29 Специальные типы трансформаторов. Приведенный трансформатор это§5. Приведенный трансформатор.В общем случае параметры первичной обмотки трансформатора отличаются от параметров вторичной обмотки. Особенно это ощутимо при больших коэффициентах трансформации, что затрудняет расчеты и особенно построения векторных диаграмм, т.к. векторы этих величин W1значительно отличаются от векторов одноименных величинW2. Это устраняется приведением всех параметров трансформатора к одинаковому числу витков (обычно кW1). Таким образом, вместо реального трансформатора сk=W1/W2мы получаем эквивалентный сk=W1/=1, где=W1. Но все параметры должны оставаться такими же, как и в реальном. Например, электромагнитная мощность вторичной обмотки реального трансформатора E2I2должна быть равной электромагнитной мощности вторичной обмотки приведенного трансформатора, т.е. E2I2= Подставим =I2и получим приведенную вторичную э.д.с.
т.к. . Из условия равенства потерь в активном сопротивлении вторичной обмотки трансформатора имеем
Приведенное активное сопротивление
Приведенное индуктивное сопротивление рассеяния вторичной обмотки определяется из условия равенства реактивных мощностей
откуда
Приведенное полное сопротивление вторичной обмотки трансформатора
Полное приведенное сопротивление нагрузки
Уравнения э.д.с. и токов для приведенного трансформатора имеют вид
Эквивалентная схема приведенного трансформатора имеет вид
Схема замещения – «Т»образная
Построим векторную диаграмму при активно-индуктивной нагрузке.
При активно-емкостной нагрузке будет опережать вектор.
|
. |
Электродвижущая сила, которая наводится во вторичной обмотке основным магнитным потоком, равна:
, |
отсюда
. |
При замене действительной вторичной обмотки с количеством витков w2 приведенной обмоткой с количеством витков w′2 = w1 основной магнитный поток будет наводить в ней электродвижущую силу:
, | (15.30) |
где k – коэффициент трансформации трансформатора.
Коэффициент трансформации равен:
. |
. Если подставить значение k, то получим:
. | (15.31) |
Аналогично
, | (15.32) |
Поскольку в случае приведения вторичной обмотки к первичной магнитный поток остаётся неизменным, то и вторичная намагничивающая сила должна оставаться неизменной, т.е.
, | (15.33) |
откуда
. | (15.34) |
Из-за того, что условием приведения является постоянство мощности, то и потери в проводниках действительной и приведенной вторичной обмоток должны быть одинаковыми, т.е.
, |
отсюда
. | (15.35) |
Аналогично
; | (15.36) |
. | (15.37) |
Составим схему замещения приведенного трансформатора (рис.15.41).
Запишем уравнения первичного и вторичного контуров:
; | (15.38) |
. | (15.39) |
Векторная диаграмма приведенного трансформатора имеет такой же вид, как и диаграмма, приведенная на рис.15.40.
26
studfiles.net
Приведённый трансформатор. Схемы замещения приведённого трансформатора.
В общем случае параметры первичной обмотки трансформатора отличаются от параметров вторичной обмотки. Разница наиболее ощутима при больших коэффициентах трансформации, что затрудняет расчеты и особенно построение векторных диаграмм. Векторы электрических величин, относящиеся к первичной обмотке, значительно отличаются по своей длине от одноименных векторов вторичной обмотки. Затруднения можно устранить, если привести все параметры трансформатора к одинаковому числу витков, например, к w1. С этой целью параметры вторичной обмотки пересчитываются на число витков w1. Таким образом, вместо реального трансформатора с коэффициентом трансформации k = w1 / w2, получают эквивалентный трансформатор с k = w1 / w2 = 1. Такой трансформатор называется приведенным. Приведение параметров трансформатора не должно отразиться на его энергетическою процессе, то есть все мощности и фазы вторичной обмотки должны остаться такими же, что и в реальном трансформаторе.
Эквивалентная схема (схема замещения) и параметры приведенного трансформатора
При расчетах необходимо сопоставить параметры первичной и вторичной цепей трансформатора. Если коэффициент трансформации велик, например, более 100, то изобразить векторные диаграммы первичной и вторичной цепей невозможно, т. к. при конкретных величинах векторов напряжении, токов и падений напряжений первичной (вторичной) цепи векторная диаграмма вторичной (цепи) вырождаются в точку. Эту проблему можно решить, если пользоваться приведенной схемой замещения трансформатора, в которой число витков вторичной обмотки равно числу витков первичной, но при этом не изменяются энергетические соотношения. Положим, что вторичная обмотка приводится к первичной, тогда
;
Так как реактивная мощность должна оставаться постоянной, то
Эквивалентную схему замещения трансформатора (рис.1.20) заменяем схемой замещения приведенного трансформатора(рис.1.21)
22. Опыты холостого хода и короткого замыкания трансформатора.
Если подключить первичную обмотку трансформатора к напряжению сети, а зажимы его вторичной обмотки замкнуть накоротко, то это приведет к опасному явлению короткого замыкания трансформатора. Токи короткого замыкания выделяют большое количество тепла в обмотках, что может привести к порче изоляции проводников обмоток, разложению и воспламенению масла, залитого в бак трансформатора. Механические усилия, возникающие в обмотках трансформатора при коротких замыканиях, иногда могут привести к разрушению обмоток.
Если же зажимы вторичной обмотки трансформатора замкнуть накоротко, а первичную обмотку подключить к пониженному напряжению, чтобы ток короткого замыкания I 2K был бы равен номинальному току I 2H , то при этом с трансформатором ничего опасного не произойдет. Этот опыт называется опытом короткого замыкания. Напряжение, под которое включается первичная обмотка трансформатора при опыте короткого замыкания, составляет несколько процентов от номинального напряжения этой обмотки, называется напряжением короткого замыкания и обозначается UК .
Силовые трансформаторы, изготовляемые в СССР, имеют напряжение короткого замыкания, равное 5—10% (в некоторых случаях 17%) от номинального первичного напряжения.
При испытаниях трансформаторов всегда снимают характеристики холостого хода и короткого замыкания.
Для снятия характеристики холостого хода трансформатора его вторичную обмотку размыкают, а в первичную обмотку включают амперметр, вольтметр и ваттметр. Постепенно увеличивают напряжение, к которому включена первичная обмотка, и записывают показания приборов. Примерная характеристика холостого хода трансформатора показана на фиг. 207.
При небольших напряжениях, соответствующих начальной части характеристики холостого хода, магнитная система трансформатора не насыщена и существует пропорциональность между напряжением U и током Iо. При дальнейшем увеличении напряжения сердечник трансформатора насыщается и при этом ток Iо начинает увеличиваться быстрее напряжения.
По данным опыта холостого хода подсчитываются сопротивления, коэффициент мощности, активная и реактивная составляющие тока холостого хода трансформатора. Мощность, подводимая к трансформатору при холостом ходе, идет на покрытие потерь холостого хода. Так как ток холостого хода Iо. мал, то потерями мощности на нагрев первичной обмотки, равными Iо2r1, можно пренебречь и считать, что мощность, потребляемая трансформатором при холостом ходе, идет на покрытие потерь в стали сердечни
Для снятия характеристики короткого замыкания трансформатора в цепь его первичной обмотки включают амперметр, вольтметр и ваттметр, а вторичную обмотку замыкают через амперметр накоротко. Увеличивают напряжение, к которому подключена первичная обмотка, до тех пор, пока амперметр во вторичной обмотке не покажет вторичный номинальный ток. По данным опыта короткого замыкания подсчитываются сопротивления и напряжение короткого замыкания.
По данным опыта строится характеристика короткого замыкания, из которой видно, что между током и напряжением существует линейная зависимость. Это объясняется тем, что магнитный поток в сердечнике мал, так как напряжение короткого замыкания во много раз меньше номинального напряжения. Поэтому потерями в стали при опыте короткого замыкания можно пренебречь и считать, что мощность при этом опыте идет на покрытие потерь в меди в обмотках трансформатора Примерная характеристика короткого замыкания Дана на фиг. 208.
23. Потери мощности и КПД трансформатора.
Коэффициент полезного действия. Коэффициентом полезного действия трансформатора называют отношение отдаваемой мощности Р2 к мощности Р1:
или
где ΔР—суммарные потери в трансформаторе.
Высокие значения КПД трансформаторов не позволяют определять его с достаточной степенью точности путем непосредственного измерения мощностей Р1 и Р2, поэтому его вычисляют косвенным методом по значению потерь мощности.
С учетом энергетической диаграммы формулу (2.50) можно представить в виде
Согласно требованиям ГОСТа потери мощности в трансформаторе определяют по данным опытов холостого хода и короткого замыкания. Получаемый при этом результат имеет высокую точность, так как при указанных опытах трансформатор не отдает мощность нагрузке. Следовательно, вся мощность, поступающая в первичную обмотку, расходуется на компенсацию имеющихся в нем потерь.
Рис. 2.26. Энергетическая диаграмма трансформатор
При опыте холостого хода ток I0 невелик и электрическими потерями мощности в первичной обмотке можно пренебречь. В то же время магнитный поток практически равен потоку при нагрузке, так как его значение определяется приложенным к трансформатору напряжением. Магнитные потери в стали пропорциональны квадрату значения магнитного потока. Следовательно, с достаточной точностью можно считать, что магнитные потери в стали магнитопровода равны мощности, потребляемой трансформатором при холостом ходе и номинальном первичном напряжении, т. е.
или
где ΔРэл.ном — суммарные электрические потери при номинальной нагрузке.
За расчетную температуру обмоток — условную температуру, к которой должны быть отнесены потери мощности ΔРэл и напряжения uк, принимают: для масляных и сухих трансформаторов с изоляцией классов нагревостойкости А, Е, В (см. § 12.1) температуру 75° С; для трансформаторов с изоляцией классов нагревостойкости F, Н — температуру 115° С.
Величину можно с достаточной степенью точности принять равной мощности Рк, потребляемой трансформатором при опыте короткого замыкания, который проводится при номинальном токе нагрузке. При этом магнитные потери в стали АРМ весьма малы по сравнению с потерями ΔРэл из-за сильного уменьшения напряжения U1 а следовательно, и магнитного потока трансформатора и ими можно пренебречь. Таким образом,
Полные потери
Подставляя полученные значения Р в (2.51) и учитывая, что
Эта формула рекомендуется ГОСТом для определения КПД трансфор-матора. Значения Ро и Рк для силовых трансформаторов приведены в соответствующих стандартах и каталогах.
Потери мощности в трансформаторе являются одной из основных характеристик экономичности конструкции трансформатора. Полные нормированные потери состоят из потерь холостого хода (XX) и потерь короткого замыкания (КЗ). При холостом ходе (нагрузка не присоединена), когда ток протекает только по обмотке, присоединенной к источнику питания, а в других обмотках тока нет, мощность, потребляемая от сети, расходуется на создание магнитного потока холостого хода, т.е. на намагничивание магнитопровода, состоящего из листов трансформаторной стали. Поскольку переменный ток изменяет свое направление, то направление магнитного потока также меняется. Это значит, что сталь намагничивается и размагничивается попеременно. При изменении тока от максимума до нуля сталь размагничивается, магнитная индукция уменьшается, но с некоторым запаздыванием, т.е. размагничивание задерживается (при достижении нулевого значения тока индукция не равна нулю точка N). Задерживание в перемагничивании является следствием сопротивления стали переориентировке элементарных магнитов.
Кривая намагничивания при перемене направления тока образует так называемую петлю гистерезиса, которая различна для каждого сорта стали и зависит от максимальной магнитной индукции Втах. Площадь, охватываемая петлей, соответствует мощности, затрачиваемой на намагничивание. Так как при перемагничивании сталь нагревается, электрическая энергия, подводимая к трансформатору, преобразуется в тепловую и рассеивается в окружающее пространство, т.е. безвозвратно теряется. В этом физически и заключаются потери мощности на перемагничивание.
Кроме потерь на гистерезис при протекании магнитного потока по магнитопроводу возникают потери на вихревые токи. Как известно, магнитный поток индуктирует электродвижущую силу (ЭДС), создающую ток не только в обмотке, находящейся на стержне магнитопровода, но и в самом его металле. Вихревые токи протекают по замкнутому контуру (вихревое движение) в месте стали в направлении, перпендикулярном направлению магнитного потока. Для уменьшения вихревых токов магнитопровод собирают из отдельных изолированных листов стали. При этом чем тоньше лист, тем меньше элементарная ЭДС, меньше созданный ею вихревой ток, т.е. меньше потери мощности от вихревых токов. Эти потери тоже нагревают магнитопровод. Для уменьшения вихревых токов, потерь и нагревов увеличивают электрическое сопротивление стали путем введения в металл присадок.
В любом трансформаторе расход материалов должен быть оптимальным. При заданной индукции в магнитопроводе его габарит определяет мощность трансформатора. Поэтому стараются, чтобы в сечении стержня магнитопровода было как можно больше стали, т.е. при выбранном наружном размере коэффициент заполнения кз должен быть наибольшим. Это достигается применением наиболее тонкого слоя изоляции между листами стали. В настоящее время применяется сталь с тонким жаростойким покрытием, наносимым в процессе изготовления стали и дающим возможность получить кз = 0,950,96.
При изготовлении трансформатора вследствие различных технологических операций со сталью ее качество в готовой конструкции несколько ухудшается и потери в конструкции получаются примерно на 2550 % больше, чем в исходной стали до ее обработки (при применении рулонной стали и прессовки магнитопровода без шпилек).
Читайте также:
lektsia.info
29 Специальные типы трансформаторов
Однофазный сварочный трансформатор
В рабочем режиме трансформатор находится близко к короткому замыканию. Чтобы величина тока не возрастала сверх допустимого значения, последовательно к нему включается реактивная катушка РК с раздвижным сердечником, в результате чего характеристика трансформатора становится круто падающей (рисунок, справа).
Трансформатор для дуговой сварки
Изменяя зазор δ, можно плавно менять сварочный ток. Максимальное значение тока будет при δмах. Для безопасного обслуживания вторичная обмотка сварочного трансформатора заземляется.
Автотрансформаторы применяются в высоковольтных линиях электропередач для пуска асинхронных и синхронных двигателей в лабораторной практике и при испытаниях. Автотрансформаторы могут быть повышенными и пониженными, однофазными и трехфазными.
В автотрансформаторе часть витков в обмотке ВН используется в качестве обмотки НН, то есть в автотрансформаторе имеется всего лишь одна обмотка, часть которой (а Х) принадлежит одновременно сторонам ВН и НН.
Схема автотрансформатора
На участке аХ протекает ток i12 = i2 — i1, или переходя к действующим значениям, учитывая, что I1 и I2 находятся в противофазе, можно записать:
I12 = I2 — I1
Таким образом, величина тока в общей части обмоток равна разности токов I1 и I2. Если коэффициент трансформации близок к единице, то I1 и I2мало отличаются друг от друга, разность между ними будет также небольшой. Это позволит выполнять часть обмотки аХ проводом меньшего поперечного сечения.
Измерительные трансформаторы тока и напряжения применяются совместно с измерительными приборами для расширения их пределов измерения.
Измерительные трансформаторы напряжения
Измерительный трансформатор напряжения представляет собой понижающий трансформатор с таким отношением витков w1/w2, чтобы при U1 = Uсети; U2 = 100 В.
Во вторичную цепь включаются вольтметры, частотомеры, обмотки напряжения ваттметров, счетчиков и фазометров. Так как электрическое сопротивление этих приборов велико (порядка 1000 Ом), то трансформаторы напряжения работают в режиме, близком к холостому ходу. Такой режим связан с большими магнитными потерями, а это, в свою очередь, приводит к увеличению размеров магнитопровода и устройству специального масляного охлаждения.
Измерительные трансформаторы тока и напряжения
Измерительные трансформаторы тока
Измерительные трансформаторы тока применяются для включения в сеть амперметров, обмоток тока ваттметров, счетчиков и фазометров.
Первичная обмотка трансформатора тока выполняется из провода большого поперечного сечения и включается в цепь последовательно.
Вторичная обмотка выполняется всегда на ток I2 = 5А. Рабочий режим трансформатора тока близок к короткому замыканию, поэтому размеры магнитопровода у него значительно меньше, чем у трансформатора напряжения.
Печной трансформатор служит для преобразовании электроэнергии высокого напряжения в энергию низкого напряжения. Трансформаторы, предназначенные для питания дуговых электрических печей, во многом сходны с обычными силовыми трансформаторами. Их конструктивные отличия обусловлены специфическими особенностями работы электрических печей.
ОСОБЕННОСТИ ПЕЧНОГО ТРАНСФОРМАТОРА
Большая величина номинального тока на стороне низкого напряжения, составляющая десятки тысяч ампер
Повышенное индуктивное сопротивление обмоток, необходимое для ограничения токов короткого замыкания до 2,5-3,5-кратной величины по отношению к номинальному току, так как сталеплавильные печи работают с частыми замыканиями электродов на шихту при зажигании дуги и обвале шихты в период расплавления
Повышенная механическая прочность крепления обмоток и отводов, рассчитанных на частые толчки токов и короткие замыкания
Возможность регулирования напряжения под нагрузкой в широких пределах.
Выпрямительные устройства чаще всего получают питание от трансформаторов, параметры которых подобраны под выпрямительное устройство.
Такие трансформаторы работают в крайне сложных условиях. Их вторичные токи содержат обширный спектр высших гармоник. Качественный и количественный состав гармоник тока зависит от схемы выпрямления, в которой работает трансформатор. В выпрямительных системах с нейтральным проводом ток во вторичной обмотке трансформатора приобретает вид однонаправленных прямоугольных импульсов. Это вызывает подмагничивание сердечника магнитным потоком, содержащим постоянную составляющую. С энергетической точки зрения этот эффект носит неблагоприятный характер.
Такие трансформаторы, как правило, имеют большие размеры и весят больше, чем обычные силовые трансформаторы. Причина такого различия состоит в преднамеренном снижении магнитной индукции в сердечнике трансформатора уже на этапе проектирования Ступенчатое регулирование осуществляется переключением звезда – треугольник, что приводит к изменению тока в 3 раза. (больший ток при схеме треугольник – треугольник, чем звезда – звезда.)
В зависимости от схемы выпрямления трёхфазные трансформаторы производятся в различных модификациях. Одна из самых простых конструкций – трансформатор для систем трехпульсных выпрямителей. Первичная обмотка такого трансформатора чаще всего соединена в треугольник, а вторичная - в звезду с выведенным нейтральным зажимом (группа Dyn):
Схема 3-пульсного выпрямителя с нейтральным проводом
Более широко применяются трансформаторы, изготовленные для шестипульсных выпрямителей. Такая система получает питание от трансформатора или от сетевых дросселей. Трансформатор используется тогда, когда необходимо привести выходное напряжение выпрямителя в соответствие с напряжением нагрузки. Мостовая схема выпрямителя не требует вывода нейтрального провода во вторичной обмотке трансформатора, а его обмотки могут быть выполнены с использованием следующих схем соединений: Yy, Yd ,Dy, Dd. Еще одно возможное конструктивное решение – специальный трансформатор для питания шестифазного выпрямителя. Первичная обмотка такого трансформатора соединена в треугольник, а вторичная создаёт шестифазную схему с выведенным нейтральным зажимом:
Схема 6-пульсного преобразователя с выведенным нейтральным проводом
Многочисленную группу составляют трансформаторы, которые работают в составе систем сложных многопульсных выпрямителей.
Схема 12-пульсного выпрямителя
studfiles.net
ПРИВЕДЕННЫЙ ТРАНСФОРМАТОР
Образование ПРИВЕДЕННЫЙ ТРАНСФОРМАТОР
Количество просмотров публикации ПРИВЕДЕННЫЙ ТРАНСФОРМАТОР - 170
Наименование параметра | Значение |
Тема статьи: | ПРИВЕДЕННЫЙ ТРАНСФОРМАТОР |
Рубрика (тематическая категория) | Образование |
В общем случае параметры первичной обмотки трансформатора отличаются от параметров вторичной обмотки. Разница наиболее ощутима при больших коэффициентах трансформации, что затрудняет расчёты и (особенно) построение векторных диаграмм. Векторы электрических величин, относящиеся к первичной обмотке, значительно отличаются по своей длине от одноименных векторов вторичной обмотки. Затруднения можно устранить, в случае если привести все параметры трансформатора к одинаковому числу витков, к примеру, к w1. С этой целью параметры вторичной обмотки пересчитываются на число витков w1. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, вместо реального трансформатора с коэффициентом трансформации получают эквивалентный трансформатор с Такой трансформатор принято называть приведенным. Приведение параметров трансформатора не должно отразиться на его энергетическою процессе, ᴛ.ᴇ. все мощности и фазы вторичной обмотки должны остаться такими же, что и в реальном трансформаторе. Так, к примеру, в случае если полная мощность вторичной обмотки реального трансформатора то она должна быть равна полной мощности вторичной обмотки приведенного трансформатора:
Используя ранее полученное выражение I 2' = I2 w2/w1, напишем выражение для E2':
Приравняем теперь активные мощности вторичной обмотки:
Определим приведенное активное сопротивление:
по аналогии:
Уравнения ЭДС и токов для приведенного трансформатора теперь будут иметь вид:
ПРИВЕДЕННЫЙ ТРАНСФОРМАТОР - понятие и виды. Классификация и особенности категории "ПРИВЕДЕННЫЙ ТРАНСФОРМАТОР" 2014, 2015.
Читайте также
В общем случае параметры первичной обмотки трансформатора отличаются от параметров вторичной обмотки, Особенно это проявляется при больших коэффициентах трансформации, что затрудняет расчеты трансформаторов. Указанные затруднения устраняются приведением всех... [читать подробнее].
В общем случае параметры первичной обмотки трансформатора отличаются от параметров вторичной обмотки, Особенно это проявляется при больших коэффициентах трансформации, что затрудняет расчеты трансформаторов. Указанные затруднения устраняются приведением всех... [читать подробнее].
Для упрощения анализа и расчета режимов работы трансформатора пользуются способом, при котором одна из его обмоток приводится к другой. Смысл приведения состоит в том, чтобы сделать ЭДС первичной и вторичной обмоток одинаковыми, электромагнитную связь между обмотками... [читать подробнее].
Для упрощения анализа и расчета режимов работы трансформатора пользуются способом, при котором одна из его обмоток приводится к другой. Смысл приведения состоит в том, чтобы сделать ЭДС первичной и вторичной обмоток одинаковыми, электромагнитную связь между обмотками... [читать подробнее].
Для удобства анализов процессов происходящих в трансформаторе и построения векторной диаграммы реальный трансформатор заменяют приведенным. Приведенным называют трансформатор, в котором число витков первичной обмотки равно числу витков вторичной. При этом все... [читать подробнее].
referatwork.ru