Eng Ru
Отправить письмо

Ноль и фаза в электрике — назначение фазного и нулевого провода. Нейтраль в электрике


Что такое фаза, ноль, земля в электрике и зачем они нужны

Известно, что электрическая энергия вырабатывается на электрических станциях при помощи генераторов переменного тока. Затем, по линиям электропередач от трансформаторных подстанций электроэнергия поступает потребителям. Разберем подробнее, каким образом энергия подводится к подъездам многоэтажных домов и частным домам. Это даст понять даже чайникам в электрике, что такое фаза, ноль и заземление и зачем они нужны.

Простое объяснение

Ctil

Итак, для начала простыми словами расскажем, что собой представляют фазный и нулевой провод, а также заземление. Фаза — это проводник, по которому ток приходит к потребителю. Соответственно ноль служит для того, чтобы электрический ток двигался в обратном направлении к нулевому контуру. Помимо этого назначение нуля в электропроводке — выравнивание фазного напряжения. Заземляющий провод, называемый так же землей, не находится под напряжением и предназначен для защиты человека от поражения электрическим током. Подробнее о заземлении вы можете узнать в соответствующем разделе сайта.

Цвет проводов

Надеемся, наше простое объяснение помогло разобраться в том, что такое ноль, фаза и земля в электрике. Также рекомендуем изучить цветовую маркировку проводов, чтобы понимать, какого цвета фазный, нулевой и заземляющий проводник!

Углубляемся в тему

Питание потребителей осуществляется от обмоток низкого напряжения понижающего трансформатора, являющегося важнейшей составляющей работы трансформаторной подстанции. Соединение подстанции и абонентов выглядит следующим образом: к потребителям подводится общий проводник, отходящий от точки соединения трансформаторных обмоток, называемый нейтралью, наряду с тремя проводниками, представляющими собой выводы остальных концов обмоток. Выражаясь простыми словами, каждый из этих трех проводников является фазой, а общий – это ноль.

Между фазами в трехфазной энергетической системе возникает напряжение, называемое линейным. Его номинальное значение составляет 380 В. Дадим определение фазному напряжению — это напряжение между нулем и одной из фаз. Номинальное значение фазного напряжения составляет 220 В.

Электроэнергетическая система, в которой ноль соединен с землей, называется «система с глухозаземленной нейтралью». Чтобы было предельно понятно даже для новичка в электротехнике: под «землей» в электроэнергетике понимается заземление.

Система с глухозаземленной нейтралью

Физический смысл глухозаземленной нейтрали следующий: обмотки в трансформаторе соединены в «звезду», при этом, нейтраль заземляют. Ноль выступает в качестве совмещенного нейтрального проводника (PEN). Такой тип соединения с землей характерен для жилых домов, относящихся к советской постройке. Здесь, в подъездах, электрический щиток на каждом этаже просто зануляют, а отдельное соединение с землей не предусмотрено. Важно знать, что подключать одновременно защитный и нулевой проводник к корпусу щитка весьма опасно, потому как существует вероятность прохождения рабочего тока через ноль и отклонения его потенциала от нулевого значения, что означает возможность удара током.

К домам, относящимся к более поздней постройке, от трансформаторной подстанции предусмотрено подведение тех же трех фаз, а также разделенных нулевого и защитного проводника. Электрический ток проходит по рабочему проводнику, а назначение защитного провода заключается в соединении токопроводящих частей с имеющимся на подстанции заземляющим контуром. В этом случае в электрических щитках на каждом этаже располагается отдельная шина для раздельного подключения фазы, нуля и заземления. Заземляющая шина имеет металлическую связь с корпусом щитка.

Известно, что нагрузка по абонентам должна быть распределена по всем фазам равномерно. Однако, предсказать заранее, какие мощности будут потребляться тем или иным абонентом, не представляется возможным. В связи с тем, что ток нагрузки разный в каждой отдельно взятой фазе, появляется смещение нейтрали. Вследствие чего и возникает разность потенциалов между нулем и землей. В случае, когда сечение нулевого проводника является недостаточным, разность потенциалов становится еще значительнее. Если же связь с нейтральным проводником полностью теряется, то велика вероятность возникновения аварийных ситуаций, при которых в фазах, нагруженных до предела, напряжение приближается к нулевому значению, а в ненагруженных, наоборот, стремится к значению 380 В. Это обстоятельство приводит к полной поломке электрооборудования. В то же время, корпус электрического оборудования оказывается под напряжением, опасным для здоровья и жизни людей. Применение разделенных нулевого и защитного провода в данном случае поможет избежать возникновения таких аварий и обеспечить требуемый уровень безопасности и надежности.

Напоследок рекомендуем просмотреть полезные видео по теме, в которых даются определения понятиям фазы, нуля и заземления:

Надеемся, теперь вы знаете, что такое фаза, ноль, земля в электрике и зачем они нужны. Если возникнут вопросы, задайте их нашим специалистам в разделе «Задать вопрос электрику«!

Рекомендуем также прочитать:

samelectrik.ru

Значение фаза и ноль в электричестве

Передача электрического тока осуществляется по трехфазным сетям, при этом большинство домов имеет однофазные сети. Расщепление трехфазной цепи осуществляется с помощью вводно-распределительных устройств (ВРУ). Простым языком этот процесс можно описать следующим образом. К электрощитку дома подводится трехфазная цепь, состоящая из трех фазных, одного нулевого и одного заземляющего проводов. Посредством ВРУ цепь расщепляется – к каждому фазному проводу добавляется один нулевой и один заземляющий, получается однофазная сеть, к которой и подключаются отдельные потребители.

Что такое фаза и ноль

Что такое фаза и ноль в электричестве?

Попробуем разобраться, что такое ноль в электричестве и чем он отличается от фазы и земли. Фазные проводники используются для подачи электроэнергии. В трехфазной сети три токоподающих провода и один нулевой (нейтральный). Передаваемый ток сдвигается по фазе на 120 градусов, поэтому в цепи достаточно одного нуля. Фазовый проводник имеет напряжение 220 В, пара «фаза-фаза» – 380 В. Ноль не имеет напряжения.

Фазы генератора и фазы нагрузки соединяются между собой линейными проводниками. Нулевые точки генератора и нагрузки соединяются между собой рабочим нулем. По линейным проводам ток движется от генератора к нагрузке, по нулевым – в обратном направлении. Фазные и линейные напряжения равны независимо от способа подключения. Земля (заземляющий провод) также как и ноль не имеет напряжения. Он выполняет защитную функцию.

Зачем нужно зануление

Человечество активно использует электричество, фаза и ноль – важнейшие понятия, которые нужно знать и различать. Как мы уже выяснили, по фазе электричество подается к потребителю, ноль отводит ток в обратном направлении. Следует различать нулевой рабочий (N) и нулевой защитный (PE) проводники. Первый необходим для выравнивания фазового напряжения, второй используется для защитного зануления.

В зависимости от типа линии электропередач может использоваться изолированный, глухозаземленный и эффективно-заземленный ноль. Большинство ЛЭП, питающих жилой сектор, имеет глухозаземленную нейтраль. При симметричной нагрузке на фазных проводниках рабочий ноль не имеет напряжения. Если нагрузка неравномерна, ток небаланса протекает по нулю, и схема электропитания получает возможность саморегулирования фаз.

Электросети с изолированной нейтралью не имеют нулевого рабочего проводника. В них используется нулевой заземляющий провод. В электросистемах TN рабочий и защитный нулевой проводники объединены на всем протяжении цепи и имеют маркировку PEN. Объединение рабочего и защитного нуля возможны только до распределительного устройства. От него к конечному потребителю пускается уже два нуля – PE и N. Объединение нулевых проводников запрещается по технике безопасности, так как в случае короткого замыкания фаза замкнется на нейтраль, и все электроприборы окажутся под фазным напряжением.

Как различить фазу, ноль, землю

Проще всего определить назначение проводников по цветовой маркировке. В соответствие с нормами, фазный проводник может иметь любой цвет, нейтраль – голубую маркировку, земля – желто-зеленого цвета. К сожалению, при монтаже электрики цветовая маркировка соблюдается далеко не всегда. Нельзя забывать и вероятности того, что недобросовестный или неопытный электрик легко может перепутать фазу и ноль или подключить две фазы. По этим причинам всегда лучше воспользоваться более точными способами, чем цветовая маркировка.

Определить фазный и нулевой проводники можно с помощью индикаторной отвертки. При соприкосновении отвертки с фазой загорится индикатор, так как по проводнику проходит электроток. Ноль не имеет напряжения, поэтому индикатор загореться не может.

Отличить ноль от земли можно с помощью прозвонки. Сначала определяется и маркируется фаза, затем щупом прозвонки нужно прикоснуться к одному и проводников и клемме заземления в электрощитке. Ноль звониться не будет. При прикосновении к земле раздастся характерный звуковой сигнал.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

madenergy.ru

Виды нейтралей электроустановок - ElectrikTop.ru

Виды нейтралей электроустановок

Нейтраль – та часть электроустановки, которая имеет нулевой потенциал относительно физической земли или ее токопроводящих элементов. Трехфазные цепи могут иметь как технологическую, имеющую физическое соединение с токопроводящими частями, так и конструктивную, отдельную от них нейтраль. Это зависит от способа соединения выходных обмоток силовых трансформаторов.

В первом случае – звездой, во втором – треугольником. Поскольку в этом проводнике течет ток, что происходит в результате или аварии, или технологического перекоса фаз, выражение «режим работы нейтрали» имеет полное право на существование. О том, каким он может быть, и о способах подключения нейтральных проводников пойдет речь в этой статье.

Режимы заземления нейтрали

В экзаменационных билетах по электробезопасности для монтеров, работающих с установками напряжением до 1000 вольт, есть вопрос: «С какой нейтралью должны работать электрические сети напряжением 10 кВ?» Правильный ответ: «С изолированной». Однако существуют и другие режимы работы нейтралей в электроустановках:

  1. Эффективное заземление.
  2. Глухое заземление.

От их выбора зависит множество факторов:

  • Бесперебойность электроснабжения.
  • Безопасность обслуживающего персонала и электроустановок в случае замыкания одной из фаз на землю.
  • Величины токов в местах повреждений.
  • Схема построения релейной защиты.

Различные типы электрических сетей по-разному подключаются к нейтрали и реагируют на аварийные ситуации.

Высоковольтные магистральные электросети

К ним относятся все электросети, линейное (между фазными проводниками) напряжение в которых превышает 35 кВ. Выходные (статорные) обмотки промышленных электрогенераторов соединяют треугольником. Это связано с меньшим уровнем электрических потерь и отсутствием технологического перекоса фаз, что напрямую влияет на качество подаваемой потребителям электрической энергии.

При однофазном пробое на физическую землю – в случае обрыва провода или изменения диэлектрических свойств изоляторов на опорах, происходит падение линейного напряжения до нуля в аварийной фазе и рост в 1,7 раза в работоспособных.

Чтобы избежать электрического пробоя изоляторов рабочих фаз и не увеличивать их без того немалые размеры, в этом случае применяется способ подключения, называемый «эффективной нейтралью». Он заключается в том, что на промежуточных силовых подстанциях выходные обмотки трансформаторов, использующиеся для обеспечения их внутренних нужд (например, обогрева, сигнализации), включаются по схеме «звезда», общий провод которой наглухо соединяется с физической землей.

Эффективно заземленная нейтральВ результате напряжение в неповрежденных фазах растет не более, чем в 1,4 раза, а ток короткого замыкания ограничивается на уровне, который недостаточен для срабатывания реле защиты. Это позволяет не прерывать электроснабжение на время большее, чем то, что определено нормативами правил эксплуатации электроустановок для различных типов потребителей.

Магистральные электросети среднего напряжения

Электрическая сеть, линейное напряжение в которой от 6 до 35 кВ. Обмотки силовых трансформаторов соединяются звездой. Нейтраль изолированная, она не имеет физического контакта с землей. Это делается по трем причинам:

  1. Меньшие токи, что позволяет уменьшить размеры изоляторов – меньше вес, меньше нагрузка на опоры, возможна экономия при их производстве и монтаже.
  2. В сетях с изолированной нейтралью токи между фазами имеют емкостной характер, поэтому при пробое одной из них не возникает короткого замыкания. Ток как бы стекает с поврежденного проводника на землю и рассеивается ею.
  3. Нет необходимости тянуть четвертую линию, не имеющую функционального назначения.

Изолированная нейтральВ результате при аварии линейное напряжение растет в 1,7 раза, что для промежуточных силовых трансформаторов на линии не является критическим режимом. Электроснабжение продолжается по двум оставшимся линиям. Опасность представляет только оборванный провод в радиусе 10–30 метров – создается зона, где возможно возникновение так называемого шагового напряжения.

Однако при малом сопротивлении физической земли (в результате дождей, при прокладке электролинии по болотам) ток в поврежденном проводнике может достигнуть значения, достаточного для возникновения электрической дуги. В этом случае применяется так называемая компенсированная нейтраль.

Сущность компенсированной нейтрали заключается в том, что общий для всех обмоток провод все же имеет контакт с землей, но через сопротивление. Оно может иметь индуктивный или активный характер. В первом случае устройство называют дугогасящим реактором.

Ток, через него текущий, находится в противофазе с тем, который идет на физическую землю через поврежденный проводник. Они компенсируют друг друга, поэтому электрическая дуга не зажигается. Заземление нейтрали через резистор в нашей стране практически не применяется. А если и используется, то в качестве элемента, помогающего определить место повреждения – при его включении параллельно дугогасящему реактору происходит срабатывание релейной защиты на аварийном участке.

Компенсированная нейтральВ нашей стране количество линий с компенсированной нейтралью равно 20% от числа всех электрических магистралей. А ее полную изоляцию используют еще только в Финляндии. Большинство европейских стран применяет подключение нейтрали через активное сопротивление большой величины.

Изолированная нейтраль также применяется в трехфазных сетях напряжением 0,4 кВ, которые прокладываются в шахтах, рудниках и на торфяных выработках. Везде, где пропуск электрического тока по физической земле может привести к поражению людей. А также в передвижных электроустановках при невозможности создания надежного контакта с заземлителем.

Низковольтные электрические сети

Все трехфазные электрические линии напряжением 0,4 кВ, от которых питаются конечные потребители, исполняются четырехпроводными. Это так называемые сети с глухозаземленной нейтралью. Выходные обмотки силовых линейных трансформаторов соединяются звездой, а их общий проводник – с физической землей. Делается это исходя из двух соображений:

  1. При однофазном замыкании на землю происходит мгновенное отключение всей линии, что необходимо для предотвращения поражения людей и животных электрическим током. Для этого в ней между фазными проводниками устанавливаются автоматы, реагирующие на сверхтоки (короткое замыкание) или дифференциальный ток.
  2. Кроме линейного напряжения в 380 (400) вольт, используется и фазное (между проводником и нейтралью), равное 220 вольт. При отсутствии надежного контакта с физической землей возможно возникновение технологического перекоса фаз, в результате которого у одного из потребителей на вводах будет 100–110 вольт, а у других – 290–300 вольт, что приводит к выходу из строя электрических приборов.

Нейтраль с сетях 0,4кВ

Если вы увидели на линии высокого напряжения оборванный провод, не подходите к нему близко, наверняка он находится под напряжением, поскольку в режиме изолированной нейтрали мгновенного отключения не происходит. И не относитесь к нейтральному проводнику четырехпроводной бытовой линии 0,4 кВ как к абсолютно безопасной железке. В случае неисправности или аварии по нему течет смертельно опасный ток.

electriktop.ru

Что такое фаза и ноль в электрике

Электрические сети бывают двух типов. Сети переменного тока и сети с постоянным током. Электрический ток, как известно, — это упорядоченное движение электронов. В случае постоянного тока они двигаются в одном направлении и. как принято говорить, имеют постоянную поляризацию. В случае с переменным током направление движения электронов все время меняется, то есть ток имеет переменную поляризацию.

Принцип работы сети переменного тока

как узнать фазу и нольСеть переменного тока делится на две составляющие: рабочая фаза и пустая фаза. Рабочую фазу иногда просто называют фазой. Пустую называют нулевой фазой или просто — ноль. Она служит для создания непрерывной электрической сети при подключении приборов, а также для заземления сети. А на фазу подается рабочее напряжение.

При включении электроприбора не важно, какая фаза рабочая, а какая пустая. Но при монтаже электропроводки и подключении ее в общедомовую сеть это нужно знать и учитывать. Дело в том, что установка электропроводки делается или с помощью двухжильного кабеля, или трехжильного. В двухжильном одна жила – рабочая фаза, вторая – ноль. В трехжильном рабочее напряжение делится на две жилы. Получается две рабочих фазы. Третья жила – пустая, ноль. Общедомовая сеть выполняется из трехжильного кабеля. Общая схема электропроводки в частном доме или квартире, в основном, тоже делается из трехжильного провода. Поэтому перед подключением квартирной проводки нужно определить рабочие и нулевую фазы.

Способы определения фазных и нулевых проводов

определение фазы мультиметромУзнать, на какую жилу подается напряжение, а на какую нет, несложно. Есть несколько способов определения фазы и нуля.

Первый способ. Фазы определяются по цвету оболочки жил. Обычно рабочие фазы имеют цвета черный, коричневый или серый, а ноль – светло-синий. Если устанавливается дополнительное заземление, то его жила — зеленого цвета.

В этом случае не используют дополнительных приборов для определения фаз. Следовательно, такой способ не очень надежен, потому что, монтируя проводку, электрики могут не соблюдать цветовую маркировку жил.

фазное и линейное напряжениеОсновным отличием между фазным и линейным напряжением в сетях переменного тока является показатель величины напряжения, который у линейного в 3 раза выше, чем у фазного.

Для организации уличного освещения используют фотореле. Как правильно подключить такое устройство, можно узнать здесь.

Надежнее определять фазы с помощью электроиндикаторной отвертки. Она представляет собой непроводящий ток корпус, в который встроены индикатор и резистор. В качестве индикатора используют неоновую лампочку. При касании жалом отвертки оголенного, под напряжением, провода индикатор, если жила рабочая, загорается. Если ноль, то не срабатывает. С помощью такой отвертки можно определять и исправность сети. Если при касании жалом поочередно жил провода лампочка не загорается, то сеть неисправна.

Случается, что индикатор загорается при прикосновении к обеим жилам провода, то есть и к фазе и к нулю. Это значит, что в пустой фазе где-то есть обрыв. Его нужно найти и устранить.

Можно осуществить определение фазы мультиметром. Сначала устанавливаем режим измерений – переменное напряжение. Потом конец одного щупа зажимаем в руке. Вторым щупом касаемся жилы. Если фаза рабочая, то на экране прибора будет показана величина напряжения.

Можно определить рабочую фазу и с помощью обычной электрической лампочки. Берем лампочку, вкрученную в патрон, с двумя отрезками провода. Один конец заземляем. Можно заземлить его, прикрутив к отопительной батарее. Концы проводов, естественно, должны быть оголенными. Вторым концом касаемся жилы. Если лампочка загорается, то фаза – рабочая.

Один из методов, показывающих что такое фаза и ноль в электрике, на видео

elektrik24.net

Фаза и ноль в электрике

Фаза и ноль на общей схеме

Хозяин квартиры или частного дома, решивший проделать любую процедуру, связанную с электричеством, будь то установка розетки или выключателя, подвешивание люстры или настенного светильника, неизменно сталкивается с необходимостью определить, где в месте производства работ находятся фазный и нулевой провод, а также кабель заземления. Это нужно для того, чтобы правильно подсоединить монтируемый элемент, а также избежать случайного удара током. Если вы имеете определенный опыт работы с электричеством, то такой вопрос не поставит вас в тупик, но для новичка он может оказаться серьезной проблемой. В этой статье мы разберемся, что такое фаза и ноль в электрике, и расскажем, как найти эти кабели в цепи, отличив их друг от друга.

В чем отличие фазного проводника от нулевого?

Назначение фазного кабеля – подача электрической энергии к нужному месту. Если говорить о трехфазной электросети, то в ней на единственный нулевой провод (нейтральный) приходится три токоподающих. Это обусловлено тем, что поток электронов в цепи такого типа имеет фазовый сдвиг, равный 120 градусам, и наличия в ней одного нейтрального кабеля вполне достаточно. Разность потенциалов на фазном проводе составляет 220В, в то время как нулевой, как и заземляющий, не находится под напряжением. На паре фазных проводников значение напряжения составляет 380 В.

Напряжение между нолем и фазами

Линейные кабели предназначены для соединения нагрузочной фазы с генераторной. Назначение нейтрального провода (рабочего нуля) заключается в соединении нулей нагрузки и генератора. От генератора поток электронов перемещается к нагрузке по линейным проводникам, а его обратное движение происходит по нулевым кабелям.

Нулевой провод, как было сказано выше, не находится под напряжением. Этот проводник выполняет защитную функцию.

Назначение нулевого провода заключается в создании цепочки с низким показателем сопротивления, чтобы в случае короткого замыкания величины тока хватило для немедленного срабатывания устройства аварийного отключения.

Таким образом, за повреждением установки последует ее быстрое отключение от общей сети.

В современной проводке оболочка нейтрального проводника бывает синей или голубой. В старых схемах рабочий нулевой провод (нейтраль) совмещен с защитным. Такой кабель имеет покрытие желто-зеленого цвета.

В зависимости от назначения электропередающей линии она может иметь:

  • Глухозаземленный нейтральный кабель.
  • Изолированный нулевой провод.
  • Эффективно-заземленный ноль.

Первый тип линий все чаще используется при обустройстве современных жилых зданий.

Глухозаземленная нейтраль в КТП и многоквартирном доме

Чтобы такая сеть функционировала правильно, энергия для нее вырабатывается трехфазными генераторами и доставляется также по трем фазным проводникам, находящимся под высоким напряжением. Рабочий ноль, являющийся по счету четвертым проводом, подается от этой же генераторной установки.

Наглядно про разницу между фазой и нолем на видео:

Для чего нужен заземляющий кабель?

Заземление предусмотрено во всех современных электрических бытовых устройствах. Оно помогает снизить величину тока до уровня, который безопасен для здоровья, перенаправляя большую часть потока электронов в землю и защищая человека, коснувшегося прибора, от электрического поражения. Также заземляющие устройства являются неотъемлемой частью громоотводов на зданиях – через них мощный электрический заряд из внешней среды уходит в землю, не причиняя вреда людям и животным, не становясь причиной пожара.

На вопрос – как определить провод заземления – можно было бы ответить: по желто-зеленой оболочке, но цветовая маркировка, к сожалению, довольно часто не соблюдается. Бывает и такое, что электромонтер, не обладающий достаточным опытом, путает фазный кабель с нулевым, а то и подключает сразу две фазы.

Правила маркировки проводов

Чтобы избежать подобных неприятностей, нужно уметь различать проводники не только по цвету оболочки, но и другими способами, гарантирующими правильный результат.

Домашняя электропроводка: находим ноль и фазу

Установить в домашних условиях, где какой провод находится, можно разными способами. Мы разберем только самые распространенные и доступные практически любому человеку: с использованием обычной электрической лампочки, индикаторной отвертки и тестера (мультиметра).

Про цветовую маркировку фазных, нулевых и заземляющих проводов на видео:

Проверка с помощью электролампы

Перед тем, как приступить к такой проверке, нужно собрать с использованием лампочки устройство для проверки. Для этого ее следует вкрутить в подходящий по диаметру патрон, после чего закрепить на клемме провода, сняв изоляцию с их концов стриппером или обычным ножом. Затем проводники лампы нужно поочередно прикладывать к тестируемым жилам. Когда лампа загорится, это будет означать, что вы нашли фазный провод. Если проверяется кабель на две жилы, уже понятно, что вторая будет нулевой.

Лампа контролька электрика

Проверка индикаторной отверткой

Хорошим помощником в работе, связанной с электрическим монтажом, является индикаторная отвертка. В основе работы этого недорогого инструмента лежит принцип протекания сквозь корпус индикатора емкостного тока. В ее состав входят следующие основные элементы:

  • Металлический наконечник, имеющий форму плоской отвертки, который прикладывается к проводам для проверки.
  • Неоновая лампочка, загорающаяся при прохождении сквозь нее тока и сигнализирующая таким образом о фазовом потенциале.
  • Резистор для ограничения величины электрического тока, который защищает устройство от сгорания под воздействием мощного потока электронов.
  • Контактная площадка, позволяющая при прикосновении к ней создать цепь.

Профессиональные электромонтеры используют в своей работе более дорогие светодиодные индикаторы с двумя встроенными элементами питания, но простенькое устройство китайского производства вполне доступно любому человеку и должно иметься у каждого хозяина дома.

Если вы проверяете наличие напряжения на проводе с помощью этого прибора при дневном свете, то придется приглядываться в ходе работы более внимательно, так как свечение сигнальной лампы будет плохо заметно.

Проверка фазы индикаторной отверткой

При касании жалом отвертки фазного контакта сигнализатор загорается. При этом ни на защитном нуле, ни на заземлении светиться он не должен, в противном случае можно сделать вывод, что в схеме подключения имеются неполадки.

Пользуясь этим индикатором, будьте внимательны, чтобы нечаянно не коснуться рукой провода под напряжением.

Про определение фазы наглядно на видео:

Проверка мультиметром

Для определения фазы с помощью домашнего тестера прибор нужно поставить в режим вольтметра и измерить попарно величину напряжения между контактами. Между фазой и любым другим проводом этот показатель должен составлять 220 В, а прикладывание щупов к заземлению и защитному нулю должно показывать отсутствие напряжения.

Мультиметр показывает наличие напряжения

Заключение

В этом материале мы подробно ответили на вопрос, что собой представляют фаза и ноль в современной электрике, для чего они нужны, а также разобрались, какими способами можно определить, где в проводке находится фазная жила. Какой из этих способов предпочтительнее, решать вам, но помните, что вопрос определения фазы, ноля и заземления очень важен. Неправильные результаты проверки могут стать причиной сгорания приборов при подключении, или, что еще хуже – причиной поражения электрическим током.

yaelectrik.ru

Системы заземления TN-C, TN-S, TNC-S, TT, IT со схемами

Содержание:
  1. Классификация систем заземления
  2. Система заземления TN-C
  3. Система заземления TN-S, TN-C-S
  4. Система заземления TT
  5. Система заземления IT

Важнейшей частью проектирования, монтажа и дальнейшей эксплуатации оборудования и электроустановок является правильно выполненная система заземления. В зависимости от используемых заземляющих конструкций, заземление может быть естественным и искусственным. Естественные заземлители представлены всевозможными металлическими предметами, постоянно находящимися в земле. К ним относится арматура, трубы, сваи и прочие конструкции, способные проводить ток.

Но электрическое сопротивление и другие параметры, присущие этим предметам, невозможно точно проконтролировать, и спрогнозировать. Поэтому с таким заземлением нельзя нормально эксплуатировать любое электрооборудование. Нормативными документами предусматривается только искусственное заземление с использованием специальных заземляющих устройств.

Классификация систем заземления

В зависимости от схем электрических сетей и других условий эксплуатации, применяются системы заземления TN-S, TNC-S, TN-C, TT, IT, обозначаемые в соответствии с международной классификацией. Первый символ указывает на параметры заземления источника питания, а второй буквенный символ соответствует параметрам заземления открытых частей электроустановок.

Буквенные обозначения расшифровываются следующим образом:

  • Т (terre – земля) – означает заземление,
  • N (neuter – нейтраль) – соединение с нейтралью источника или зануление,
  • I (isole) соответствует изоляции.

Нулевые проводники в ГОСТе имеют такие обозначения:

  • N – является нулевым рабочим проводом,
  • РЕ – нулевым защитным проводником,
  • PEN – совмещенным нулевым рабочим и защитным проводом заземления.

Система заземления TN-C

Заземление TN относится к системам с глухозаземленной нейтралью. Одной из его разновидностей является заземляющая система TN-C. В ней объединяются функциональный и защитный нулевые проводники. Классический вариант представлен традиционной четырехпроводной схемой, в которой имеется три фазных и один нулевой провод. В качестве основной шины заземления используется глухозаземленная нейтраль, соединяемая со всеми токопроводящими открытыми деталями и металлическими частями, с помощью дополнительных нулевых проводов.

Главным недостатком системы TN-C является потеря защитных качеств при отгорании или обрыве нулевого проводника. Это приводит к появлению напряжения, опасного для жизни, на всех поверхностях корпусов устройств и оборудования, где отсутствует изоляция. В системе TN-C нет защитного заземляющего проводника РЕ, поэтому у всех подключенных розеток заземление также отсутствует. В связи с этим для всего используемого электрооборудования требуется устройство зануления – подключение деталей корпуса к нулевому проводу.

В случае касания фазного провода открытых частей корпуса, произойдет короткое замыкание и срабатывание автоматического предохранителя. Быстрое аварийное отключение устраняет опасность возгорания или поражения людей электрическим током. Категорически запрещается использовать в ванных комнатах дополнительные контуры, уравнивающие потенциалы, в случае эксплуатации заземляющей системы TN-C.

Несмотря на то что схема tn-c является наиболее простой и экономичной, она не используется в новых зданиях. Эта система сохранилась в домах старого жилого фонта и в уличном освещении, где вероятность поражения электрическим током крайне низкая.

Схема заземления TN-S, TN-C-S

Более оптимальной, но дорогостоящей схемой считается заземляющая система TN-S. Для снижения ее стоимости были разработаны практические меры, позволяющие использовать все преимущества данной схемы.

Суть этого способа заключается в том, что при подаче электроэнергии с подстанции, применяется комбинированный нулевой проводник PEN, соединяемый с глухозаземленной нейтралью. На вводе в здание он разделяется на два проводника: нулевой защитный РЕ и нулевой рабочий N.

Система tn-c-s обладает одним существенным недостатком. При отгорании или каком-либо другом повреждении проводника PEN на участке от подстанции до здания, на проводе РЕ и деталях корпуса приборов, связанных с ним, возникает опасное напряжение. Поэтому одним из требований нормативных документов по обеспечению безопасного использования системы TN-S, являются специальные мероприятия по защите провода PEN от повреждений.

Схема заземления TT

В некоторых случаях, когда электроэнергия подается по традиционным воздушным линиям, становится довольно проблематично защитить комбинированный заземляющий проводник PEN при использовании схемы TN-C-S. Поэтому в таких ситуациях применяется система заземления по схеме ТТ. Ее суть заключается в глухом заземлении нейтрали источника питания, а также использовании четырех проводов для передачи трехфазного напряжения. Четвертый проводник используется в качестве функционального нуля N.

Подключение модульно-штыревого заземлителя осуществляется чаще всего со стороны потребителей. Далее он соединяется со всеми защитными проводниками заземления РЕ, связанными с деталями корпусов приборов и оборудования.

Схема TT применяется сравнительно недавно и уже хорошо зарекомендовала себя в частных загородных домах. В городах система ТТ применяется на временных объектах, например, торговых точках. Подобный способ заземления требует использования защитных устройств в виде УЗО и выполнения технических мероприятий по защите от грозы.

Система заземления IT

Рассмотренные ранее системы с глухозаземленной нейтралью хотя и считаются достаточно надежными, однако обладают существенными недостатками. Значительно безопаснее и совершеннее являются схемы с нейтралью, полностью изолированной от земли. В некоторых случаях для ее заземления применяются приборы и устройства, обладающие значительным сопротивлением.

Подобные схемы используются в системе заземления IT. Они наилучшим образом подходят для медицинских учреждений, сохраняя бесперебойное питание оборудования жизнеобеспечения. Схемы IT хорошо зарекомендовали себя на энергетических и нефтеперерабатывающих предприятиях, других объектах, где имеются сложные высокочувствительные приборы.

Основной деталью системы IT является изолированная нейтраль источника I, а также контур защитного заземления Т, установленный на стороне потребителя. Подача напряжения от источника к потребителю производится с использованием минимального количества проводов. Кроме того, выполняется подключение к заземлителю всех токопроводящих деталей, имеющихся на корпусах оборудования, установленного у потребителя. В системе IT нет нулевого функционального проводника N на участке от источника до потребителя.

Таким образом, все системы заземления TN-C, TN-S, TNC-S, TT, IT обеспечивают надежное и безопасное функционирование приборов и электрооборудования, подключаемых к потребителям. Использование этих схем исключает поражение электротоком людей, пользующихся оборудованием. Каждая система применяется в конкретных условиях, что обязательно учитывается в процессе проектирования и последующего монтажа. За счет этого обеспечивается гарантированная безопасность, сохранение здоровья и жизни людей.

electric-220.ru

Заземление нулевого провода - инструкция

 

Варианты соединения нейтрали

Электрическая сеть, которая предназначена для электроснабжения содержит источник электроэнергии, преобразователи этой энергии, а также потребителей. Поскольку используется три фазы при схеме соединения «звезда» появляется узел соединения общий для них. Если такой узел есть с каждой стороны электрической цепи, причем эти узлы соединяет провод, последний называется, либо «нейтралью», либо «нулевым проводом». Его режим работы весьма важен для функционирования сети электроснабжения. Существует несколько режимов для нулевого провода:

  • Потенциал нейтрали равен потенциалу земли, в результате чего получается глухозаземленный нулевой провод.
  • Нейтраль надежно изолирована, между ней и землей возможны небольшие по величине токи утечки. В результате получается изолированный нулевой провод.
  • Нейтраль является частью электрической цепи, которая также включает сопротивление с некоторым достаточно малым импедансом и сопротивление земли.

От использования одного из перечисленных соединений нулевого провода с землей в сети электроснабжения зависят:

  • аварийные токи и скачки напряжения в фазах при их повреждениях;
  • система релейной защиты от замыкания фазы на землю;
  • схема защиты от скачков напряжения;
  • параметры заземления, используемого на подстанции;
  • безопасность выполняемых работ;
  • надежность функционирования всех электрических машин и прочего электрического оборудования в электрической сети, связанных с нейтралью.
  • Нулевой провод с «глухим» заземлением используется главным образом в электросетях с напряжениями 380 Вольт и начиная с 110 киловольт и выше.
  • Изолированный нулевой провод используется главным образом в электросетях с напряжениями 6, 10 и 35 киловольт.

Стоит отметить, что вы можете выполнять это своими руками или заказать электромонтажные работы у мастеров на сайте Kabanchik.ua. Но, тем не менее, разобраться в основах, изучив мат часть.

Нулевой провод в сети электроснабжения 380 Вольт

Документально для этих сетей заданы такие стандарты:

  • МЭК 364 «Электрические установки зданий»;
  • ГОСТ 30331.1-95 – ГОСТ 30331.9-95.

В соответствии с ГОСТ 30331.2-95 в электрических схемах используются такие обозначения:

Широко распространена система заземления с использованием нейтрального провода, которая именуется как TN-C (на изображении ниже).

В системе TN-C заземление сделано на трансформаторной подстанции. К нему присоединены фазные обмотки трансформаторов, обеспечивающих электропитание нагрузок фазным напряжением 220 Вольт. Подача напряжения к нагрузкам обеспечивают фазные провода и провод PEN, присоединенный к заземлению на подстанции. Система TN-C отличается от других подобных систем TN-S, TN-C-S, TT и IT дешевизной и простотой. Но по электрической безопасности она хуже.

Это объясняется ее появлением в те довольно-таки далекие времена, когда от замыканий на корпус спасали предохранители и автоматические выключатели. Время срабатывания этих защитных устройств, которое довольно велико, определяет и время воздействия на живой объект поражающего тока при тех или иных повреждениях и контактах этих объектов с поврежденными токоведущими частями оборудования или электросети. Большим по величине должен быть и ток срабатывания. Также при использовании провода PEN для заземления возможно появление высокого потенциала на всех устройствах, заземленных через него.

Например, при авариях на воздушных линиях электропередачи, когда провод одной из фаз обрывается и падает на землю. До срабатывания защиты на устройствах, заземленных через провод PEN, будет опасное для жизни напряжение. Еще более фатальными могут быть последствия при обрыве связи нулевого провода с заземлением на подстанции, например при его перегорании. Это обеспечит гарантированное появление фазного напряжения на всем оборудовании, заземленном через перегоревший провод. А устройства защитного отключения при этом не могут быть использованы.

Более дорогой, но и более безопасной является система TN-S (на изображении далее). Ее улучшенная безопасность обеспечена устройствами защитного отключения. Они будут гарантированно срабатывать по причине использования дополнительного провода, через который не текут аварийные токи.

В некоторых электросетях используется смешанная система заземления нулевого провода, в которой учтены признаки, а также достоинства и недостатки двух предыдущих систем заземления нейтрали. Это система заземления TN-C-S, пример которой на изображении далее:

По схеме TT применяется отдельное заземление без проводной связи с заземлением на питающей трансформаторной подстанции. В такой схеме необходимо применять устройства защитного отключения. Они будут надежно срабатывать, поскольку измеряют напряжение относительно отдельного заземления. Автоматические выключатели и предохранители будут малоэффективны в качестве защитных устройств.

К заземлению на подстанции в земле будет течь ток. Поэтому на отдельном заземлении появится довольно большой потенциал. Он, скорее всего, будет представлять опасность для жизни в случае прикосновения к электрооборудованию, присоединенному к этому отдельному заземлению. Схема TT приведена на изображении ниже.

В схеме IT на трансформаторной подстанции заземление присоединено к общему узлу фазных обмоток через резистор. Его сопротивление может быть от сотен Ом до единиц килоом. С целью защиты применяется провод не связанный с нейтралью. У однофазных потребителей при замыкании на корпус токи получаются небольшими по величине, потому что протекают по цепи с резистором, через который обмотки присоединены к заземлению. Использование устройств защитного отключения еще больше усиливает эту наиболее безопасную схему, показанную на изображении ниже.

Не существует такого решения с заземлением нулевого провода, который успешно решает все необходимые задачи. Поэтому для каждого случая лучше всего применять наиболее подходящую схему.

  • Схемы TN-C и TN-C-S существуют, но только по причине того, что были первыми и привязаны к объектам давно построенным. Для новых решений не следует их применять. Они наиболее опасны при авариях как источник поражения током и как источник пожара. При авариях токи значительны по величине, сильно разветвляются и создают по этой причине значительные электромагнитные излучения.
  • Для капитальных объектов, в которых со временем не будут вноситься какие-либо изменения, схема TN-S является наиболее подходящей.
  • Если сеть электроснабжения подвержена частым переделкам или является временной, для нее рекомендуется схема TT.
  • В том случае, когда надежность электроснабжения является наиболее значимым приоритетом надо использовать схему IT.
  • Для увеличения надежности рекомендуется выполнять несколько заземлений разнесенных по направлению нулевого провода.

Как заземляется провод в сетях с высоким напряжением?

В сетях с напряжением 6-35 киловольт схема заземления нулевого провода выбирается исходя из тех аварийных ситуаций, которые могут возникать при замыканиях на землю. То же самое относится и к более высоковольтным сетям. Поскольку такие электросети в своем большинстве состоят из линий электропередачи, бесперебойность электроснабжения потребителей в них является приоритетной задачей. В общем, заземление нулевого провода в таких электрических сетях окажет влияние на:

  • величину тока на месте аварии;
  • аварийные скачки напряжения в двух работоспособных фазах при замыкании на землю в третьей фазе;
  • характеристики изоляции электрических машин и прочего электрического оборудования;
  • характеристики оборудования для защиты от перенапряжений;
  • непрерывность подачи электроэнергии потребителям;
  • параметры заземляющих контуров на подстанциях в пределах нейтрали;
  • безопасность во время однофазных замыканий работников и функционирующего электрического оборудования.

При более подробном рассмотрении перечисленных пунктов потребуется несколько больших статей, или даже книга. По этой причине в рамках настоящей небольшой статьи более детально они не рассматриваются.

podvi.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта