Вспоминаем физику: работа, энергия и мощность. Обозначение энергииэто... Потенциальная и кинетическая энергия. Что такое энергия в физике?Энергия – это то, благодаря чему существует жизнь не только на нашей планете, но и во Вселенной. При этом она может быть очень разной. Так, тепло, звук, свет, электричество, микроволны, калории представляют собой различные виды энергии. Для всех процессов, происходящих вокруг нас, необходима эта субстанция. Большую часть энергии все сущее на Земле получает от Солнца, но имеются и другие ее источники. Солнце передает ее нашей планете столько, сколько бы выработали одновременно 100 млн самых мощных электростанций. Что такое энергия?В теории, выдвинутой Альбертом Эйнштейном, изучается взаимосвязь материи и энергии. Этот великий ученый смог доказать способность одной субстанции превращаться в другую. При этом выяснилось, что энергия является самым важным фактором существования тел, а материя вторична. Энергия – это, по большому счету, способность выполнять какую-то работу. Именно она стоит за понятием силы, способной двигать тело или придавать ему новые свойства. Что же означает термин «энергия»? Физика – это фундаментальная наука, которой посвятили свою жизнь многие ученые разных эпох и стран. Еще Аристотель использовал слово «энергия» для обозначения деятельности человека. В переводе с греческого языка «энергия» - это «деятельность», «сила», «действие», «мощь». Первый раз это слово появилось в трактате ученого-грека под названием «Физика». В общепринятом сейчас смысле данный термин был введен в обиход английским ученым-физиком Томасом Юнгом. Это знаменательное событие произошло в далеком 1807 году. В 50-х годах XIX в. английский механик Уильям Томсон впервые использовал понятие «кинетическая энгергия», а в 1853 г. шотландский физик Уильям Ренкин ввел термин «потенциальная энергия». Сегодня эта скалярная величина присутствует во всех разделах физики. Она является единой мерой различных форм движения и взаимодействия материи. Другими словами, она представляет собой меру преобразования одних форм в другие. Единицы измерения и обозначенияКоличество энергии измеряется в джоулях (Дж). Эта специальная единица в зависимости от вида энергии может иметь разные обозначения, например:
Виды энергииВ природе существует множество самых разных видов энергии. Основными из них считаются:
Есть и другие виды энергии: световая, звука, магнитная. В последние годы все большее число ученых-физиков склоняются к гипотезе о существовании так называемой «темной» энергии. Каждый из перечисленных ранее видов данной субстанции имеет свои особенности. Например, энергия звука способна передаваться при помощи волн. Они способствуют возникновению вибрации барабанных перепонок в ухе людей и животных, благодаря которой можно слышать звуки. В ходе различных химических реакций высвобождается энергия, необходимая для жизнедеятельности всех организмов. Любое топливо, продукты питания, аккумуляторы, батарейки являются хранилищем этой энергии. Наше светило дает Земле энергию в виде электромагнитных волн. Только так она может преодолеть просторы Космоса. Благодаря современным технологиям, таким как солнечные батареи, мы можем использовать ее с наибольшим эффектом. Излишки неиспользованной энергии аккумулируются в особых энергохранилищах. Наряду с вышеперечисленными видами энергии часто используются термальные источники, реки, приливы и отливы океана, биотопливо. Механическая энергияЭтот вид энергии изучается в разделе физики, называемом «Механикой». Она обозначается буквой Е. Ее измерение осуществляется в джоулях (Дж). Что собой представляет эта энергия? Физика механики изучает движение тел и взаимодействие их друг с другом либо с внешними полями. При этом энергия, обусловленная движением тел, называется кинетической (обозначается Ек), а энергию, обусловленную взаимодействием тел или внешних полей, именуют потенциальной (Еп). Сумма движения и взаимодействия представляет собой полную механическую энергию системы. Для расчета обоих видов существует общее правило. Для определения величины энергии следует вычислить работу, необходимую для перевода тела из нулевого состояния в данное состояние. При этом чем больше работа, тем большей энергией будет обладать тело в данном состоянии. Разделение видов по разным признакамСуществует несколько видов разделения энергии. По разным признакам ее делят на: внешнюю (кинетическую и потенциальную) и внутреннюю (механическую, термическую, электромагнитную, ядерную, гравитационную). Электромагнитная энергия в свою очередь подразделяется на магнитную и электрическую, а ядерная – на энергию слабого и сильного взаимодействия. КинетическаяЛюбые движущиеся тела отличаются наличием кинетической энергии. Она часто так и называется - движущей. Энергия тела, которое движется, теряется при его замедлении. Таким образом, чем быстрее скорость, тем больше кинетическая энергия. При соприкосновении движущегося тела с неподвижным объектом последнему передается часть кинетической, приводящая и его в движение. Формула энергии кинетической следующая:
В словах эту формулу можно выразить следующим образом: кинетическая энергия объекта равна половине произведения его массы на квадрат его скорости. ПотенциальнаяЭтим видом энергии обладают тела, которые находятся в каком-либо силовом поле. Так, магнитная возникает, когда объект находится под действием магнитного поля. Все тела, находящиеся на земле, обладают потенциальной гравитационной энергией. В зависимости от свойств объектов изучения они могут иметь различные виды потенциальной энергии. Так, упругие и эластичные тела, которые способны вытягиваться, имеют потенциальную энергию упругости либо натяжения. Любое падающее тело, которое было ранее неподвижно, теряет потенциальную и приобретает кинетическую. При этом величина этих двух видов будет равнозначна. В поле тяготения нашей планеты формула энергии потенциальной будет иметь следующий вид:
В словах эту формулу можно выразить так: потенциальная энергия объекта, взаимодействующего с Землей, равна произведению его массы, ускорению свободного падения и высоты, на которой оно находится. Эта скалярная величина является характеристикой запаса энергии материальной точки (тела), находящейся в потенциальном силовом поле и идущей на приобретение кинетической энергии за счет работы сил поля. Иногда ее называют функцией координат, являющейся слагаемым в лангранжиане системы (функция Лагранжа динамической системы). Эта система описывает их взаимодействие. Потенциальную энергию приравнивают к нулю для некой конфигурации тел, расположенных в пространстве. Выбор конфигурации определяется удобством дальнейших вычислений и называется «нормировкой потенциальной энергии». Закон сохранения энергииОдним из самых основных постулатов физики является Закон сохранения энергии. В соответствии с ним, энергия ниоткуда не возникает и никуда не исчезает. Она постоянно переходит из одной формы в другую. Иными словами, происходит только изменение энергии. Так, например, химическая энергия аккумулятора фонарика преобразуется в электрическую, а из нее – в световую и тепловую. Различные бытовые приборы превращают электрическую в свет, тепло или звук. Чаще всего конечным результатом изменения являются тепло и свет. После этого энергия уходит в окружающее пространство. Закон энергии способен объяснить многие физические явления. Ученые утверждают, что общий объем ее во Вселенной постоянно остается неизменным. Никто не может создать энергию заново или уничтожить. Вырабатывая один из ее видов, люди используют энергию топлива, падающей воды, атома. При этом один ее вид превращается в другой. В 1918 г. ученые смогли доказать, что закон сохранения энергии представляет собой математическое следствие трансляционной симметрии времени - величины сопряженной энергии. Другими словами, энергия сохраняется вследствие того, что законы физики не отличаются в различные моменты времени. Особенности энергииЭнергия – это способность тела совершать работу. В замкнутых физических системах она сохраняется на протяжении всего времени (пока система будет замкнутой) и представляет собой один из трех аддитивных интегралов движения, сохраняющих величину при движении. К ним относятся: энергия, момент импульса, импульс. Введение понятия «энергия» целесообразно тогда, когда физическая система однородна во времени. Внутрення энергия телОна представляет собой сумму энергий молекулярных взаимодействий и тепловых движений молекул, составляющих его. Ее нельзя измерить напрямую, поскольку она является однозначной функцией состояния системы. Всегда, когда система оказывается в данном состоянии, ее внутренняя энергия имеет присущее ему значение, независимо от истории существования системы. Изменение внутренней энергии в процессе перехода из одного физического состояния в другое всегда равно разности между ее значениями в конечном и начальном состояниях. Внутренняя энергия газаПомимо твердых тел, энергию имеют и газы. Она представляет собой кинетическую энергию теплового (хаотического) движения частиц системы, к которым относятся атомы, молекулы, электроны, ядра. Внутренней энергией идеального газа (математической модели газа) является сумма кинетических энергий его частиц. При этом учитывается число степеней свободы, представляющее собой число независимых переменных, определяющих положение молекулы в пространстве. Использование энергииС каждым годом человечество потребляет все большее количество энергоресурсов. Чаще всего для получения энергии, необходимой для освещения и отопления наших жилищ, работы автотранспорта и различных механизмов, используются такие ископаемые углеводороды, как уголь, нефть и газ. Они относятся к невозобновимым ресурсам. К сожалению, только незначительная часть энергии добывается на нашей планете с помощью возобновимых ресурсов, таких как вода, ветер и Солнце. На сегодняшний день их удельный вес в энергетике составляет всего 5 %. Еще 3 % люди получают в виде ядерной энергии, производимой на атомных электростанциях. Невозобновляемые ресурсы имеют следующие запасы (в джоулях):
Годовая величина возобновляемых ресурсов Земли:
Только при своевременном переходе от использования невозобновляемых запасов энергии Земли к возобновляемым человечество имеет шанс на долгое и счастливое существование на нашей планете. Для воплощения передовых разработок ученые всего мира продолжают тщательно изучать разнообразные свойства энергии. fb.ru Энергия, единицы измеренияС понятием энергия человек сталкивается постоянно и подчас не задумывается о глубоком смысле и широте его. Энергия определяется как общая количественная мера различных форм движения материи. В соответствии с разнообразием форм движения и различают механическую, тепловую, электрическую, ядерную, химическую и другие виды энергии. В соответствии с законом сохранения, открытым М.В. Ломоносовым, энергия не теряется, а сохраняется и преобразуется в другие виды энергии. Поэтому энергия является тем стержнем, который связывает воедино все процессы и явления материального мира. Для объектов энергетики энергетический анализ является основным инструментом исследования процессов преобразования энергии с проверкой на каждом этапе технологического процесса выполнения условия баланса энергии. В процессе преобразования часть энергии может изменять свой вид, что часто усложняет количественный учет и проверку баланса. Именно потребности измерений энергии на заре развития электротехники стимулировали активное обсуждение на международных выставках 1851 года в Лондоне и 1855 года в Париже необходимости введения единой системы мер и весов. На I Международном конгрессе электриков, состоявшемся в 1881 году, был предложен проект полной системы единиц СГС, в основу которой были положены сантиметр как единица длины, грамм как единица массы и секунда как единица времени. Но применение этой системы в инженерных расчетах создавало определенные трудности из-за малости основных единиц. В 1918 году во Франции, а в 1927 году и в СССР была принята система единиц МТС на основе метра, тонны и секунды. Однако и она оказалась неудобной, но уже из-за другой крайности. В октябре 1960 года XI Генеральная конференция по мерам и весам утвердила проект единой системы единиц, над которым специальная комиссия работала с 1954 года. Эта система стала известна под наименованием Международная система единиц СИ. В 1961 году в СССР был утвержден ГОСТ 9867-61 «Международная система единиц», которым устанавливалось предпочтительное применение единиц СИ во всех областях науки, техники, образования и народного хозяйства. Основными единицами СИ являются семь следующих единиц: длины – метр, массы – килограмм, времени – секунда, силы электрического тока – ампер, температуры – кельвин, количества вещества – моль, силы света – кандела. Кроме основных единиц в состав СИ вводится большое число производных величин, определяемых по отраслям науки и техники. Ниже в табл. 3 приведены производные единицы СИ, которые применяются в электротехнике. Таким образом, несмотря на разнообразие видов энергии все они измеряются в джоулях. Для механической работы, например, один джоуль определяется работой, выполненной единицей силы на пути в один метр, т.е. 1Дж=1Н·1м.
Производные единицы системы СИ Таблица 3
Наряду с единицами системы СИ и их производными в специальных областях, в том числе и в энергетике, допускается применение единиц измерения из других систем и даже внесистемных единиц. Так, например, в энергетике для измерения тепловой энергии часто используется калория, имеющая простой физический смысл: за 1 калорию принимается такое количество теплоты, которое повышает температуру 1 грамма воды на 1 градус. Эта единица может рассматриваться как теплоемкость воды, равная 1 кал/(г·град). Из физики известно соотношение калории и джоуля 1 кал=4,187 Дж. Для измерения электрической энергии повсеместно используется внесистемная единица кВт·ч. Соотношение между кВт·ч и джоулем можно получить используя системную единицу мощности – 1 Ватт: 1 кВт·ч = 103 Вт ·3600 с =3,6 ·106 Дж. Учитывая предыдущее соотношение можно определить связь между единицами измерения электрической и тепловой энергии 1 кВт·ч = 3,6·106/4187=860 ккал. Для измерения больших объемов энергии, имеющих промышленное значение, а также больших и малых значений других физических величин используются приставки кратных и дольных единиц, основные из которых с шагом 1000 перечислены в табл. 4.
Приставки кратных и дольных единиц Таблица 4
Применение полученных представлений об энергии и единицах измерения позволяет решать некоторые практические задачи по оценке важнейших технико-экономических показателей, которые характеризуют процессы получения и преобразования энергии с использованием в качестве первичных энергоресурсов органического топлива. Важнейшей характеристикой топлива является теплота сгорания, измеряемая в кДж/кг или в ккал/кг и определяющая количество тепловой энергии выделяемой при сгорании 1 кг натурального топлива. Для объективной оценки эффективности процессов выработки энергии на объектах, которые работают на разных видах топлива, вводят понятие условного топлива (у.т.), имеющего фиксированную теплоту сгорания, равную 7000 ккал/кг. При решении задач будет использоваться понятие коэффициента полезного действия (КПД) как отношения полезной энергии к полной затраченной, и удельного расхода топлива, т.е. расходуемого на единицу полезно отпущенной энергии. Задача № 2.1. Сколько воды можно нагреть от температуры to=20 0C до кипения на электроплите при расходе электроэнергии W= 1 кВт·ч , если установка работает с КПД 0=50 %. Решение Определим общую энергию в ккал, которая поступает в систему нагрева воды из электрической сети Q=1кВт·ч´860 ккал/ кВт·ч=860 ккал. Энергия, которая используется для нагрева воды . Из условия нагрева воды при . Найдём массу воды .
Задача № 2.2 Сколько мазута расходуется на ТЭС, работающей с КПД=40%, на выработку 1 кВт·ч электроэнергии, если теплота сгорания с=10000 ккал/кг. Решение Определим необходимое количество тепловой энергии, которая должна поступить для выработки 1 кВт·ч при известном КПД . Определим массу топлива .
Задача № 2.3 Сколько воды можно нагреть от 200С до кипения в бытовом котле, работающем с при сжигании 0,215 кг мазута, имеющего с= 10000 ккал/кг. Решение Количество тепла, выделяемого при сжигании мазута, . Объём теплоты, идущий на нагрев воды, . Найдём массу воды .
Рассмотренные задачи позволяют оценить эффективностьдвух технологий нагрева воды по критерию расхода первичного энергоресурса – топлива.. Сравнение их показывает, что вторая технология существенно рациональней первой и является энергосберегающей, поскольку здесь первичный энергоресурс (топливо) используется для нагрева воды без промежуточного преобразования энергии, и общий относительный КПД технологии . В первой же технологии первичная энергия преобразуется в электрическую с КПД , а затем в тепловую, идущую на нагрев с . Общий КПД определяется как произведение относительных КПД этапов . Таким образом, для оценки эффективности различных технологий необходимо составить чёткую схему последовательного преобразования энергии, оценить КПД каждого звена этой схемы и найти общий КПД как их произведение .
Задача № 2.4 Тепловая электростанция работает с мощностью и удельным расходом топлива в =400 г у.т./кВт·ч. Определить суточный расход условного топлива и натурального, если теплота сгорания его с=3500 ккал/кг. Решение Определим выработку электроэнергии за сутки . Найдём расход условного топлива Определим расход натурального топлива .
Задача № 2.5 Определить КПД тепловой электростанции, если удельный расход топлива в =312 г у.т./кВт·ч. Решение Полезно отпущенная электроэнергия в 1 кВт·ч эквивалентна . На выработку её расходуется 0,312 кг условного топлива, или в тепловом эквиваленте Определим относительный КПД ТЭС . Задача № 2.6 Определить общий КПД преобразования энергии на ТЭС, если процесс сжигания топлива в котле с образованием пара имеет , преобразование энергии пара в кинетическую энергию в турбине имеет , а КПД преобразования в электрическую энергию имеет . Решение Все три звена в схеме преобразования энергии расположены последовательно, поэтому общий КПД . Задача № 2.7 На электростанции работают два блока, имеющие расходные характеристики определяющие расход топлива в т у.т. как функции от часовой нагрузки блока в МВт. Общая нагрузка электростанции . Найти оптимальную нагрузку каждого блока. Решение Критерием оптимальности является минимальный часовой расход топлива при выполнении условия баланса . Для определения оптимального режима воспользуемся методом направленного перебора по следующему алгоритму: 1) принимаем произвольное значение мощности первого блока ; 2) по расходной характеристике определяем ; 3) определяем нагрузку второго блока ; 4) находим расход топлива ; 5) определяем общий расход ; 6) изменяем мощность с шагом =20 МВт и повторяем расчёт. Результаты расчета приведены в табл.
Как следует из таблицы, оптимальная мощность блоков равна Р1=130 МВт, Р2=70 МВт, а расход топлива на ТЭС В=87,3 т у.т. в час.
studopedya.ru работа, энергия и мощность —Дата публикации: 1 февраля 2015 В текстах, публикуемых на этом сайте, часто встречаются различные термины, которые являются названиями физических величин. Многое мы изучали еще в школьном курсе физике, но знания имеют свойство забываться без постоянного употребления. В серии заметок, объединенных под общим заголовком «Вспоминаем физику» (можно было бы назвать «Снова в школу») мы постараемся напомнить вам, что означают основные термины, какие физические величины за этими терминами скрываются, как они связаны между собой, в каких величинах они измеряются. В общем, дать те основы, которые нужны для понимания публикуемых материалов. Сайт нас в целом посвящен методам и технологиям получения энергии (конкретно, из возобновляемых источников). Энергия нужна людям для отопления и освещения собственных жилищ, для того, чтобы приводить в движение различные механизмы, которые совершают полезную для людей работу. То есть нам нужно получить в конечном итоге один из трех видов энергии — тепловую, механическую и энергию света. Как будет сказано ниже, в физике различают еще несколько видов энергии, но для нас важны в первую очередь эти три вида. Закончу с предисловиями и приведу те определения энергии, которые приняты в физике. Работа и энергияЕще из школьного курса физики (а школу я окончил 50 лет назад) я помню утверждение «Энергия является мерой способности физической системы совершить работу». Википедия дает менее понятное определение, утверждая, что «Эне́ргия — скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие. Введение понятия энергии удобно тем, что в случае, если физическая система является замкнутой, то её энергия сохраняется в этой системе на протяжении времени, в течение которого система будет являться замкнутой. Это утверждение носит название закона сохранения энергии.» Энергия является скалярной величиной, для измерения которой применяются несколько разных единиц. Нам наиболее интересны джоуль и киловатт-час. Джо́уль (русское обозначение: Дж; международное: J) — единица измерения работы, энергии и количества теплоты в Международной системе единиц (СИ). Джоуль равен работе, совершаемой при перемещении точки приложения силы, равной одному ньютону, на расстояние одного метра в направлении действия силы. В электричестве джоуль означает работу, которую совершают силы электрического поля за 1 секунду при напряжении в 1 вольт для поддержания силы тока в 1 ампер. Впрочем, мы не будем углубляться в основы физики, выясняя, что такое сила и что такое один ньютон, просто примем понятие «энергия» за основу и запомним, что некое количество джоулей характеризует энергию, работу и количество теплоты. Еще одной величиной, с помощью которой измеряют количество энергии, является киловатт-час. Килова́тт-час (кВт⋅ч) — внесистемная единица измерения количества произведенной или потреблённой энергии, а также выполненной работы. Используется преимущественно для измерения потребления электроэнергии в быту, народном хозяйстве и для измерения выработки электроэнергии в электроэнергетике. Следует заметить, что правильно писать именно «кВт⋅ч» (мощность, умноженная на время). Написание «кВт/ч» (киловатт в час), часто употребляемое во многих СМИ и даже иногда в официальных документах, неправильно. Такое обозначение соответствует изменению мощности в единицу времени (что обычно никого не интересует), но никак не количеству энергии. Столь же распространённая ошибка — использовать «киловатт» (единицу мощности) вместо «киловатт-час». В последующих статьях мы будем использовать джоуль и киловатт-час как единицы для оценки количества энергии или работы, имея в виду, что один киловатт-час равен 3,6·106 джоулей. С точки зрения интересующих нас тем именно свойство энергии совершать работу является основополагающим. Мы не будем выяснять, как физика трактует понятие «работа», будем считать, что это понятие является первоначальным и не определяемым. Только еще раз подчеркнем, что количественно энергия и работа выражаются в одних единицах. В зависимости от вида энергии или работы величина энергии рассчитывается разными способами:
Формы и виды энергииПоскольку энергия, как сказано выше, является только мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие, различные формы энергии выделяются в соответствии с различными формами движения материи. Таким образом, в зависимости от уровня проявления, можно выделить следующие формы энергии:
Гравитационная энергия — энергия системы тел (частиц), обусловленная их взаимным гравитационным тяготением. В земных условиях, это, например, энергия, «запасенная» телом, поднятым на определенную высоту над поверхностью Земли — энергия силы тяжести. Таким образом, энергию, запасенную в водохранилищах гидроэлектростанций, можно отнести к гравитационной энергии. Механическая энергия — проявляется при взаимодействии, движении отдельных тел или частиц. К ней относят энергию движения или вращения тела, энергию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин). Эта энергия наиболее широко используется в различных машинах — транспортных и технологических. Тепловая энергия — энергия неупорядоченного (хаотического) движения и взаимодействия молекул веществ. Тепловая энергия, получаемая чаще всего при сжигании различных видов топлива, широко применяется для отопления, проведения многочисленных технологических процессов (нагревания, плавления, сушки, выпаривания, перегонки и т. д.). Химическая энергия — это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при химических реакциях между веществами. Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальванических элементах и аккумуляторах. Эти источники энергии характеризуются высоким КПД (до 98 %), но низкой емкостью. Электромагнитная энергия — это энергия, порождаемая взаимодействием электрического и магнитного полей. Ее подразделяют на электрическую и магнитную энергии. Электрическая энергия — энергия движущихся по электрической цепи электронов (электрического тока). Электромагнитная энергия проявляется также в виде электромагнитных волн, то есть в виде излучения, включающего видимый свет, инфракрасные, ультрафиолетовые, рентгеновские лучи и радиоволны. Таким образом, один из видов электромагнитной энергии — это энергия излучения. Излучение переносит энергию в форме энергии электромагнитной волны. Когда излучение поглощается, его энергия преобразуется в другие формы, чаще всего в теплоту. Ядерная энергия — энергия, локализованная в ядрах атомов так называемых радиоактивных веществ. Она высвобождается при делении тяжелых ядер (ядерная реакция) или синтезе легких ядер (термоядерная реакция). В эту классификацию несколько не укладываются известные нам со школы понятия потенциальной и кинетической энергии. Современная физика считает, что понятия кинетической и потенциальной энергий (а также энергии диссипации) это не формы, а виды энергии: Кинетическая энергия — энергия, которой обладают тела вследствие своего движения. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением. Когда тело не движется, кинетическая энергия равна нулю. Потенциальная энергия — энергия, обусловленная взаимодействием различных тел или частей одного и того же тела. Потенциальная энергия всегда определяется положением тела относительно некоторого источника силы (силового поля). Энергия диссипации (то есть рассеяния) — переход части энергии упорядоченных процессов в энергию неупорядоченных процессов, в конечном счёте — в теплоту. Дело в том, что каждая из перечисленных выше форм энергии может проявляться в виде потенциальной и кинетической энергии. То есть виды энергии должны трактоваться в обобщенном смысле, ибо они относятся к любой форме движения и, следовательно, к любой форме энергии. Например, имеется кинетическая электрическая энергия, и это не то же самое, что кинетическая механическая энергия. Это кинетическая энергия движения электронов, а не кинетическая энергия механического движения тела. Точно так же потенциальная электрическая энергия это не то же самое, что потенциальная механическая энергия. А химическая энергия складывается из кинетической энергии движения электронов и электрической энергии их взаимодействия друг с другом и с атомными ядрами. Вообще, насколько я понял при подготовке этого материала, пока не существует общепринятой классификации форм и видов энергии. Впрочем, возможно нам и не нужно до конца разбираться в этих физических понятиях. Важно только помнить, что энергия — это не какая-то реальная материальная субстанция, а только мера, предназначенная для оценки перемещения некоторых форм материи или преобразования одной формы материи в другую. С понятием энергии и работы неразрывно связано понятие мощности. МощностьМо́щность — физическая величина, равная в общем случае скорости изменения, преобразования, передачи или потребления энергии системы. В более узком смысле мощность равна отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени. В Международной системе единиц (СИ) единицей измерения мощности является ватт, равный одному джоулю, делённому на секунду. Мощность характеризует способность того или иного устройства совершать работу или производить энергию в течение определенного промежутка времени. Связь между мощностью, энергией и временем выражается следующим соотношением: Киловатт-час (напомним, что это единица измерения энергии) равен количеству энергии, потребляемой (производимой) устройством мощностью один киловатт (единица мощности) в течение одного часа (единица времени). Отсюда и уже упомянутое выше равенство 1 кВт⋅ч = 1000 Вт ⋅ 3600 с = 3,6·106 Дж = 3,6 МДж. Из трех рассмотренных на этой странице единиц именно мощность представляет для нас наибольший интерес, поскольку эта величина будет нам встречаться при рассмотрении и сравнении различных ветро- или гидро-генераторов и солнечных панелей. В этих случаях мощность характеризует способность этих устройств производить энергию. И наоборот, указание мощности на многих бытовых электроприборах характеризует потребление энергии этими приборами. Если мы хотим обеспечить некоторую совокупность бытовых приборов энергией, мы должны сопоставить суммарную потребляемую этими приборами мощность с суммарной мощностью, которую можем получить от производителей энергии. Но подробнее о мощности мы поговорим в следующих статьях, посвященных конкретным видам энергии. И начнем с электрической энергии, рассмотрим, какими величинами характеризуется электричество и в каких единицах оно измеряется. altenergiya.ru Условные обозначения для счетчиков электрической энергии переменного токаГОСТ 25372-95(МЭК 387-92) МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ УСЛОВНЫЕ ОБОЗНАЧЕНИЯ ДЛЯ СЧЕТЧИКОВ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ ПЕРЕМЕННОГО ТОКА МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ Минск Предисловие 1. РАЗРАБОТАН Всероссийским научно-исследовательским институтом стандартизации и сертификации в машиностроении (ВНИИНМАШ) ВНЕСЕН Госстандартом Российской Федерации 2. ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 8 от 12 октября 1995 г.) За принятие проголосовали:
3. Настоящий стандарт содержит полный аутентичный текст международного стандарта МЭК 387-92 «Условные обозначения для счетчиков электрической энергии переменного тока» с дополнительными требованиями, отражающими потребности экономики страны 4. Постановлением Комитета Российской Федерации по стандартизации, метрологии и сертификации от 27 марта 1996 г. № 212 государственный стандарт ГОСТ 25372-95 (МЭК 387-92) введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 июля 1996 г. 5. ВЗАМЕН ГОСТ 25372-82 6. ПЕРЕИЗДАНИЕ. Март 2005 г. Содержание МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
Дата введения 1996-07-01 Настоящий стандарт распространяется на буквенные и графические условные обозначения для счетчиков электрической энергии переменного тока (далее - счетчиков) и их вспомогательных устройств независимо от измерительных элементов индукционных или статических счетчиков. На образцовые счетчики электрической энергии и их вспомогательные устройства можно наносить условные обозначения, отличные от установленных в настоящем стандарте. Условные обозначения, установленные в настоящем стандарте, могут быть нанесены на щитке, циферблате, наружных ярлыках или вспомогательных устройствах счетчиков. Все требования настоящего стандарта, кроме 6.6 таблицы 3 и приложения А, являются обязательными. Дополнительные требования к условным обозначениям для счетчиков электрической энергии, отражающие потребности экономики страны, выделены в стандарте курсивом. В настоящем стандарте использованы ссылки на следующие стандарты: ГОСТ 8.417-2002 Государственная система обеспечения единства измерений. Единицы величин ГОСТ 23217-78 Приборы электроизмерительные аналоговые с непосредственным отсчетом. Наносимые условные обозначения В настоящем стандарте использованы термины, приведенные ниже: 3.1. индукционный счетчик электрической энергии: Счетчик электрической энергии, работа которого основана на вращении диска индукционного измерительного механизма. 3.2. статический счетчик электрической энергии: Счетчик электрической энергии, в котором ток и напряжение воздействуют на твердотельные (электронные) элементы для создания выходных импульсов, количество и частота которых пропорциональны соответственно энергии и мощности. 3.3. счетчик ватт-часов: Прибор, предназначенный для измерения активной энергии путем интегрирования активной мощности во времени. 3.4. счетчик вар-часов: Прибор, предназначенный для измерения реактивной энергии путем интегрирования реактивной мощности во времени. 3.5. счетчик вольт-ампер часов: Прибор, предназначенный для измерения полной энергии путем интегрирования полной мощности во времени. 3.6. многотарифный счетчик электрической энергии: Счетчик электрической энергии, снабженный набором счетных механизмов, каждый из которых работает в установленные интервалы времени, соответствующие различным тарифам. 3.7. счетчик излишков электрической энергии: Счетчик электрической энергии, предназначенный для измерения излишка электрической энергии в течение того времени, когда значение мощности превышает заранее определенное значение. 3.8. указатель максимума (для счетчика): Приспособление к счетчику для индикации наибольшего значения средней мощности, используемой во время последовательных равных интервалов времени. 3.9. счетчик максимума: Счетчик, снабженный указателем максимума. 3.10. двунаправленный счетчик: Счетчик, предназначенный для измерения электрической энергии в обоих направлениях. 3.11. запоминающее устройство: Элемент, предназначенный для хранения цифровой информации. 3.12. дисплей: Устройство, которое отображает информацию запоминающего (их) устройства (устройств). 3.13. счетный механизм: Электромеханическое или электронное устройство, содержащее как запоминающее устройство, так и дисплей, которое хранит и воспроизводит информацию. Если счетчик используют с трансформаторами тока и (или) напряжения, то счетный механизм может быть первичным, вторичным и смешанным. Один дисплей может быть использован с несколькими электронными запоминающими устройствами для формирования многотарифных счетных механизмов. 3.14. первичный счетный механизм: Счетный механизм счетчика, подключаемого через измерительные трансформаторы, который учитывает коэффициенты трансформации всех трансформаторов (трансформаторов напряжения и тока), но не учитывает коэффициенты трансформации обоих одновременно. Примечание - Значение энергии получают прямым считыванием показаний счетного механизма. 3.15. смешанный счетный механизм: Счетный механизм счетчика, подключаемого через измерительные трансформаторы, который учитывает коэффициент(ы) трансформации измерительного(ых) трансформатора(ов) тока или напряжения, но не учитывает коэффициенты трансформации обоих одновременно. Примечание - Значение энергии получают умножением показаний счетного механизма на соответствующий коэффициент. 3.16. вторичный счетный механизм: Счетный механизм счетчика, подключаемого через измерительные трансформаторы, который не учитывает коэффициент(ы) трансформации. Примечание - Значение энергии получают умножением показания счетного механизма на соответствующий коэффициент. 3.17. щиток счетчика: Пластина, легко доступная для чтения, закрепленная внутри или на наружной поверхности счетчика, на которой указывают значения, соответствующие условиям применения счетчика, и на которую могут быть нанесены также условные обозначения. 3.18. циферблат: Часть отсчетного устройства, на которую нанесены шкала или шкалы и обозначения, характеризующие прибор Примечание - В некоторых случаях щиток и циферблат могут быть объединены. 3.19. постоянная счетчика: Коэффициент, выражающий отношение отсчитанной энергии к числу оборотов диска (ротора) счетчика или к числу выходных импульсов. Постоянную счетчика выражают в единицах отсчитанной энергии на число оборотов диска (ротора) счетчика или число выходных импульсов. Передаточное число счетчика: - Обратное значению постоянной счетчика и выражается в оборотах диска (ротора) или импульсах на единицу отсчитанной энергии. 3.20. коэффициент отсчета С указателя максимума: Коэффициент, на который необходимо умножить показание в единицах мощности (активной или реактивной) для получения значения соответствующей мощности, выраженной в тех же единицах. 3.21. постоянная К указателя максимума: Коэффициент, на который необходимо умножить показания в произвольных делениях для получения значения в единицах соответствующей мощности (активной или реактивной). В приводимых в таблице 1 условных обозначениях каждая цепь напряжения обозначена линией, а каждая цепь тока - кружком. В конце каждой линии, обозначающей цепь напряжения, расположен(ы) кружок (кружки) для обозначения цепи(ей) тока, имеющей(их) общую точку соединения с этой цепью напряжения. Если цепь тока и цепь напряжения, имеющие такую общую точку соединения, не являются частью одного и того же электромагнита, то кружок, обозначающий цепь тока, соединяют с точкой в середине линии, обозначающей цепь напряжения, - посредством директрисы толщиной не более половины толщины первой линии, обозначающей цепь напряжения. Если электромагнит содержит две цепи тока и число его витков находится в соотношении 1:k, то диаметры кружков в обозначении должны быть приблизительно в таком же соотношении. Угол между двумя линиями условного обозначения представляет собой угол сдвига фаз между соответствующими напряжениями при условии, что за положительное направление принимают направление, идущее к общей точке в условных обозначениях с двумя линиями (например, обозначения 4.9 и 4.10) и направление в пределах внутренних углов треугольника - для обозначений треугольниками (например, обозначение 4.8). Для разграничения направления напряжения, действующего на каждый ток, цепь тока, на которую оказывает воздействие положительное направление напряжения, должна быть обозначена зачерненным кружком, а цепь тока, на которую оказывает воздействие отрицательное направление напряжения, - незачерченным кружком. Таблица 1 - Условные обозначения для измерительных элементов счетчиков
Условные обозначения единиц физических величин, используемых для счетчиков, приведены в таблице 2. Таблица 2 - Условные обозначения единиц физических величин, используемых для счетчиков
Обозначение в соответствии с требованиями раздела 5, указывающее номинальную измеряемую величину, должно быть нанесено на щитке или циферблате счетчика в соответствии с таблицей 3. Когда счетчик предназначен для измерений в специальных условиях (или) при различных диапазонах коэффициента мощности, следует использовать соответствующее обозначение. Если индукционный счетчик реактивной энергии отрегулирован для измерений в условиях только опережающего коэффициента мощности или только запаздывающего коэффициента мощности, то направление нормального вращения диска счетчика, если смотреть на счетчик спереди, будет слева направо, а на счетный механизм должна быть нанесена маркировка или соответственно. Если счетчик отрегулирован на измерения в условиях как запаздывающего, так и опережающего коэффициента мощности, то направление вращения диска счетчика, если смотреть на счетчик спереди, должно быть слева направо при условиях запаздывания. Рядом с каждым из двух счетных механизмов должна быть нанесена маркировкаили Если счетчик предназначен для измерения полной энергии при определенных предельных значениях коэффициента мощности, то эти значения должны быть указаны в скобках после условного обозначения единицы физической величины. Таблица 3- Маркировка измеряемой величины
Условные обозначения класса точности, постоянной счетчика, передаточного числа счетчика и класса защиты изоляции приведены в таблице 4. Таблица 4 - Условные обозначения класса точности, постоянной счетчика, передаточного числа счетчика и класса защиты изоляции
Условные обозначения для счетчиков, подключаемых через измерительные трансформаторы, приведены в таблице 5. Когда счетчик питается через измерительные трансформаторы, коэффициенты трансформации должны быть нанесены следующим образом: Таблица 5- Условные обозначения для счетчиков, подключаемых через измерительные трансформаторы
На щитке или на циферблате счетчика должны быть нанесены те коэффициенты трансформации, которые учтены счетным механизмом (для первичных счетных механизмов - коэффициенты всех трансформаторов; для смешанных счетных механизмов - коэффициент трансформации, кото aquagroup.ru
weldworld.ru Энергия - это... Что такое Энергия?Эне́ргия (др.-греч. ἐνέργεια — «действие, деятельность, сила, мощь») — скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие. Введение понятия энергии удобно тем, что в случае, если физическая система является замкнутой, то её энергия сохраняется во времени. Это утверждение носит название закона сохранения энергии. Понятие введено Аристотелем в трактате «Физика». Фундаментальный смыслС фундаментальной точки зрения энергия представляет собой интеграл движения (то есть сохраняющуюся при движении величину), связанный, согласно теореме Нётер, с однородностью времени. Таким образом, введение понятия энергии как физической величины целесообразно только в том случае, если рассматриваемая физическая система однородна во времени. Энергия и работаЭнергия является мерой способности физической системы совершить работу, поэтому количественно энергия и работа выражаются в одних единицах. В специальной теории относительностиЭнергия и массаСогласно специальной теории относительности между массой и энергией существует связь, выражаемая знаменитой формулой Эйнштейна где E — энергия системы, m — её масса, c — скорость света. Несмотря на то, что исторически предпринимались попытки трактовать это выражение как полную эквивалентность понятия энергии и массы, что, в частности, привело к появлению такого понятия как релятивистская масса, в современной физике принято сужать смысл этого уравнения, понимая под массой массу тела в состоянии покоя (так называемая масса покоя), а под энергией — только внутреннюю энергию, заключённую в системе. Энергия тела, согласно законам классической механики, зависит от системы отсчета, то есть неодинакова для разных наблюдателей. Если тело движется со скоростью v относительно некоего наблюдателя, то для другого наблюдателя, движущегося с той же скоростью, оно будет казаться неподвижным. Соответственно, для первого наблюдателя кинетическая энергия тела будет равна, , где m — масса тела, а для другого наблюдателя — нулю. Эта зависимость энергии от системы отсчета сохраняется также в теории относительности. Для определения преобразований, происходящих с энергией при переходе от одной инерциальной системы отсчета к другой используется сложная математическая конструкция — тензор энергии-импульса. Зависимость энергии тела от скорости рассматривается уже не так, как в ньютоновской физике, а согласно вышеназванной формуле Эйнштейна: ,где — инвариантная масса. В системе отсчета, связанной с телом, его скорость равна нулю, а энергия, которую называют энергией покоя, выражается формулой: .Это минимальная энергия, которую может иметь массивное тело. Значение формулы Эйнштейна также в том, что до неё энергия определялась с точностью до произвольной постоянной, а формула Эйнштейна находит абсолютное значение этой постоянной. Энергия и импульсСпециальная теория относительности рассматривает энергию как компоненту 4-импульса (4-вектора энергии-импульса), в который наравне с энергией входят три пространственные компоненты импульса. Таким образом энергия и импульс оказываются связанными и оказывают взаимное влияние друг на друга при переходе из одной системы отсчёта в другую. В квантовой механике
В квантовой механике величина энергии пропорциональна частоте и двойственна времени. В частности, в силу фундаментальных причин принципиально невозможно измерить абсолютно точно энергию системы в каком-либо процессе, время протекания которого конечно. При проведении серии измерения одного и того же процесса значения измеренной энергии будут флуктуировать, однако среднее значение всегда определяется законом сохранения энергии. Это приводит к тому, что иногда говорят, что в квантовой механике сохраняется средняя энергия. В общей теории относительностиВ общей теории относительности время не является однородным, поэтому возникают определённые проблемы при попытке введения понятия энергии. В частности, оказывается невозможным определить энергию гравитационного поля как тензор относительно общих преобразований координат. Энергия и энтропияВнутреняя энергия (или энергия хаотического движения молекул) является самым «деградированным» видом энергии — она не может превращаться в другие виды энергии без потерь (см.: энтропия). Физическая размерностьЭнергия E имеет размерность, равную: В системе величин LMT энергия имеет размерность .
Виды энергииМеханика различает потенциальную энергию (или, в более общем случае, энергию взаимодействия тел или их частей между собой или с внешними полями) и кинетическую энергию (энергия движения). Их сумма называется полной механической энергией. Энергией обладают все виды полей. По этому признаку различают: электромагнитную (разделяемую иногда на электрическую и магнитную энергии), гравитационную и ядерную энергии (также может быть разделена на энергию слабого и сильного взаимодействий). Термодинамика рассматривает внутреннюю энергию и иные термодинамические потенциалы. В химии рассматриваются такие величины, как энергия связи и энтальпия, имеющие размерность энергии, отнесённой к количеству вещества. См. также: химический потенциал. Энергия взрыва иногда измеряется в тротиловом эквиваленте. КинетическаяКинетическая энергия — энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Единица измерения в системе СИ — Джоуль. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением. ПотенциальнаяПотенциальная энергия — скалярная физическая величина, характеризует запас энергии некоего тела (или материальной точки), находящегося в потенциальном силовом поле, который идет на приобретение (изменение) кинетической энергии тела за счет работы сил поля. Другое определение: потенциальная энергия — это функция координат, являющаяся слагаемым в лагранжиане системы, и описывающая взаимодействие элементов системы.[2] Термин «потенциальная энергия» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином. Единицей измерения энергии в СИ является Джоуль. Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называется нормировкой потенциальной энергии. ЭлектромагнитнаяГравитационнаяГравитационная энергия — потенциальная энергия системы тел (частиц), обусловленная их взаимным тяготением. Гравитационно-связанная система — система, в которой гравитационная энергия больше суммы всех остальных видов энергий (помимо энергии покоя). Общепринята шкала, согласно которой для любой системы тел, находящихся на конечных расстояниях, гравитационная энергия отрицательна, а для бесконечно удалённых, то есть для гравитационно не взаимодействующих тел, гравитационную энергия равна нулю. Полная энергия системы, равная сумме гравитационной и кинетической энергии постоянна, для изолированной системы гравитационная энергия является энергией связи. Системы с положительной полной энергией не могут быть стационарными. ЯдернаяЯдерная энергия (атомная энергия) — это энергия, содержащаяся в атомных ядрах и выделяемая при ядерных реакциях. Энергия связи — энергия, которая требуется, чтобы разделить ядро на отдельные нуклоны, называется энергией связи. Энергия связи, приходящаяся на один нуклон, неодинакова для разных химических элементов и, даже, изотопов одного и того же химического элемента. ВнутренняяВнутренняя энергия тела (обозначается как E или U) — это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутреннюю энергию тела нельзя измерить напрямую. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между её значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход. Химический потенциалХимический потенциал — один из термодинамических параметров системы, а именно энергия добавления одной частицы в систему без совершения работы. Энергия взрываВзрыв — физический или/и химический быстропротекающий процесс с выделением значительной энергии в небольшом объёме за короткий промежуток времени, приводящий к ударным, вибрационным и тепловым воздействиям на окружающую среду и высокоскоростному расширению газов. При химическом взрыве, кроме газов, могут образовываться и твёрдые высокодисперсные частицы, взвесь которых называют продуктами взрыва. Энергию взрыва иногда измеряют в тротиловом эквиваленте — мере энерговыделения высокоэнергетических событий, выраженной в количестве тринитротолуола (ТНТ), выделяющем при взрыве равное количество энергии. Проблемы энергопотребленияСуществует довольно много форм энергии, большинство[3] из которых так или иначе используются в энергетике и различных современных технологиях. Темпы энергопотребления растут во всем мире, поэтому на современном этапе развития цивилизации наиболее актуальна проблема энергосбережения. Условно источники энергии можно поделить на два типа: невозобновляемые и постоянные. К первым относятся газ, нефть, уголь, уран и т. д. Технология получения и преобразования энергии из этих источников отработана, но, как правило, неэкологична, и многие из них истощаются. К постоянным источникам можно отнести энергию солнца, энергию, получаемую на ГЭС и т. д. История терминаТермин «энергия» происходит от слова energeia, которое впервые появилось в работах Аристотеля. Томас Юнг первым использовал понятие «энергия» в современном смысле словаМаркиза Эмили дю Шатле в книге «Уроки физики» (фр. Institutions de Physique, 1740), объединила идею Лейбница с практическими наблюдениями Виллема Гравезанда, чтобы показать: энергия движущегося объекта пропорциональна его массе и квадрату его скорости (не скорости самой по себе как полагал Исаак Ньютон). В 1807 году Томас Юнг первым использовал термин «энергия» в современном смысле этого слова взамен понятия живая сила.[4]Гаспар-Гюстав Кориолис впервые использовал термин «кинетическая энергия» в 1829 году, а в 1853 году Уильям Ренкин впервые ввёл понятие «потенциальная энергия». Несколько лет велись споры, является ли энергия субстанцией (теплород) или только физической величиной. Развитие паровых двигателей требовало от инженеров разработать понятия и формулы, которые позволили бы им описать механический и термический КПД своих систем. Инженеры (Сади Карно), физики (Джеймс Джоуль), математики (Эмиль Клапейрон и Герман Гельмгольц[уточнить]) — все развивали идею, что способность совершать определённые действия, называемая работой, была как-то связана с энергией системы. В 1850-х годах, профессор натурфилософии из Глазго Уильям Томсон и инженер Уильям Ренкин начали работу по замене устаревшего языка механики с такими понятиями как «кинетическая и фактическая (actual) энергии».[4] Уильям Томсон соединил знания об энергии в законы термодинамики, что способствовало стремительному развитию химии. Рудольф Клаузиус, Джозайя Гиббс и Вальтер Нернст объяснили многие химические процессы, используя законы термодинамики. Развитие термодинамики было продолжено Клаузиусом, который ввёл и математически сформулировал понятие энтропии, и Джозефом Стефаном, который ввёл закон излучения абсолютно чёрного тела. В 1853 году Уильям Ренкин ввёл понятие «потенциальная энергия».[4] В 1881 году Уильям Томсон заявил перед слушателями:[5]
В течение следующих тридцати лет эта новая наука имела несколько названий, например, «динамическая теория тепла» (англ. dynamical theory of heat) и «энергетика» (англ. energetics). В 1920-х годах общепринятым стало название «термодинамика» — наука о преобразовании энергии. Особенности преобразования тепла и работы были показаны в первых двух законах термодинамики. Наука об энергии разделилась на множество различных областей, таких как биологическая термодинамика и термоэкономика (англ. thermoeconomics). Параллельно развивались связанные понятия, такие как энтропия, мера потери полезной энергии, мощность, поток энергии за единицу времени, и так далее. В последние два века использование слова энергия в ненаучном смысле широко распространилось в популярной литературе. В 1918 году было доказано, что закон сохранения энергии есть математическое следствие трансляционной симметрии времени, величины сопряжённой энергии. То есть энергия сохраняется, потому что законы физики не отличают разные моменты времени (см. Теорема Нётер, изотропия пространства). В 1961 году выдающийся преподаватель физики и нобелевский лауреат, Ричард Фейнман в лекциях так выразился о концепции энергии:[6] Существует факт, или, если угодно, закон, управляющей всеми явлениями природы, всем, что было известно до сих пор. Исключений из этого закона не существует; насколько мы знаем, он абсолютно точен. Название его — сохранение энергии. Он утверждает, что существует определённая величина, называемая энергией, которая не меняется ни при каких превращениях, происходящих в природе. Само это утверждение весьма и весьма отвлечено. Это по существу математический принцип, утверждающий, что существует некоторая численная величина, которая не изменяется ни при каких обстоятельствах. Это отнюдь не описание механизма явления или чего-то конкретного, просто-напросто отмечается то странное обстоятельство, что можно подсчитать какое-то число и затем спокойно следить, как природа будет выкидывать любые свои трюки, а потом опять подсчитать это число — и оно останется прежним. Оригинальный текст (англ.) There is a fact, or if you wish, a law, governing natural phenomena that are known to date. There is no known exception to this law—it is exact so far we know. The law is called conservation of energy; it states that there is a certain quantity, which we call energy that does not change in manifold changes which nature undergoes. That is a most abstract idea, because it is a mathematical principle; it says that there is a numerical quantity, which does not change when something happens. It is not a description of a mechanism, or anything concrete; it is just a strange fact that we can calculate some number, and when we finish watching nature go through her tricks and calculate the number again, it is the same. — Фейнмановские лекции по физике[7] См. такжеПримечания
Ссылкиdic.academic.ru Значение - энергия - системаЗначение - энергия - системаCтраница 1 Значения энергии системы трех атомов Н для нелинейных конфигураций комплекса Н3, полученные полу эмпирическим и вариационным методами, также сильно расходятся. [1] Значения энергии системы трех атомов Н для нелинейных конфигураций комплекса Н3, полученные полуэмпирическим и вариационным методами, также сильно расходятся. [2] Значение энергии системы не фиксировано. Предполагается, что энергия системы может отличаться от фактически наблюдаемого среднего значения. Однако большие отклонения энергии системы от среднего значения очень маловероятны. [3] Другими словами, возможные значении энергии системы электронов оказываютси зависищими от ее полного спина. [4] Покажите подробно, что разность между значениями энергии системы в конечном и начальном состояниях равна работе, которую совершила сила, вытягивающая нить, в) Если нить отпустить, с какой радиальной скоростью vr пройдет тележка через точку У. [5] Покажите подробно, что разность между значениями энергии системы в конечном и начальном состояниях равна работе, которую совершила сила, вытягивающая нить. [6] Малость величины относительной флуктуации означает, что значения энергии системы в термостате сколько-нибудь отличные от средней энергии, практически невероятны. [7] Стоящий в знаменателе интеграл обеспечивает нормировку на единицу плотности вероятности для значений энергии системы. [8] Радиационные переходы между этими состояниями сопровождаются поглощением или испусканием электромагнитного излучения, частота которого определяется разностью значений энергии системы в конечном и исходном состояниях. [9] Заметим, что акт определения температуры системы путем ее контакта с термостатом приводит к неопределенности в значении энергии системы. Система, находящаяся в тепловом равновесии с термостатом, не обладает точно постоянной энергией. Обычная термодинамика применима лишь до тех пор, пока относительная флуктуация энергии мала. [10] Таким образом, для консервативных систем энергия является интегралом движения, которому соответствует квантовое число гг, нумерующее значения энергии системы. В системах, которые можно считать полностью хаотическими, других интегралов движения не существует. [11] УРОВНИ ЭНЕРГИИ, значения энергии, к-рыми может обладать в стационарном состоянии система микрочастиц - атомное ядро, атом, молекула и др. Термин У. Значения энергии системы микрочастиц в стационарном состоянии, согласно квантовой механике, могут иметь лишь опре-дел. [12] Рассмотрим теперь связанную систему электрически заряженных элементарных частиц, находящуюся в стационарном состоянии. Стационарность состояния означает сохранение значения энергии системы ( как свободной материальной точки) длительное время. Если Е постоянно неопределенно долго - состояние считается стационарным, если сравнительно долго - квазистационарным. Но это значит, что реальные фотоны в такую систему не входят, иначе они изменяли бы ее энергию. Типичным примером связанных состояний элементарных частиц являются атомы вещества - системы из положительного ядра и отрицательных электронов. На микроуровне взаимодействие между ними происходит в результате обмена виртуальными фотонами. [13] Вследствие чрезвычайной густоты уровней макроскопическое тело никогда не может фактически находиться в строго стационарном состоянии. Прежде всего ясно, что значение энергии системы во всяком случае будет размытым на величину порядка энергии взаимодействия системы с окружающими телами. Но последняя неизмеримо велика по сравнению с расстояниями между уровнями, причем не только для квазизамкнутых подсистем, но и для таких систем, которые мы со всякой иной точки зрения могли бы считать строго замкнутыми. В природе, разумеется, нет полностью замкнутых систем, взаимодействие которых с любым другим телом равно в точности нулю; всякое же фактически остающееся взаимодействие, которое может быть даже настолько малым, что не отражается ни на каких других свойствах системы, будет все еще чрезвычайно велико по сравнению с исчезающе малыми интервалами ее энергетического спектра. [14] Подставив величину oj) в уравнение Шредингера, определим значение энергии системы электронов молекулы. [15] Страницы: 1 2 www.ngpedia.ru |