактивная мощность машины Q. Режим возбуждения синхронной машины с током Iв.п , при

Рис. 6.34. Упрощенные векторные диаграммы неявнополюсного синхронного генератора при параллельной работе с сетью и отсутствии активной нагрузки

котором реактивная составляющая тока Iаравна нулю, называют режимом полного или нормального возбуждения. В случае если ток возбуждения Iв больше тока Iв.п , при котором имеется режим полного возбуждения, то ток Iасодержит отстающую от U реактивную составляющую, что соответствует активно-индуктивной нагрузке генератора. Такой режим называют режимом перевозбуждения. В случае если ток возбуждения Iв меньше тока Iв.п , то ток Iа содержит реактивную составляющую, опережающую напряжение U, что соответствует активно-емкостной нагрузке генератора. Такой режим называют режимом недовозбуждения.

Перевозбужденная синхронная машина, работающая в режиме холостого хода, относительно сети эквивалентна емкости. Машину, специально предназначенную для работы в таком режиме, называют синхронным компенсатором и используют для повышения коэффициента мощности электрических установок и стабилизации напряжения в электрических сетях. Недовозбужденная синхронная машина, работающая в режиме холостого хода, относительно сети эквивалентна индуктивности.

Возникновение реактивной составляющей тока Iа физически объясняется тем, что при работе синхронной машины на сеть бесконечно большой мощности суммарный магнитный поток сцепленный с каждой из фаз, ΣФ = Фрез + Фσ = Фв + Фа + Фσ не зависит от тока возбуждения и при всœех условиях остается неизменным, так как

(6.29)

Ú = É0 + Éа + Éσа = - Úc = const.

Следовательно, в случае если ток возбуждения Iв больше тока, требуемого для полного возбуждения, то возникает отстающая составляющая тока Iа , которая создает размагничивающий поток реакции якоря Фа ; если ток Iв меньше тока, крайне важно го для полного возбуждения, то возникает опережающая составляющая тока Iа , которая создает подмагничивающий поток реакции якоря Фа. Во всœех случаях суммарный поток машины ΣФ автоматически поддерживается неизменным.

referatwork.ru

ПАРАЛЛЕЛЬНАЯ РАБОТА СИНХРОННОГО ГЕНЕРАТОРА С МОЩНОЙ СЕТЬЮ

КОМПЕНСАЦИЯ РЕАКТИВНОЙ МОЩНОСТИ

КОМПЕНСАЦИЯ РЕАКТИВНОЙ МОЩНОСТИ Министерство образования и науки Российской Федерации Саратовский государственный технический университет КОМПЕНСАЦИЯ РЕАКТИВНОЙ МОЩНОСТИ Методические указания к лабораторной работе по спецкурсу «Проектирование

Подробнее

ИССЛЕДОВАНИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

ИССЛЕДОВАНИЕ ЦЕПИ ПОСТОЯННОГО ТОКА Министерство образования и науки Российской федерации Федеральное агентство по образованию Саратовский государственный технический университет ИССЛЕДОВАНИЕ ЦЕПИ ПОСТОЯННОГО ТОКА Методические указания к

Подробнее

Синхронные электрические машины

Синхронные электрические машины 1 Синхронные электрические машины Общие сведения и элементы конструкции Лекции профессора Полевского В.И. Синхронными машинами называются электрические машины переменного тока, у которых магнитное поле,

Подробнее

Электрическая схема соединений

Электрическая схема соединений 3.1 Лабораторный практикум 3 ДИДАКТИЧЕСКИЕ МАТЕРИАЛЫ Основная часть курса в разработке. Лабораторная работа 1 Снятие угловых характеристик синхронного генератора Электрическая схема соединений Обозначение

Подробнее

Е.И. Забудский ЛАБОРАТОРНАЯ РАБОТА 5 ИССЛЕДОВАНИЕ ТРЕХФАЗНОГО АСИНХРОННОГО ГЕНЕРАТОРА Оглавление 1. Цель работы... 3 2. Программа работы 3 3. Основы теории... 4. Экспериментальные исследования... 4 4.1.

Подробнее

Электрические машины Часть 2

Электрические машины Часть 2 МИНОБНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ухтинский государственный технический университет» «УГТУ» Электрические машины

Подробнее

Е.И. Забудский ЛАБОРАТОРНАЯ РАБОТА 1 ИССЛЕДОВАНИЕ ТРЕХФАЗНОЙ АСИНХРОННОЙ МАШИНЫ С НЕПОДВИЖНЫМ РОТОРОМ Оглавление 1. Цель работы... 3 2. Программа работы.. 3 3. Основы теории.. 4. Экспериментальные исследования...

Подробнее

ТРЕХФАЗНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ.

ТРЕХФАЗНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ. ТРЕХФАЗНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ. 1. Достоинства трехфазной цепи. 2. Принцип получения трехфазной ЭДС. 3. Соединение трехфазной цепи звездой. 4. Назначение нейтрального провода. 5. Соединение трехфазной цепи

Подробнее

Тема 1. Линейные цепи постоянного тока.

Тема 1. Линейные цепи постоянного тока. МЕТОДИЧЕСКОЕ УКАЗАНИЕ 2 системы и технологии» Тема 1. Линейные цепи постоянного тока. 1. Основные понятия: электрическая цепь, элементы электрической цепи, участок электрической цепи. 2. Классификация

Подробнее

"ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА"

ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА МИНИСТЕРСТВО ОБРЗОВНИЯ И НУКИ РФ ФЕДЕРЛЬНОЕ ГОСУДРСТВЕННОЕ БЮДЖЕТНОЕ ОБРЗОВТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНЛЬНОГО ОБРЗОВНИЯ УФИМСКИЙ ГОСУДРСТВЕННЫЙ ВИЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КОМПЛЕКТ ТТЕСТЦИОННЫХ

Подробнее

ИССЛЕДОВАНИЕ РЕГИСТРОВ

ИССЛЕДОВАНИЕ РЕГИСТРОВ Министерство образования и науки Российской Федерации Федеральное агентство по образованию Саратовский Государственный Технический Университет ИССЛЕДОВАНИЕ РЕГИСТРОВ Методические указания к выполнению

Подробнее

ЭЛЕКТРИЧЕСКИЕ МАШИНЫ И ЭЛЕКТРОПРИВОД

ЭЛЕКТРИЧЕСКИЕ МАШИНЫ И ЭЛЕКТРОПРИВОД 6.2. Средства обеспечения освоения дисциплины Программы по расчету характеристик электрических машин для математического пакета МАТКАД [12]. 7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ Специализированная

Подробнее

ОДНОФАЗНЫЙ АСИНХРОННЫЙ ДВИГАТЕЛЬ.

ОДНОФАЗНЫЙ АСИНХРОННЫЙ ДВИГАТЕЛЬ. ОДНОФАЗНЫЙ АСИНХРОННЫЙ ДВИГАТЕЛЬ Вопросы лекции: 1 Общие сведения о однофазном асинхронном двигателе 2 Принцип подключения асинхронного двигателя в однофазную сеть 3 Схемы подключения трехфазного асинхронного

Подробнее

Испытания синхронных машин

Испытания синхронных машин Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Ивановский государственный энергетический университет им. В. И. Ленина» Кафедра электромеханики

Подробнее

КОМПЛЕКТ ОЦЕНОЧНЫХ СРЕДСТВ

КОМПЛЕКТ ОЦЕНОЧНЫХ СРЕДСТВ Министерство общего и профессионального образования Ростовской области Государственное бюджетное профессиональное образовательное учреждение Ростовской области «Шахтинское профессиональное училище 36»

Подробнее

Общие сведения об электродвигателях

Общие сведения об электродвигателях Общие сведения об электродвигателях Электродвигатель. Виды электродвигателей и их конструктивные особенности. Устройство и принцип действия электродвигателя Электродвигатель преобразует электроэнергию

Подробнее

Лекция 13. ТРЕХФАЗНЫЕ ЦЕПИ

Лекция 13. ТРЕХФАЗНЫЕ ЦЕПИ 138 Лекция 13. ТРЕХФАЗНЫЕ ЦЕПИ План 1. Технико-экономические преимущества трехфазных цепей. 2. Соединение звездой и треугольником. 3. Симметричный и несимметричный режимы работы трехфазной цепи. 4. Заключение.

Подробнее

ГЛАВА 1. ЦЕПИ ПОСТОЯННОГО ТОКА

ГЛАВА 1. ЦЕПИ ПОСТОЯННОГО ТОКА ПРЕДИСЛОВИЕ ГЛАВА 1. ЦЕПИ ПОСТОЯННОГО ТОКА 1.1.Электрическая цепь 1.2.Электрический ток 1.3.Сопротивление и проводимость 1.4.Электрическое напряжение. Закон Ома 1.5.Связь между ЭДС и напряжением источника.

Подробнее

«Электротехника и электроника»

«Электротехника и электроника» Тестовые задания для аттестации инженерно-педагогических работников ГБОУ НиСПО «Электротехника и электроника» Формулировка и содержание ТЗ 1. Физический смысл первого закона Кирхгофа 1) Определяет связь

Подробнее

7. АСИНХРОННЫЕ ДВИГАТЕЛИ Основные понятия

7. АСИНХРОННЫЕ ДВИГАТЕЛИ Основные понятия 7. АСИНХРОННЫЕ ДВИГАТЕЛИ 7.1. Основные понятия Асинхронные машины относятся к классу электрических машин переменного тока. Мощность асинхронных машин может быть от долей ватта до нескольких тысяч киловатт.

Подробнее

Электрические машины

Электрические машины Согласно учебному плану направления 241000.62 (18.03.02) «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии», профиль «Охрана окружающей среды и рациональное использование

Подробнее

Тема 5. Трёхфазные электрические цепи

Тема 5. Трёхфазные электрические цепи Тема 5. Трёхфазные электрические цепи Вопросы темы. 1. Принцип построения трехфазной системы. 2. Соединение звездой. 3. Соединение треугольником. 4. Мощность трехфазной системы. 1. Принцип построения трехфазной

Подробнее

С.А. Иванская ЭЛЕКТРОТЕХНИКА

С.А. Иванская ЭЛЕКТРОТЕХНИКА МИНИСТЕРСТВО ОБРАЗОВАНИЯ СТАВРОПОЛЬСКОГО КРАЯ ГОУ СПО "Минераловодский колледж железнодорожного транспорта" С.А. Иванская ЭЛЕКТРОТЕХНИКА Методические рекомендации по освоению теоретического материала и

Подробнее

ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПЕРЕМЕННОГО ТОКА

ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПЕРЕМЕННОГО ТОКА МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра физики, электротехники и автоматики ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПЕРЕМЕННОГО ТОКА

Подробнее

/ 2 (1.5) , (1.6) J w. = π (1.7) 30

/ 2 (1.5) , (1.6) J w. = π (1.7) 30 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ УХТИНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ И МАХОВОГО МОМЕНТА

Подробнее

Генератор постоянного тока

Генератор постоянного тока Министерство образования Российской Федерации Томский государственный педагогический университет И.С. Кашинская Генератор постоянного тока методическое указание Томск 2003 УДК 621.3 Печатается по решению

Подробнее

docplayer.ru

Параллельная работа синхронного генератора с сетью

Рис. 11.26

Электрическая система большой мощности по отношению к генератору может быть представлена источником с неизменным напряжением. Режим ра­боты генератора можно проанализировать с помощью векторной диаграммы (рис. 11.23).

Мощность генератора

.

Путем преобразований можно доказать, что мощность синхронного генератора

.

Электромагнитный момент

,

где или . (11.55)

Так как , то мощность и электромагнитный момент генератора при постоянном токе возбуждения зависят только от угла . Эта зави­симость синусоидальна и называется угловой характеристикой синхрон­ного генератора (рис. 11.27). При увеличении момента на валу первичного двигателя генератор от­дает в сеть большую мощность. Предельным значением является момент и мощность при = 90°, после чего генератор выпадает из синхронизма.

 

Рис. 11.27

 

Максимальные мощность и момент ; .

Следовательно, регулиро­вать активную мощность генера­тора можно за счет первичного двигателя. Регулирование реактивной мощности гене­ратора осуществляется изменением тока возбуждения.

На рис. 11.28 показаны зави­симости тока статора от тока возбуждения, называемые U-образными характеристиками. Минимум тока статора соответст­вует активной нагрузке ( = 1,0). Перевозбуждение генератора означает гене­рирование реактивной мощности, невозбуждение – емкостный режим на­грузки.

Включение синхронного генератора на параллельную работу является от­ветственной операций и требует соблюдения следующих условий:

– напряжение включаемого генератора должно быть равно напряжению сети;

– частота генератора должна быть равной частоте сети;

– чередование фаз генератора и сети должно быть одинаково;

– напряжения генератора и сети должны быть в фазе.

Для соблюдения этих условий применяют различные схемы синхронизации.

11.23. Работа синхронной машины в режиме синхронного двигателя

В отличие от синхронного генератора в синхронном двигателе ось полюсов ротора отстает от оси полюсов вращающегося магнитного поля статора на угол и электромагнитный момент определяется по уравнению (11.55). Уравнения электрического баланса аналогичны режиму генератора. Поэтому генератор и двигатель характеризуются общими закономерностями.

Активная мощность синхронного двигателя зависит от тормозного мо­мента на валу. При этом ЭДС отстает от напряжения на угол . Предель­ным моментом является наибольший электромагнитный момент, за которым синхронный режим нарушается.

Реактивная мощность синхронного двигателя регулируется изменением тока возбуждения. При недовозбуждении реактивная мощность имеет индук­тивный характер, при перевозбуждении – емкостный.

Похожие статьи:

poznayka.org


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта