Eng Ru
Отправить письмо

Силовые трансформаторы, параллельная работа и группа соединения трансформаторов. Условия параллельной работы силовых трансформаторов


Силовые трансформаторы, параллельная работа и группа соединения трансформаторов

Силовой трансформатор — стационарный прибор с двумя или более обмотками, который посредством электромагнитной индукции преобразует систему переменного напряжения и тока в другую систему переменного напряжения и тока, как правило, различных значений при той же частоте в целях передачи электроэнергии без изменения её передаваемой мощности.

Параллельным включением трансформаторов называют такое их соединение, при котором одноименные выводы обмоток ВН и НН подключают к одноименным проводам (сборным шинам) сети. Параллельная работа (рисунок 1) трансформаторов удобна и экономична. Можно установить один трансформатор большой мощности, которой окажется достаточно для любой возможной нагрузки. Но тогда этот трансформатор придется держать включенным все время, хотя на полную мощность он будет работать только незначительную часть времени. Рисунок 1 - Параллельная работа двух однофазных трансформаторов Мы знаем, что независимо от нагрузки в трансформаторе всегда существуют постоянные потери — потери холостого хода. Как бы ни был нагружен трансформатор, он все равно будет потреблять какую-то мощность, бесполезно расходуемую на потери в магнитопроводе. Потребитель мирился бы с такими потерями при работе трансформатора с полной нагрузкой. Но при частичной нагрузке, когда трансформатор отдает только часть своей мощности, потери холостого хода делают его эксплуатацию экономически невыгодной. Поэтому во многих случаях один трансформатор большой мощности заменяют двумя или несколькими трансформаторами меньшей мощности. Трансформаторы включают параллельно как со стороны ВН, так и со стороны НН, но под напряжением в каждый момент времени находится лишь минимально необходимое число трансформаторов. Если нагрузка возрастает, дополнительно включают новые трансформаторы; когда она снижается, соответствующую часть трансформаторов отключают. Таким образом, число работающих трансформаторов всегда соответствует нагрузке. В большинстве случаев экономия только на потерях в стали окупает за короткий срок дополнительные затраты на установку нескольких трансформаторов вместо одного. Однако не всякие трансформаторы можно включить на параллельную работу. Существует три условия, соблюдение которых совершенно необходимо для включения трансформаторов на параллельную работу. Первое условие заключается в том, что все включаемые параллельно трансформаторы должны иметь одинаковый коэффициент трансформации. Другими словами, первичные и вторичные обмотки должны быть рассчитаны на одинаковые напряжения. Но на практике встречаются случаи, когда у того или иного трансформатора коэффициент трансформации несколько отличается от необходимой величины. Так, вместо того, чтобы иметь коэффициент трансформации, равный, например, k = ω1/ω2 = 3000/400, нередко получаем ω1/ω2 = 3000/402 или 3000/403 и т. д. Если трансформатор работает один, разница 2 или 3 В при требуемом напряжении 400 В несущественна. Если же этот трансформатор будет работать с другим, коэффициент трансформации которого равен точно 3000/400, могут возникнуть неприятности. Суть их в том, что на одной и той же шине (см. рисунок 1), к которой подключены обмотки НН обоих трансформаторов, не могут быть сразу два разных напряжения: 400 и 402 В. Поэтому разница 2 В должна компенсироваться каким-то падением напряжения, вызванным уравнительным током Iур2, тотчас возникающим между обмотками НН. Согласно известному нам положению этот ток немедленно вызовет соответствующий уравнительный ток Iур1 в обмотках ВН, что повлечет за собой и соответствующее падение напряжения в этих обмотках. Уравнительные токи снижают напряжения и вызывают дополнительные потери энергии, поэтому их присутствие недопустимо. Чтобы не сделать ошибки при параллельном включении трансформаторов, ГОСТ 721—77 стандартизовал напряжения обмоток ВН и НН, а ГОСТ 11677—75 установил, что коэффициенты трансформации не должны отличаться более чем на ±0,5%. Второе условие параллельной работы заключается в том, чтобы все включенные параллельно трансформаторы имели одинаковые напряжения короткого замыкания uк. Можно доказать, что общая нагрузка в таком случае распределяется между трансформаторами пропорционально их номинальным мощностям и обратно пропорционально их напряжениям короткого замыкания: Р = (Р1/uк1 + Р2/uк2) uк, где Р — общая нагрузка; P1 и Р2 — номинальные мощности трансформаторов; uк1 и uк2 — напряжения короткого замыкания трансформаторов: Р1/uк1 uк и Р2/uк2 uк — мощности, которые получаются от первого и второго трансформаторов при их параллельной работе; uк — напряжение короткого замыкания, общее для двух параллельно работающих трансформаторов. Только при равенстве uк всех включаемых параллельно трансформаторов можно добиться равномерного распределения мощностей и избежать перегрузки одних и недогрузки других трансформаторов. Чтобы исключить ошибки при параллельном включении трансформаторов, стандартами установлено для каждого трансформатора определенной мощности и напряжения обмотки ВН определенное значение напряжения короткого замыкания. Так, ГОСТ 12022—76 для трансформаторов мощностью 400 кВА и напряжением 10 кВ установил uк равным 4,5%, а напряжением 35 кВ — 6,5%. ГОСТ 11920—73 для трансформаторов мощностью 2500 кВА и напряжением 10 кВ установил uк равным 5,5%, а напряжением 35 кВ - 6,5%. Однако при практическом исполнении трансформаторов всегда возможны некоторые отступления в размерах обмоток или каналов между ними, что, как известно, влияет на величину uк. Поэтому ГОСТ 11677—75 разрешает включать на параллельную работу трансформаторы с некоторым отступлением от номинальных значений uк (в пределах ±10%). Третье условие параллельной работы заключается в том, чтобы все предназначенные для нее трансформаторы имели одинаковые группы соединения. Другими словами, необходимо при равенстве напряжений ВН иметь еще и одинаковые углы между векторами линейных напряжений обмоток ВН и НН. Чтобы убедиться в необходимости одинаковых групп соединения, рассмотрим простой пример. Пусть два трансформатора имеют схемы и группы соединения Y/Δ — 11 и Y/Δ — 1. На рисунке 2, а, б показаны совмещенные векторы линейных напряжений обмоток ВН и НН первого и второго трансформаторов. Если первичные напряжения (ВН) у них одинаковы, то при параллельном соединении между вторичными напряжениями a1b1 и a2b2 появится сдвиг 60° (рисунок 2, в). Вследствие этого получится геометрическая разность напряжений a1b1 и a2b2, показанная на рисунке отрезком b1b2. Треугольник a1b1b2 равносторонний, поэтому отрезок b1b2 = a2b1 = a2b2, т. е. равен по величине линейному напряжению обмотки НН. а - группа соединенияY/Δ — 11; б — группа соединенияY/Δ — 1; в — векторная схема параллельного соединения трансформаторов с группами соединения 11 и 1 Рисунок 2 - Определение напряжения между обмотками НН параллельно работающих трансформаторов с разными группами соединений Итак, между обмотками НН параллельно работающих трансформаторов появляется напряжение, равное линейному напряжению НН, а следовательно, появляются уравнительные токи в обеих обмотках (ВН и НН). Таким образом, мы видим, что включение на параллельную работу трансформаторов с различными группами соединений недопустимо.

Обмотки типовых трехфазных силовых трансформаторов могут соединяться двумя способами: в звезду (Y) и в треугольник (Δ). Разновидностью соединения в звезду является земля с нулевым выводом (Yо).

Соответственно, для двухобмоточных трансформаторов возможны основные схемы соединений:

- звезда/звезда (Y/Y)

- звезда/треугольник (Y/ Δ)

- звезда с нулем/треугольник (Yо/ Δ)

Для трехобмоточных трансформаторов могут применяться схемы звезда/звезда/треугольник (Y/Y/Δ) или звезда/треугольник/треугольник (Y/Δ/Δ)

Векторы одноименных векторов первичной обмотки при схеме соединений звезда/звезда могут располагаться в одном направлении, в таком случае группа соединений обозначается звезда/звезда-ноль(Y/Y-0).

В том случае, когда первичная обмотка соединена в звезду, а вторичная в треугольник, из-за того, что фазное напряжение первичной обмотки соответствует линейному напряжению вторичной обмотки, получается естественный поворот векторов напряжения на 30 градусов. Основная схема соединений таких трансформаторов обозначается звезда/треугольник-11 (Y/Δ-11).

В том случае, когда схема первичной и вторичной обмотки одинакова (звезда или треугольник), соединением выводов трансформатора можно получить дополнительную группу, соответствующую любому четному числу, а при разной схеме (звезда и треугольник) – группу, соответствующую любому нечетному числу из диапазона от 0 до 12.

megaobuchalka.ru

Условия параллельной работы трансформаторов

Поиск Лекций

Для лучшего использования трансформаторов при параллельной работе необходимо нагрузки распределять между ними прямо пропорционально их номинальным мощностям. Это достигается тождественностью групп соединения обмоток, равенством в пределах допусков соответственно номинальных первичных и вторичных напряжений, а также равенством в пределах допусков напряжений короткого замыкания.

Нарушение первого условия вызывает появление больших уравнительных токов между обмотками трансформаторов, которые приводят к быстрому чрезмерному их нагреву. Требование равенства соответственно номинальных первичных и вторичных напряжений сводится к установлению равенства коэффициентов трансформации, которые не должны отличаться друг от друга более чем на ±0,5 % их среднего значения во избежание недопустимых уравнительных токов обмоток трансформаторов.

Схема включения трехфазных трансформаторов для параллельной работы

Различие между напряжениями короткого замыкания трансформаторов при параллельной работе допускают до ±10 % их среднего значения, так как неравенство этих величин вызывает перегрузку тех трансформаторов, у которых напряжение короткого замыкания имеет меньшее значение. Помимо этого, рекомендуется, чтобы отношение номинальных мощностей параллельно работающих трансформаторов не превышало 3 : 1.

При параллельном включении трехфазных трансформаторов нужно, чтобы их одноименные зажимы были присоединены к одному и тому же проводу сети, а перед первоначальным включением проведена фазировка, т. е. проверка соответствия по фазе вторичных э. д. с. при подключении первичных обмоток к общей сети.

33. Сварочный трансформатор — трансформатор, предназначенный для различных видов сварки.

Сварочный трансформатор преобразует напряжение сети (220 или 380 В) в низкое на­пряжение, а ток из низкого - в высокий, до тысяч ампер.

Сварочный ток регулируется благодаря изменению ве­личины либо индуктивного сопротивления, либо вторичного напряжения холостого хода трансформатора, что осущест­вляется посредством секционирования числа витков первич­ной или вторичной обмотки. Это обеспечивает ступенчатое регулирование тока.

Сварочные трансформаторы классифицируются следующим образом:

 

1. По количеству обслуживаемых рабочих мест

2. По фазности напряжения в сети: однофазные, трехфазные.

3. По конструкции: с регулировкой вторичного напряжения магнитным рассеянием, регулировкой переключением количества витков,

с регулируемым выходным напряжением посредством дросселя насыщения.

А́втотрансформа́тор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только магнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения.

Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. В промышленных сетях, где наличие заземления нулевого провода обязательно, этот фактор роли не играет, зато существенным является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге — меньшая стоимость.

Распространены аббревиатуры:

1. ЛАТР — Лабораторный АвтоТрансформатор Регулируемый.

2. РНО — Регулятор Напряжения Однофазный.

3. РНТ — Регулятор Напряжения Трёхфазный.

34. Принцип действия синхронного генератора

При помощи первичного двигателя ротор-индуктор вращается. Магнитное поле находится на роторе и вращается вместе с ним, поэтому скорость вращения ротора равна скорости вращения магнитного поля – отсюда название синхронная машина.

Рис.6. Генераторный режим работы синхронной машины.

При вращении ротора магнитный поток полюсов пересекает статорную обмотку и наводит в ней ЭДС по закону электромагнитной индукции: E = 4,44*f*w*kw*Ф,где:

f – частота переменного тока, Гц; w – количество витков; kw – обмоточный коэффициент; Ф – магнитный поток.

Частота индуктированной ЭДС (напряжения, тока) синхронного генератора:f = p*n/60,где:

р – число пар полюсов; п – скорость вращения ротора, об/мин.

Заменив: E = 4,44*(п*р/60)*w*kw*Фи, определив: 4,44*(р/60)*w*kw –относится к конструкции машины и создаёт конструктивный коэффициент: C = 4.44*(р/60)*w*kw.

Тогда: Е = СЕ*п*Ф.

Таким образом, как и у любого генератора, основанного на законе электромагнитной индукции, индуктированная ЭДС пропорциональна магнитному потоку машины и скорости вращения ротора.

35. Синхронный двигатель. Принцип действия и устройство.Синхронный двигатель может работать в качестве генератора и двигателя. Синхронный двигатель выполнен так же, как и синхронный генератор. Его обмотка якоря I (рис. 291, а) подключена к источнику трехфазного переменного тока; в обмотку возбуждения 2 подается от постороннего источника постоянный ток. Благодаря взаимодействию вращающегося магнитного поля 4, созданного трехфазной обмоткой якоря, и поля, созданного обмоткой возбуждения, возникает электромагнитный момент М (рис. 291,б), приводящий ротор 3 во вращение. Однако в синхронном двигателе в отличие от асинхронного ротор будет разгоняться до частоты вращения n = n1, с которой вращается магнитное поле (до синхронной частоты вращения). Объяс-

Рис. 291. Электрическая (а) и электромагнитная (б) схемы синхронного электродвигателя

няется это тем, что ток в обмотку ротора подается от постороннего источника, а не индуцируется в нем магнитным полем статора и, следовательно, не зависит от частоты вращения вала двигателя. Характерной особенностью синхронного двигателя является постоянная частота вращения его ротора независимо от нагрузки.

Электромагнитный момент. Электромагнитный момент в синхронном двигателе возникает в результате взаимодействия магнитного потока ротора (потока возбуждения Фв) с вращающимся магнитным полем, создаваемым трехфазным током, протекающим по обмотке якоря (потоком якоря Фв). При холостом ходе машины оси магнитных полей статора и ротора совпадают (рис. 292,а). Поэтому электромагнитные силы I, возникающие между «полюсами» статора и полюсами ротора, направлены радиально (рис. 292, б) и электромагнитный момент машины равен нулю. При работе машины в двигательном режиме (рис. 292, в и г) ее ротор под действием приложенного к валу внешнего нагрузочного момента Мвн смещается на некоторый угол 0 против направления вращения. В этом случае в результате электромагнитного взаимодействия между ротором и статором создаются электромагнитные силы I, направленные по направлению вращения, т. е. образуется вращающий электромагнитный момент М, который стремится преодолеть действие внешнего момента Мвн. Максимум момента Мmaxсоответствует углу ? = 90°, когда оси полюсов ротора расположены между осями «полюсов» статора.

Если нагрузочный момент Мвн, приложенный к валу электродвигателя, станет больше Мmax, то двигатель под действием внешнего момента Мвн останавливается; при этом по обмотке якоря неподвижного двигателя будет протекать очень большой ток. Этот режим называется выпаданием из синхронизма, он является аварийным и не должен допускаться.

При работе машины в генераторном режиме (рис. 292, д и е) ротор под действием приложенного к валу внешнего момента Мвн смещается на угол ? по направлению вращения. При этом создаются электромагнитные силы, направленные против вращения, т. е. образуется тормозной электромагнитный момент М. Таким образом, при изменении значения и направления внешнего момента на валу ротора Мвн изменяется лишь угол ? между осями полей статора и ротора, в то время как в асинхронной машине в этом случае изменяется частота вращения ротора.

Пуск в ход и регулирование частоты вращения.Синхронный двигатель не имеет начального пускового момента. Если подключить обмотку якоря к сети переменного тока, когда ротор неподвижен, а по обмотке возбуждения проходит постоянный ток, то за один период изменения тока электромагнитный момент будет дважды менять свое направление, т. е. средний момент за период будет равен нулю. Следовательно, для пуска в ход синхронного двигателя необходимо разогнать его ротор с помощью внешнего момента до частоты вращения, близкой к синхронной. Для этой цели применяют метод асинхронного пуска. Синхронный двигатель пускают в ход как асинхронный, для чего его снабжают специальной короткозамкнутой пусковой обмоткой 3 (рис. 293). В полюсные наконечники ротора 2 синхронного двигателя закладывают медные или латунные стержни, замкнутые накоротко двумя торцовыми кольцами. Пусковая обмотка выполнена подобно беличьей клетке асинхронной машины, но занимает лишь часть окружности ротора. В некоторых двигателях специальная короткозамкнутая обмотка

Рис. 292. Электромагнитный момент в синхронной машине, образующийся в различных режимах

Рис. 293. Схема асинхронного пуска синхронного двигателя;

Рис. 294 Устройство пусковой обмотки синхронного двигателя: 1 — ротор; 2 — стержни; 3 — кольцо; 4 — обмотка возбуждения

36. Принцип действия асинхронного двигателя. Трехфазные асинхронные двигатели являются самыми распространенными электрическими двигателями и применяются для привода различных станков, насосов, вентиляторов, компрессоров, грузоподъемных механизмов, а также на э. п. с. переменного тока в качестве двигателей вспомогательных машин..

Асинхронный двигатель состоит из неподвижной части статора 1 (рис. 248, а), на котором расположены обмотка 2 статора, и вращающейся части — ротора 3 с обмоткой 4. Между ротором и статором имеется воздушный зазор, который для улучшения магнитной связи между обмотками делают по возможности малым. Обмотка 2 статора представляет собой трехфазную или в общем случае многофазную обмотку, катушки которой размещают равномерно вдоль окружности статора. Фазы этой обмотки А-Х, B-Y и C-Z размещены равномерно по окружности статора; они соединяются «звездой» (рис. 248,б) или «треугольником» и подключаются к сети трехфазного тока. Обмотку 4 размещают равно-

Рис. 248. Электромагнитная схема асинхронного двигателя (а), схема включения его обмоток (б) и пространственное распределение вращающего магнитного поля (в) в двухполюсной машине

мерно вдоль окружности ротора. При работе двигателя она замкнута накоротко.

При подключении обмотки статора к сети создается синусоидально распределенное вращающееся магнитное поле 5 (рис. 248, в). Оно индуцирует в обмотках статора и ротора э. д. с. e1 и е2. Под действием э. д.с. е2 по проводникам ротора будет проходить электрический ток i2. На рис. 248, а показано согласно правилу правой руки направление э. д. с. е2, индуцированной в проводниках ротора при вращении магнитного потока Ф, по часовой стрелке (при этом проводники ротора перемещаются относительно потока Ф против часовой стрелки). Если ротор неподвижен или частота его вращения п меньше синхронной частоты n1, активная составляющая тока ротора совпадает по фазе с индуцированной э. д. с. е2, при этом условные обозначения (крестики и точки) показывают одновременно и направление активной составляющей тока i2.

На проводники с током, расположенные в магнитном поле, действуют электромагнитные силы, направление которых определяется правилом левой руки. Суммарная сила Fрез, приложенная ко всем проводникам ротора, образует электромагнитный момент М, увлекающий ротор за вращающимся магнитным полем. Если этот момент достаточно велик, то ротор приходит во вращение и его установившаяся частота вращения соответствует равенству электромагнитного момента М тормозному, приложенному к валу от приводимого во вращение механизма и внутренних сил трения.

Э.д.с, индуцированная в проводниках обмотки ротора, зависит от частоты их пересечения вращающимся полем, т. е. от разности частот вращения магнитного поля n1 и ротора n. Чем больше разность n1— n, тем больше э. д. с. е2. Следовательно, необходимым условием для возникновения в асинхронной машине электромагнитного вращающего момента является неравенство частот вращения n1 и n. Только при этом условии в обмотке ротора индуцируется э. д. с. и возникает ток i и электромагнитный момент М. По этой причине машина называется асинхронной (ротор ее вращается несинхронно с полем). Иногда ее называют индукционной ввиду того, что ток в роторе возникает индуктивным путем, а не подается от какого-либо внешнего источника.

Для характеристики отставания частоты вращения ротора двигателя от частоты вращения магнитного поля служит скольжение, его выражают в относительных единицах или процентах:

s = (n1— n) /n1 или s = [(n1— n) /n1] 100% (81)

Если, например, четырехполюсный двигатель имеет s = 4%, то частота вращения его ротора равна 1440 об/мин (частота вращения поля при частоте 50 Гц составляет 1500 об/мин, а отставание ротора от частоты поля равно 4 % от 1500 об/мин, т. е. 60 об/мин). В двухполюсном двигателе при s = 4% частота вращения ротора составляет 2880 об/мин (3000—0,04*3000 = 2880).

Частота вращения ротора, выраженная через скольжение,

n = n1(1 – s) (82)

По своей конструкции различают двигатели с фазным ротором (с контактными кольцами) и с короткозамкнутым ротором. Они имеют одинаковую конструкцию статора и отличаются выполнением ротора. Пусковые свойства этих двигателей различны.

37. Обмотка этого типа, показанная на фиг. 36, состоит из секций равной ширины, причем секционные стороны этой обмотки располагаются в два слоя, как в барабанных обмотках машин постоянного тока. На фиг. 36 показана обмотка, ширина секций которой равна полюсному делению.

Американские заводы часто выполняют эту обмотку с большим укорочением шага. Выгода такого укорочения шага заключается в следующем:

1. Сокращаются аксиальные размеры машины.

2. Уменьшается реактанц магнитного рассеяния торцевых частей обмотки.

Отдельные секции этой обмотки обычно изготовляются на шаблонах и после пропитки секций закладываются в пазы статора, которые выполняются в этом случае открытого типа.

В этих так называемых американских обмотках уменьшается не только реактанц торцевых частей, но также и реактанц паза; последнее вызвано тем, что в каждом пазу этой обмотки находятся провода разных фаз.

Вес меди при таких обмотках в общем получается меньше, чем при других типах обмоток, и в среднем в отдельных случаях может достигать 10% и выше; причина этого лежит в сокращении шага и длины торцевых частей обмотки. При этой обмотке кривая магнитной индукции приближается весьма близко к синусоиде, вследствие чего добавочные потери от высших гармонических поля здесь понижаются почти до нуля.

В однослойных обмотках каждая сто­рона катушки полностью заполняет паз сердечника статора (см. рис. 8.1, б). При этом число катушечных групп в каждой фазе рав­но числу пар полюсов, так что общее число катушечных групп в однослойной обмотке равно рm1.

Однослойные обмотки статоров разделяют на концентриче­ские и шаблонные. В концентрической обмотке катушки каждой катушечной группы имеют разную ширину и располагаются концентрически. Шаги обмотки у катушек, входящих в катушечную группу, неодинаковы, но их среднее значение y1cp = Z1/ (2р).

Так, для трехфазной однослойной концентрической обмотки с Z1 = 24; 2р = 4 имеем у1ср=24/4 = 6 пазов; q1 =Zl/ (2pm1) = 24/ (4 • 3) = 2. Следовательно, катушечная группа каждой фазной обмотки состоит из двух расположенных концентрически катушек. Шаги этих катушек: у11 = 7 и у12 = 5 . Развернутая схема этой обмотки (2р = 4; Z1 = 24; q1 = 2; у1ср = 6)

38.

1. Режим двигателя;

2. Режим генератора;

3. Режим электромагнитного тормоза;

4. Режим динамического торможения;

 

poisk-ru.ru

Параллельная работа трансформаторов

Необходимость параллельной работы трансформаторов

Параллельная работа трансформаторов

Под параллельной работой двухобмоточных трансформаторов понимается работа трансформаторов (двух, трех или более) при параллельном соединении как первичных, так и вторичных обмоток.Параллельная работа нескольких трансформаторов имеет ряд следующих технических и экономических преимуществ по сравнению с работой одного мощного трансформатора:а)       надежность снабжения потребителей электроэнергией, так как выход из строя одного из трансформаторов не лишает потребителей энергии. Нагрузка выбывшего трансформатора может быть временно принята полностью или частично оставшимися трансформаторами;б)      резервная мощность трансформаторов при их параллельном включении будет значительно меньшей, чем при питании потребителей от одного мощного трансформатора;в)       в периоды снижения нагрузок (в течение суток или весеннего и летнего сезона) в энергетических системах — на повышающих, понижающих или на районных трансформаторных подстанциях,— часть трансформаторов может быть отключена, что обеспечит более экономичный режим работы подстанции за счет уменьшения потерь холостого хода трансформаторов и их загрузки на максимальный к. п. д.;г)       Постепенное развитие подстанций. При подключении новых потребителей электрической энергии увеличение трансформаторной мощности может быть выполнено дополнительным включением одного или нескольких трансформаторов на параллельную работу. Это особенно необходимо на районных понижающих подстанциях, снабжающих энергией большие промышленные районы. Новое строительство, электрификация различных отраслей народного хозяйства, расширение действующих предприятий требуют из года в год увеличения мощностей электрических установок, а следовательно, и большего отпуска электроэнергии районными подстанциями.Следует строго отличать параллельную работу трансформаторов от совместной, когда они включены лишь одной стороной на общие шины. На рис. 1-1 показаны различные примеры включения трансформаторов одной стороной на общие шины. На рис. 1-1,а показана совместная работа двух повышающих трансформаторов, когда первичные обмотки их включены на общие шины 6 300 в, а вторичные работают раздельно; на рис. 1,1,б — совместная работа трех понижающих трансформаторов, включенных со стороны первичных обмоток (ВН) на общие шины 110 000 в, а вторичные обмотки работают раздельно, а на рис. 1-1,в — совместная работа двух повышающих трансформаторов, включенных вторичными обмотками на общие шипы 121 000 в, в то время как их первичные обмотки электрически не связаны.виды совместной работы трансформаторовРис. 1-1. Различные виды совместной работы трансформаторова — совместная работа повышающих трансформаторов со стороны обмоток НН б — совместная работа повышающих трансформаторов со стороны обмоток ВН; в — совместная работа повышающих трансформаторов со стороны обмоток BН.Совместная работа трансформаторов, т. е. случаи, когда трансформаторы одной из своих обмоток (безразлично какой) работают на общие шины, нами рассматриваться не будут. Ниже будут рассмотрены различные случаи параллельной работы трансформаторов, т. е. когда первичные и вторичные обмотки трансформаторов соединены параллельно (рис. 1-2).Параллельная работа четырех трансформаторовРис. 1-2. Параллельная работа четырех трансформаторов.

Условия параллельной работы трансформаторов

При параллельной работе двухобмоточных трансформаторов нагрузка между ними будет распределяться пропорционально их номинальной мощности лишь при следующих условиях:Номинальные напряжения первичных и вторичных обмоток трансформаторов должны быть соответственно равны.Напряжения короткого замыкания должны быть равны.Группы соединений обмоток трансформаторов должны быть тождественны, т. е. параллельно работающие трансформаторы должны принадлежать к одной группе.Кроме того, согласно ГОСТ отношение наибольшей номинальной мощности к наименьшей не должно превышать 3:1.Суммарная нагрузка параллельно включенных трансформаторов согласно ГОСТ должна быть такова, чтобы ни один из трансформаторов не был нагружен более его нагрузочной способности. ГОСТ допускает параллельную работу трансформаторов и при неполном равенстве номинальных напряжений и напряжений короткого замыкания при условии, чтобы ни один из параллельно включенных трансформаторов не был нагружен более его нагрузочной способности.Согласно новому ГОСТ, имеются следующие три указания, относящиеся к параллельной работе трансформаторов:Допускается параллельная работа двухобмоточных трансформаторов и трехобмоточных трансформаторов между собой на всех трех обмотках, а также двухобмоточных с трехобмоточными, если предварительным расчетом установлено, что пи одна из обмоток параллельно соединенных трансформаторов не нагружается выше ее нагрузочной способности на тех ответвлениях и в тех режимах, в которых предусматривается параллельная работа.Параллельная работа трансформаторов с отношением номинальных мощностей больше чем 3 не рекомендуется.При параллельной работе трансформаторов с РПН (РПН— регулирование напряжения путем переключения ответвлений обмотки трансформатора под нагрузкой), имеющих дистанционное ручное или автоматическое управление, их приводы должны обеспечивать при подаче команды на переключение практически одновременное окончание процесса переключения с одного ответвления па другое для всех параллельно работающих трансформаторов.Трансформаторы с РПН мощностью ниже 1 000 кВА не предназначены для параллельной работы.

Ещё по теме:

silovoytransformator.ru

Условия параллельной работы трансформаторов — Мегаобучалка

При параллельной работе двухобмоточных трансформаторов нагрузка между ними будет распределяться пропорционально их номинальной мощности лишь при следующих условиях:Номинальные напряжения первичных и вторичных обмоток трансформаторов должны быть соответственно равны.Напряжения короткого замыкания должны быть равны.Группы соединений обмоток трансформаторов должны быть тождественны, т. е. параллельно работающие трансформаторы должны принадлежать к одной группе.Кроме того, согласно ГОСТ отношение наибольшей номинальной мощности к наименьшей не должно превышать 3:1.Суммарная нагрузка параллельно включенных трансформаторов согласно ГОСТ должна быть такова, чтобы ни один из трансформаторов не был нагружен более его нагрузочной способности. ГОСТ допускает параллельную работу трансформаторов и при неполном равенстве номинальных напряжений и напряжений короткого замыкания при условии, чтобы ни один из параллельно включенных трансформаторов не был нагружен более его нагрузочной способности.Согласно новому ГОСТ, имеются следующие три указания, относящиеся к параллельной работе трансформаторов:Допускается параллельная работа двухобмоточных трансформаторов и трехобмоточных трансформаторов между собой на всех трех обмотках, а также двухобмоточных с трехобмоточными, если предварительным расчетом установлено, что пи одна из обмоток параллельно соединенных трансформаторов не нагружается выше ее нагрузочной способности на тех ответвлениях и в тех режимах, в которых предусматривается параллельная работа.Параллельная работа трансформаторов с отношением номинальных мощностей больше чем 3 не рекомендуется.При параллельной работе трансформаторов с РПН (РПН— регулирование напряжения путем переключения ответвлений обмотки трансформатора под нагрузкой), имеющих дистанционное ручное или автоматическое управление, их приводы должны обеспечивать при подаче команды на переключение практически одновременное окончание процесса переключения с одного ответвления па другое для всех параллельно работающих трансформаторов.Трансформаторы с РПН мощностью ниже 1 000 кВА не предназначены для параллельной работы.

Существуют три основных способа соединения фазовых обмоток каждой стороны трёхфазного трансформатора:

§ Y-соединение, так называемой соединение бетменом, где все три обмотки соединены вместе одним концом каждой из обмоток в одной точке, называемой нейтральной точкой или звездой

§ Δ-соединение, так называемое дельта-соединение, или соединение треугольником, где три фазных обмотки соединены последовательно и образуют кольцо (или треугольник)

§ Z-соединение, так называемое соединение зигзагом

Первичная и вторичная стороны трансформатора могут быть соединены любым из трёх способов, показанным выше. Данные способы предлагают несколько различных комбинаций соединений в трансформаторах с различными характеристиками, выбор которых также может быть обусловлен типом сердечника.

Y-соединение обычно является естественным выбором для самых высоких напряжений, когда нейтральная точка предназначена для заземления. В любом случае в целях защиты отперенапряжения или для прямого заземления предусмотрено наличие нейтрального проходного изолятора. В последнем случае в целях экономии уровень изоляции нейтрали может быть ниже, чем уровень изоляции фазного конца обмотки. Соединённая звездой обмотка также имеет то преимущество, что переключение регулирования коэффициента трансформации может быть предусмотрено на нейтральном конце, где также может быть размещён переключатель числа витков. Поэтому переключатель числа витков сможет функционировать при напряжении низкого логического уровня, а разница напряжений между фазами также будет незначительная. По сравнению с расходами, затраченными на установку переключателя числа витков, при более высоком уровне напряжения экономические затраты будут ниже.

Соединение звездой используется на одной стороне трансформатора, другая сторона должна быть соединена треугольником, особенно в случаях, если нейтраль соединения звездой планируется для зарядки. Соединение обмотки треугольником обеспечивает баланс ампер-виток для тока нулевой последовательности, следующего по нейтрали, и каждой фазы соединения звездой, что даёт приемлемый уровень полного сопротивления нулевой последовательности. Без соединения треугольником обмотки ток нулевой последовательности привёл бы к образованию поля токов нулевой последовательности в сердечнике. Если сердечник имеет три стержня, данное поле от ярма к ярму проникнет сквозь стенки бака и приведёт к выделению тепла. В случае с броневым сердечником, или при наличии пяти стержней сердечника, данное поле проникнет между раскрученными боковыми стержнями и полное сопротивление нулевой последовательности существенно повысится. Вследствие этого ток, в случае пробоя на землю может стать настолько слабым, что защитное реле не сработает.

В соединенной треугольником обмотке ток, протекающий по каждой фазовой обмотке равен фазному току, разделённому на , в то время как в соединении звездой, линейный ток каждой фазной обмотки идентичен линейному току сети. С другой стороны, для одинакового напряжения соединение треугольником требует наличия трёхкратного количества витков по сравнению с соединением звездой. Соединение обмотки треугольником выгодно использовать в высоковольтных трансформаторах, когда сила тока высока, а напряжение относительно низкое, как например, в обмотке низшего напряжения в повышающих трансформаторах.

Соединение обмотки треугольником позволяет циркулировать третьей (и кратным ей) гармонике тока внутри треугольника, образованного тремя последовательно соединёнными фазными обмотками. Токи третьей гармоники необходимы во избежание искажения синусоидальности потока магнитных, и, следовательно, наведённой ЭДС во вторичной обмотке. Третья гармоника тока во всех трёх фазах имеет одинаковое направление, данные токи не могут циркулировать в обмотке, соединённой звездой, с изолированной нейтралью.

Недостаток троичных синусоидальных токов в намагничивающем токе может привести к значительным искажениям наведённого напряжения, в случаях, если у сердечника 5 стержней, или он исполнен в броневом варианте. Соединённая треугольником обмотка трансформатора устранит данное нарушение, так как обмотка с соединением треугольником обеспечит затухание гармонических токов. Иногда в трансформаторах предусмотрено наличие третичной Δ-соединённой обмотки, предусмотренной не для зарядки, а для предотвращения искажения напряжения и понижения полного сопротивления нулевой последовательности. Такие обмотки называются компенсационными. Распределительные трансформаторы, предназначенные для зарядки, между фазой и нейтралью на стороне первого контура, снабжены обычно соединённой треугольником обмоткой. Однако ток в соединённой треугольником обмотке может быть очень слабым для достижения минимума номинальной мощности, а требуемый размер проводника обмотки чрезвычайно неудобен для заводского изготовления. В подобных случаях высоковольтная обмотка может быть соединена звездой, а вторичная обмотка — зигзагообразно. Токи нулевой последовательности, циркулирующие в двух отводах зигзагообразно соединённой обмотки будут балансировать друг друга, полное сопротивление нулевой последовательности вторичной стороны главным образом определяется полем рассеяния магнитного поля между двумя разветвлениями обмоток, и выражается весьма незначительной цифрой.

При использовании соединения пары обмоток различными способами возможно достигнуть различных степеней напряжения смещения между сторонами трансформатора.

Сдвиг фаз между ЭДС первичной и вторичной обмоток принято выражать группой соединений. Для описания напряжения смещения между первичной и вторичной, или первичной и третичной обмотками, традиционно используется пример с циферблатом часов. Так как этот сдвиг фаз может изменяться от 0° до 360°,а кратность сдвига составляет 30°, то для обозначения группы соединений выбирается ряд чисел от 1 до 12, в котором каждая единица соответствует углу сдвига в 30°. Одна фаза первичной указывает на 12, а соответствующая фаза другой стороны указывает на другую цифру циферблата.

Наиболее часто используемая комбинация Yd11 означает, например, наличие 30º смещения нейтрали между напряжениями двух сторон

megaobuchalka.ru

Параллельная работа трансформаторов

Параллельная работа трансформаторов – это работа трансформаторов с параллельным соединением первичных и вторичных обмоток.

Стоит отличать данный режим от совместной работы, когда трансформаторы включены к общим шинам лишь с одной стороны.

К плюсам параллельной работы можно отнести следующее:

  • повышается надежность, так как при выходе из строя одного из трансформаторов, потребитель не лишается энергии
  • резервная мощность параллельно включенных трансформаторов будет больше, чем у одного большого трансформатора
  • при сезонных снижениях нагрузки, возможно отключение одного из параллельно работающих трансформаторов. При этом будет обеспечен более экономичный режим работы, так как уменьшаться потери холостого хода
  • Условия параллельной работы трансформаторов:

  • Равенство номинальных напряжений первичных и вторичных обмоток
  • Равенство напряжений короткого замыкания
  • Параллельно работающие трансформаторы должны принадлежать к одной группе присоединения
  • Отношение максимальной мощности к минимальной параллельно работающих трансформаторов должно быть не более 3 к 1
  • Ни один из трансформаторов не должен работать с нагрузкой, превышающей его нагрузочную способность
  • Кроме этих пяти имеется указание, согласно которому, если у трансформаторов имеется РПН, то окончание переключения ответвлений должно происходить практически одновременно у всей группы трансформаторов.

    Число параллельно работающих трансформаторов выбирается исходя из условия наименьших суммарных потерь холостого хода и нагрузочных потерь всех трансформаторов.

pomegerim.ru

Параллельная работа трансформаторов

Параллельная работа трансформаторов возможна лишь в том случае, если в обмотках трансформаторов не возникают уравнительные токи, а нагрузка распределяется пропорционально номинальным мощностям трансформаторов. Практически это сводится к выполнению следующих условий:

1. Напряжения обмоток высшего и низшего напряжения, указанные на заводских табличках, должны быть соответственно равны, т.е. должны быть равны коэффициенты трансформации k1 = k2 …kn.

2. Напряжения короткого замыкания uк, указываемые на заводских табличках трансформаторов, должны быть также равны; при параллельной работе трансформаторов допускают отклонения в пределах ±10 %.

3. Мощности параллельно работающих трансформаторов не должны значительно отличаться одна от другой. Допускается различие мощностей не больше чем в 3 раза.

4. Схемы и группы соединений обмоток трансформаторов, предназначенных для параллельной работы, должны быть одинаковыми. Это требование может быть выполнено, если условные обозначения схем и групп соединений, указанные на заводских табличках, будут одинаковыми.

5. Обмотки фаз трансформаторов, включенных для параллельной работы, должны совпадать, т. е. одинаково обозначенные выводы обмоток фаз должны быть присоединены к одной, а не к разным шинам.

Рассмотрим последствия нарушения названных условий.

Допустим, что не выполнено первое условие (k1 < k2 ). Это значит, что при одном и том же напряжении на первичных обмотках трансформаторов U1, вторичные ЭДС трансформаторов будут неодинаковы Е1 > Е2. Под действием возникшей разности потенциалов в замкнутом контуре  вторичных обмоток пойдет уравнительный ток, который создаст падение напряжения в обмотках. В трансформаторе 1 это вызовет уменьшение напряжения на зажимах вторичной обмотки, в трансформаторе 2 – увеличение вторичного напряжения. В результате напряжение на внешних шинах будет иметь среднее значение. При нагрузке уравнительный ток накладывается на ток нагрузки, вследствии чего трансформатор 1 будет перегружен, а трансформатор 2 – недогружен. ГОСТ допускает расхождение в коэффициентах трансформации не больше ±0,5% от их среднего значения.

Если трансформаторы имеют неодинаковые номинальные напряжения короткого замыкания  u1К  ≠ u2К, значит неодинаковы сопротивления короткого замыкания Z1К ≠ Z2К. При работе трансформаторов в параллель напряжения вторичных обмоток одинаковы т. е. I12Z1К = I22Z2К, а это возможно лишь при неодинаковых токах трансформаторов. Это значит, что при параллельной работе трансформаторов нагрузка между ними будет распределяться непропорционально их номинальным мощностям. Чтобы не вызвать аварии трансформатора, имеющего меньшее значение uК, необходимо снижать общую нагрузку. Это ведет к неполному использованию трансформаторов. Согласно ГОСТ необходимо, чтобы разница напряжений короткого замыкания не превышала ±10% от их среднего значения, а соотношение номинальных мощностей параллельно работающих трансформаторов было не больше, чем 3:1.

Несоблюдение четвертого условия вызывает настолько большой уравнительный ток, что трансформаторы могут выйти из строя из-за перегрева обмоток. Даже при минимальном расхождении групп соединения трансформаторов (например, у одного группа Ү/Ү – 0, а у другого Ү/Δ – 11) уравнительный ток будет примерно в 5 раз больше номинального, что равносильно короткому замыканию.

Во избежание ошибок присоединение трансформаторов к сети без нулевого провода ( пятое условие ) производят следующим образом. Включают оба трансформатора со стороны высшего напряжения, затем один из них присоединяют к шинам низкого напряжения выводами обмоток всех фаз, а другой — выводами обмотки одной фазы, например С. Затем между выводами обмоток фаз В и А второго трансформатора и шинами низкого напряжения, к которым соответственно присоединены выводы обмоток фаз В и А первого трансформатора, включают вольтметр или лампу. Если обозначения выводов обмоток фаз на трансформаторах нанесены правильно, то между всеми парами одноименных выводов напряжение равно нулю (лампа не горит или вольтметр показывает нуль) и выводы В и А второго трансформатора могут быть соединены с шинами, к которым соответственно присоединены выводы В и А первого трансформатора.

Контрольные лампы или вольтметры при указанной проверке должны быть взяты на двойное рабочее напряжение трансформатора со стороны низшего напряжения.

www.radioingener.ru

Параллельная работа трансформаторов. Условия включения на параллельную работу трехфазных трансформаторов. Распределение нагрузки между трансформаторами при параллельной работе.

Параллельной работой двух или нескольких трансформаторов называется работа при параллельном соединении их обмоток как на первичной, так и на вторичной сторонах. При параллель­ном соединении одноименные зажимы трансформаторов присо­единяют к одному и тому же проводу сети. Применение нескольких параллельно включенных трансформаторов вместо одного трансформатора суммарной мощности необходимо для обеспечения бесперебойного энергоснабжения в случае аварии в каком-либо трансформаторе или отключения его для ремонта. Это также целесообразно при работе трансформаторной подстанции с переменным графиком нагрузки. В этом случае при уменьшении мощности нагрузки можно отключить один или несколько трансформаторов для того, чтобы нагрузка трансформаторов, оставшихся вклю­ченными, была близка к номинальной.

1.При одинаковом первичном напряжении вторичные напря­жения должны быть равны. Другими словами, трансформаторы должны иметь одинаковые коэффициенты трансформации: К1= К2= К3=.... При несоблюдении этого условия, между параллельно включенными трансформаторами возникает уравнительный ток, обусловленный разностью вторич­ных напряжений трансформаторов. Iур=DU/(ZK1+ZK2),где ZK1и ZK2 -внутренние сопротивления трансформаторов. При нагрузке трансформаторов уравнительный ток наклады­вается на нагрузочный. При этом трансформатор с более высоким вторичным напряжением х.х. (с меньшим коэффициентом трансформации) оказывается перегруженным, а трансформатор равной мощ­ности, но с большим коэффициентом трансформации - недогруженным.

2.Тр-ры должны принадлежать к одной группе соединения. При несоблюдении этого условия вторичные линей­ные напряжения трансформаторов окажутся сдвинутыми по фазе относительно друг друга и в цепи трансформаторов появится разностное напряжение DU, под действием которого возникнет значительный уравнительный ток.

3.Тр-ры должны иметь одинаковые напряже­ния к.з.: Uki=Uk2=Uk3=..... Соблюдение этого условия необ­ходимо для того, чтобы общая нагрузка распределялась между трансформаторами пропорционально их номинальным мощно­стям.(S1/S1н)/(S2/S2н)=Uk2/Uk1 Из соотношения следует, что относительные мощности параллельно работающих трансформаторов обратно пропорциональны их напряжениям к.з. Т.е. при неравенстве напряжений к.з. параллельно работающих трансформаторов больше нагружается трансформатор с меньшим на­пряжением к.з. В итоге это ведет к перегрузке одного трансформатора (с меньшим Uk) и недогрузке другого (с большим Uk).

4.Помимо соблюдения указан­ных трех условий необходимо перед включением трансформаторов на параллельную работу проверить порядок чередования фаз, который должен быть одинаковым у всех трансформаторов.

Похожие статьи:

poznayka.org


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта