Eng Ru
Отправить письмо

7.4. Расчет потерь мощности в трансформаторах. Потери мощности в трансформаторе


Потери мощности в трансформаторе

Потери мощности в трансформаторе КПД трансформатора никогда не достигает 100 %, поскольку в нём всегда присутствуют потери электроэнергии. Потери в трансформаторах принято разделять на два вида: потери в меди (медные витки обмоток) и потери в стали (материал сердечника).

Потери в меди возникают из-за собственного сопротивления медного проводника. Ток, протекая по обмотке, обуславливает некоторое падение напряжения, которое и является потерей мощности. При этом электрическая энергия преобразуется в тепловую, которая разогревает обмотку.

Потери в стали в свою очередь состоят из потерь, вызванных вихревыми токами, и обусловленых циклическим перемагничиванием (гистерезис).

сердечник трансформатора

Вихревые токи возникают в проводнике, который находится в переменном магнитном поле. Этим условиям удовлетворяет стальной сердечник, на который намотаны медные витки. В нем постоянно возникают вихревые токи, величина которых может достигать достаточно больших значений, из-за которых в свою очередь происходит нагрев сердечника.

Величина потерь, вызванных необходимостью циклического перемагничивания определяется в первую очередь качеством стали, из которой сделан сердечник. В сердечнике как бы находится большое количество диполей, которые под действием переменного магнитного поля периодически изменяют своё направление (поворачиваются с периодичностью изменения магнитного поля). В ходе пространственного изменения положения диполей возникают механические силы трения между ними, что вызывает дополнительный нагрев сердечника. Таким образом происходит преобразование магнитной энергии в тепловую (потери мощности на гистерезис).

Чтобы снизить эти потери, применяется ряд мер. Потери, вызванные циклическим перемагничиванием, могут быть уменьшены, если использовать специальный структурированный особым образом магнитомягкий материал для изготовления сердечника (электротехническая сталь). Такой материал обладает большой магнитной проницаемостью, но при этом малой коэрцитивной силой.

Для снижения потерь в меди применяется увеличение сечения проводников обоих обмоток, при этом электросопротивление их уменьшается. С другой стороны, это вызывает увеличение стоимости и веса трансформатора, поэтому достаточным считается такое сечение, при котором не возникает заметного нагрева обмоток.

Чтобы уменьшить вихревые токи, сердечник выполняется не в виде единого монолитного блока, а собирается из множества электроизолированных пластин. Толщина каждой из них может равняться всего нескольким десятым долям миллиметра. Также электрическую проводимость сильно снижает специально вводимый в сталь легирующий элемент — кремний.

Комплексное использование мер по снижению потерь мощности позволяет довести КПД трансформаторов до 85-90%.

pue8.ru

Потери в трансформаторе: определение, расчет и формула

Трансформатор является прибором, который призван преобразовывать электроэнергию сети. Эта установка имеет две или больше обмоток. В процессе своей работы трансформаторы могут преобразовать частоту и напряжение тока, а также количество фаз сети.

В ходе выполнения заданных функций наблюдаются потери мощности в трансформаторе. Они влияют на исходную величину электричества, которую выдает на выходе прибор. Что собой представляют потери и КПД трансформатора, будет рассмотрено далее.

Устройство

Трансформатор представляет собой статический прибор. Он работает от электричества. В конструкции при этом отсутствуют подвижные детали. Поэтому рост затрат электроэнергии вследствие механических причин исключены.

При функционировании силовой аппаратуры затраты электроэнергии увеличиваются в нерабочее время. Это связано с ростом активных потерь холостого хода в стали. При этом наблюдается снижение нагрузки номинальной при увеличении энергии реактивного типа. Потери энергии, которые определяются в трансформаторе, относятся к активной мощности. Они появляются в магнитоприводе, на обмотках и прочих составляющих агрегата.

Понятие потерь

При работе установки часть мощности поступает на первичный контур. Она рассеивается в системе. Поэтому поступающая мощность в нагрузку определяется на меньшем уровне. Разница составляет суммарное снижение мощности в трансформаторе.

потери электроэнергии в трансформаторах

Существует два вида причин, из-за которых происходит рост потребление энергии оборудованием. На них влияют различные факторы. Их делят на такие виды:

  1. Магнитные.
  2. Электрические.

Их следует понимать, дабы иметь возможность снизить электрические потери в силовом трансформаторе.

Магнитные потери

В первом случае потери в стали магнитопривода состоят из вихревых токов и гистериза. Они прямо пропорциональны массе сердечника и его магнитной индукции. Само железо, из которого выполнен магнитопривод, влияет на эту характеристику. Поэтому сердечник изготавливают из электротехнической стали. Пластины делают тонкими. Между ними пролегает слой изоляции.

Также на снижение мощности трансформаторного устройства влияет частота тока. С ее повышением растут и магнитные потери. На этот показатель не влияет изменение нагрузки устройства.

Электрические потери

Снижение мощности может определяться в обмотках при их нагреве током. В сетях на такие затраты приходится 4-7% от общего количества потребляемой энергии. Они зависят от нескольких факторов. К ним относятся:

  • Электрическая нагрузка системы.
  • Конфигурация внутренних сетей, их длина и размер сечения.
  • Режим работы.
  • Средневзвешенный коэффициент мощности системы.
  • Расположение компенсационных устройств.

Потери мощности в трансформаторах являются величиной переменной. На нее влияет показатель квадрата тока в контурах.

Методика расчета

Потери в трансформаторах можно рассчитать по определенной методике. Для этого потребуется получить ряд исходных характеристик работы трансформатора. Представленная далее методика применяется для двухобмоточных разновидностей. Для измерений потребуется получить следующие данные:

  • Номинальный показатель мощности системы (НМ).
  • Потери, определяемые при холостом ходе (ХХ) и номинальной нагрузке.
  • Потери короткого замыкания (ПКЗ).
  • Количество потребленной энергии за определенное количество времени (ПЭ).
  • Полное количество отработанных часов за месяц (квартал) (ОЧ).
  • Число отработанных часов при номинальном уровне нагрузки (НЧ).

Получив эти данные, измеряют коэффициент мощности (угол cos φ). Если же в системе отсутствует счетчик реактивной мощности, в расчет берется ее компенсация tg φ. Для этого происходит измерение тангенса угла диэлектрических потерь. Это значение переводят в коэффициент мощности.

потери в трансформаторе

Формула расчета

Коэффициент нагрузки в представленной методике будет определяться по следующей формуле:

К = Эа/НМ*ОЧ*cos φ, где Эа – количество активной электроэнергии.

Какие потери происходят в трансформаторе в период загрузки, можно просчитать по установленной методике. Для этого применяется формула:

П = ХХ * ОЧ * ПКЗ * К² * НЧ.

Таблица потерь в трансформаторе

Расчет для трехобмоточных трансформаторов

Представленная выше методика применяется для оценки работы двухобмоточных трансформаторов. Для аппаратуры с тремя контурами необходимо учесть еще ряд данных. Они указываются производителем в паспорте.

В расчет включают номинальную мощность каждого контура, а также их потери короткого замыкания. При этом расчет будет производиться по следующей формуле:

Э = ЭСН + ЭНН, где Э – фактическое количество электричества, которое прошло через все контуры; ЭСН – электроэнергия контура среднего напряжения; ЭНН – электроэнергия низкого напряжения.

потери мощности в трансформаторе

Пример расчета

Чтобы было проще понять представленную методику, следует рассмотреть расчет на конкретном примере. Например, необходимо определить увеличение потребления энергии в силовом трансформаторе 630 кВА. Исходные данные проще представить в виде таблицы.

ОбозначениеРасшифровкаЗначение
НННоминальное напряжение, кВ
6
ЭаАктивная электроэнергия, потребляемая за месяц, кВи*ч37106
НМНоминальная мощность, кВА630
ПКЗПотери короткого замыкания трансформатора, кВт7,6
ХХПотери холостого хода, кВт1,31
ОЧЧисло отработанных часов под нагрузкой, ч 720
cos φКоэффициент мощности 0,9

На основе полученных данных можно произвести расчет. Результат измерения будет следующий:

К² = 4,3338

П = 0,38 кВТ*ч

% потерь составляет 0,001. Их общее число равняется 0,492%.

Диаграмма потерь в трансформаторе

Измерение полезного действия

При расчете потерь определяется также показатель полезного действия. Он показывает соотношение мощности активного типа на входе и выходе. Этот показатель рассчитывают для замкнутой системы по следующей формуле:

КПД = М1/М2, где М1 и М2 – активная мощность трансформатора, определяемая измерением на входном и исходящем контуре.

Выходной показатель рассчитывается путем умножения номинальной мощности установки на коэффициент мощности (косинус угла j в квадрате). Его учитывают в приведенной выше формуле.

В трансформаторах 630 кВА, 1000 кВА и прочих мощных устройствах показатель КПД может составлять 0,98 или даже 0,99. Он показывает, насколько эффективно работает агрегат. Чем выше КПД, тем экономичнее расходуется электроэнергия. В этом случае затраты электроэнергии при работе оборудования будут минимальными.

Рассмотрев методику расчета потерь мощности трансформатора, короткого замыкания и холостого хода, можно определить экономичность работы аппаратуры, а также ее КПД. Методика расчета предполагает применять особый калькулятор или производить расчет в специальной компьютерной программе.

protransformatory.ru

20. Определение потерь мощности и энергии в силовых трансформаторах

Потери мощности в трансформаторах складываются из потерь активной и реактивной мощности. Активные потери состоят из потерь, идущих на нагрев обмоток трансформатора и потерь зависящих от тока нагрузки, потерь на нагрев стали не зависящих от нагрузки.

Потери на нагрев обмоток

где RT– активное сопротивление трансформатора

РМ– активные потери в меди обмотки, кВт

SН– номинальная мощность трансформатора, кВА.

Полные активные потери определяются суммой выше названных потерь

где РСТ– потери в стали, кВт.

При известной нагрузке по паспортным данным можно рассчитать потери

или

где - коэффициент загрузки трансформатора,

РМ.Н– номинальные активные потери в меди.

Реактивные потери - потери, вызванные рассеянием магнитного потока в трансформаторе, зависящие от тока нагрузки и потерь на намагничивание.

Потери вызванные рассеянием магнитного потока

xТ– реактивное сопротивление обмоток трансформатора, равное

UК– напряжение короткого замыкания трансформатора, %

Полные реактивные потери трансформатора, также определяются суммой потерь

где

- ток холостого тока, %

Полные реактивные потери с учетом каталожных данных трансформатора

или

При передаче реактивной мощности появляются потери активной мощности, определяемые экономическим эквивалентом реактивной мощности kЭК. Приведенные потери активной мощности на холостом ходу с учетом передачи реактивной мощности определяются

Приведенные потери активной мощности при коротком замыкании с учетом передачи реактивной мощности определяются

При наличии на ПС nодинаковыхпараллельно работающих трансформаторов, приведенные активные потери мощности составят

Для практических расчетов потери мощности в трансформаторах рассчитываются по выражениям:

активные потери

,

где n– число трансформаторов подстанции,

- паспортные данные трансформатора,

- коэффициент загрузки трансформатора,

реактивные потери

,

где - потери в режиме ХХ и режиме КЗ.

Значения потерь учитываются при определении мощности нагрузки на высоком напряжении трансформатора в форме Ф202-90 таблицы электрических нагрузок.

Потери электроэнергии в в трансформаторах

Потери активной электроэнергии в меди можно определить по потерям мощности в меди РМ, максимальной нагрузке SPи времени потерь . Время потерь определяетсяпо кривым рисунок 7.1, гдеприниматся неизменным за определенное время (сутки, год).

Потери активной электроэнерги в стали определяются потерями мощности на холостом ходу и продолжительностью включения трансформатора

где РСТ=РХХ

Суммарные активные потери электроэнергии

(7.18)

Суммарные реактивные потери электроэнергии определяются по реактивным потерям мощности с учетом времени потерь и времени включения трансформатора

или

21. Мероприятия по снижению потерь мощности и напряжения.

Составляющие потерь мощности и напряжения, зависимость от показателей качества напряжения. Пути снижения потерь.

Пути снижения потерь электроэнергии

1) Рациональный выбор числа и мощности трансформаторов

2) Исключение режима ХХ при малых загрузках

3) Количество одновременно работающих трансформаторов выбирается из условия минимума потерь

4) Снижение потерь в линиях снижением сопротивления (параллельное включение)

5) Повышение уровня напряжения

6) При выборе схемы электроснабжения принимать вариант без реактора или с минимальными потерями в реакторе

7) Формирование более равномерного графика нагрузки. Это позволит снизить суммарный максимум нагрузки при неизменяемой установленной мощности и обеспечить питание большего числа потребителей

8) Снижение активного сопротивления шинопроводов, что достигается соответствующим расположением шин и конфигурацией шинного пакета (2-4 полосы на фазу)

9) Экономное и рациональное использование расходование электроэнергии, чему способствует чистота световых проемов, чистка светильников, побелка помещений, правильное размещение осветительных приборов, своевременное включение и отключение светильников, применение энергосберегающих ламп.

studfiles.net

Расчет потерь мощности в трансформаторах

Потери активной и реактивной мощности в трансформаторах и автотрансформаторах разделяются на потери в стали и потери в меди (нагрузочные потери). Потери в стали – это потери в проводимостях трансформаторов. Они зависят от приложенного напряжения. Нагрузочные потери – это потери в сопротивлениях трансформаторов. Они зависят от тока нагрузки.

Потери активной мощности в стали трансформаторов – это потери на перемагничивание и вихревые токи. Определяются потерями холостого хода трансформатора , которые приводятся в его паспортных данных.

Потери реактивной мощности в стали определяются по току холостого хода трансформатора, значение которого в процентах приводится в его паспортных данных:

Потери мощности в обмотках трансформатора можно определить двумя путями:

Потери мощности по параметрам схемы замещения определяются по тем же формулам, что и для ЛЕП:

,

где S – мощность нагрузки;

U– линейное напряжение на вторичной стороне трансформатора.

Для трехобмоточного трансформатора или автотрансформатора потери в меди определяются как сумма потерь мощности каждой из обмоток.

Получим выражения для определения потерь мощности по паспортным данным двухобмоточного трансформатора.

Потери короткого замыкания, приведенные в паспортных данных, определены при номинальном токе трансформатора

(7.1)

При любой другой нагрузке потери в меди трансформатора равны

(7.2)

Разделив выражение (7.1) на (7.2), получим

Откуда найдем :

Если в выражение для расчета , подставить выражение для определения реактивного сопротивления трансформатора, то получим:

Таким образом, полные потери мощности в двухобмоточном трансформаторе равны:

Если на подстанции с суммарной нагрузкой S работает параллельноnодинаковых трансформаторов, то их эквивалентные сопротивления вn раз меньше, а проводимости вn раз больше. Тогда,

Для n параллельно работающих одинаковых трехобмоточных трансформаторов (автотрансформаторов) потери мощности рассчитываются по формулам:

где Sв,Sс,Sн– соответственно мощности, проходящие через обмотки высшего, среднего и низшего напряжений трансформатора.

Приведенные и расчетные нагрузки потребителей

Расчетная схема замещения участка сети представляет собой довольно сложную конфигурацию, если учитывать полную схему замещения ЛЕП и трансформаторов. Для упрощения расчетных схем сетей с номинальным напряжением до 220 кВ включительно вводят понятие “приведенных”, “расчетных” нагрузок.

Приведенная к стороне высшего напряжения нагрузка потребительской ПС представляет собой сумму заданных мощностей нагрузок на шинах низшего и среднего напряжений и потерь мощности в сопротивлениях и проводимостях трансформаторов. Приведенная к стороне высшего напряжения нагрузка ЭС представляет собой сумму мощностей генераторов за вычетом нагрузки местного района и потерь мощности в сопротивлениях и проводимостях трансформаторов.

Расчетная нагрузкка ПС или ЭС определяется как алгебраическая сумма приведенной нагрузки и половин зарядных мощностей ЛЕП, присоединенных к шинам высшего напряжения ПС или ЭС.

Зарядные мощности определяются до расчета режима по номинальному, а не реальному напряжению, что вносит вполне допустимую погрешность в расчет.

Возможность упрощения расчетной схемы при использовании понятий “при-веденных” и “расчетных” нагрузок показано на рис. 7.3:

studfiles.net

Расчет потерь мощности в трансформаторах

Потери активной и реактивной мощности в трансформаторах и автотрансформаторах разделяются на потери в стали и потери в меди (нагрузочные потери). Потери в стали – это потери в проводимостях трансформаторов. Они зависят от приложенного напряжения. Нагрузочные потери – это потери в сопротивлениях трансформаторов. Они зависят от тока нагрузки.

Потери активной мощности в стали трансформаторов – это потери на перемагничивание и вихревые токи. Определяются потерями холостого хода трансформатора , которые приводятся в его паспортных данных.

Потери реактивной мощности в стали определяются по току холостого хода трансформатора, значение которого в процентах приводится в его паспортных данных:

Потери мощности в обмотках трансформатора можно определить двумя путями:

Потери мощности по параметрам схемы замещения определяются по тем же формулам, что и для ЛЕП:

,

где S – мощность нагрузки;

U– линейное напряжение на вторичной стороне трансформатора.

Для трехобмоточного трансформатора или автотрансформатора потери в меди определяются как сумма потерь мощности каждой из обмоток.

Получим выражения для определения потерь мощности по паспортным данным двухобмоточного трансформатора.

Потери короткого замыкания, приведенные в паспортных данных, определены при номинальном токе трансформатора

(7.1)

При любой другой нагрузке потери в меди трансформатора равны

(7.2)

Разделив выражение (7.1) на (7.2), получим

Откуда найдем :

Если в выражение для расчета , подставить выражение для определения реактивного сопротивления трансформатора, то получим:

Таким образом, полные потери мощности в двухобмоточном трансформаторе равны:

Если на подстанции с суммарной нагрузкой S работает параллельноnодинаковых трансформаторов, то их эквивалентные сопротивления вn раз меньше, а проводимости вn раз больше. Тогда,

Для n параллельно работающих одинаковых трехобмоточных трансформаторов (автотрансформаторов) потери мощности рассчитываются по формулам:

где Sв,Sс,Sн– соответственно мощности, проходящие через обмотки высшего, среднего и низшего напряжений трансформатора.

Приведенные и расчетные нагрузки потребителей

Расчетная схема замещения участка сети представляет собой довольно сложную конфигурацию, если учитывать полную схему замещения ЛЕП и трансформаторов. Для упрощения расчетных схем сетей с номинальным напряжением до 220 кВ включительно вводят понятие “приведенных”, “расчетных” нагрузок.

Приведенная к стороне высшего напряжения нагрузка потребительской ПС представляет собой сумму заданных мощностей нагрузок на шинах низшего и среднего напряжений и потерь мощности в сопротивлениях и проводимостях трансформаторов. Приведенная к стороне высшего напряжения нагрузка ЭС представляет собой сумму мощностей генераторов за вычетом нагрузки местного района и потерь мощности в сопротивлениях и проводимостях трансформаторов.

Расчетная нагрузкка ПС или ЭС определяется как алгебраическая сумма приведенной нагрузки и половин зарядных мощностей ЛЕП, присоединенных к шинам высшего напряжения ПС или ЭС.

Зарядные мощности определяются до расчета режима по номинальному, а не реальному напряжению, что вносит вполне допустимую погрешность в расчет.

Возможность упрощения расчетной схемы при использовании понятий “при-веденных” и “расчетных” нагрузок показано на рис. 7.3:

studfiles.net

Потери мощности в трансформаторах

5.2. Потери мощности в трансформаторах

          Передача мощности через трансформаторы также сопровождаются потерями мощности. При этом потери мощности в активной  и реактивной   проводимостях трансформатора определяются уровнем подведенного к нему напряжения

                                                                                                             (5.8)

                                                                                                            (5.9)

В таком виде потери мощности учитываются при расчете трансформаторов высоких классов напряжения.

          Как видно, они не зависят от передаваемой  через трансформатор мощности и могут находиться по паспортным данным  и  ().

          Заметим, что определение потерь мощности холостого хода не зависит от типа трансформатора.

          Потери мощности в сопротивлениях обмоток разных трансформаторов находятся по разному, так как они характеризуются различными схемами замещения.

          В двухобмоточном трансформаторе, где обе обмотки представляются одним сопротивлением, потери активной мощности в активном сопротивлении  определяют по выражению

                                   ,                                       (5.10)

а реактивной мощности в реактивном сопротивлении

                                                                        (5.11)

В эти формулы значения тока и напряжения подставляется для той обмотки трансформатора, к которой были приведены сопротивления  и  (см. формулы (4.15) и (4.16)). Данные потери главным образом зависят от передаваемой через трансформатор мощности от уровня подведенного к нему напряжения.

          Отметим, что потери мощности в обмотках и потери холостого хода по разному зависят от напряжения.

          Суммарные активные и реактивные потери в двухобмоточных трансформаторах с учетом потерь в проводимостях составят

                                                                        (5.12)

                                                                      (5.13)

Потери мощности в трансформаторе могут быть определены по его паспортным данным и мощности нагрузки

                                     ;                                                    (5.14)

                                                                                             (5.15)

Здесь отношение  называется коэффициентом загрузки трансформатора. Видно, что при  потери мощности в трансформаторе

          Отметим, что расчет потерь мощности по формулам (5.14) и (5.15) возможно и более простой, но менее точный, так как не учитывает влияния уровня напряжения на результат расчета.

          Если на подстанции с суммарной нагрузкой S работают параллельно n одинаковых трансформаторов, то их эквивалентные сопротивления в n раз меньше, а проводимости в n раз больше. С учетом этого формулы (5.14) и (5.15) можно записать так:

                                                                                        (5.16)

                                                                                          (5.17)

          В трансформаторах с расщепленной обмоткой при раздельной работе обмоток низшего напряжения  на свою нагрузку (рис.5.2) потери мощности находят по формулам

                                                                                   (5.18)

                                                                                (5.19)

          В трехобмоточном трансформаторе в схеме замещения каждая обмотка представляется своим сопротивлением, и по каждой из них передается разная мощность (рис.5.3). Поэтому формулы (5.12-5.15) для них примут следующий вид

                                                 (5.20)

                                ,                 (5.21)

где 1, 2, 3 - обозначения параметров соответственно обмоток высшего, среднего и низшего напряжения.

vunivere.ru

7.4. Расчет потерь мощности в трансформаторах

Потери активной и реактивной мощности в трансформаторах и автотрансформаторах разделяются на потери в стали и потери в меди (нагрузочные потери). Потери в стали – это потери в проводимостях трансформаторов. Они зависят от приложенного напряжения. Нагрузочные потери – это потери в сопротивлениях трансформаторов. Они зависят от тока нагрузки.

Потери активной мощности в стали трансформаторов – это потери на перемагничивание и вихревые токи. Определяются потерями холостого хода трансформатора , которые приводятся в его паспортных данных.

Потери реактивной мощности в стали определяются по току холостого хода трансформатора, значение которого в процентах приводится в его паспортных данных:

Потери мощности в обмотках трансформатора можно определить двумя путями:

Потери мощности по параметрам схемы замещения определяются по тем же формулам, что и для ЛЭП:

,

где S – мощность нагрузки;

U – линейное напряжение на вторичной стороне трансформатора.

Для трехобмоточного трансформатора или автотрансформатора потери в меди определяются как сумма потерь мощности каждой из обмоток.

Получим выражения для определения потерь мощности по паспортным данным двухобмоточного трансформатора.

Потери короткого замыкания, приведенные в паспортных данных, определены при номинальном токе трансформатора

(7.1)

При любой другой нагрузке потери в меди трансформатора равны

(7.2)

Разделив выражение (7.1) на (7.2), получим

Откуда найдем :

Если в выражение для расчета , подставить выражение для определения реактивного сопротивления трансформатора, то получим:

Таким образом, полные потери мощности в двухобмоточном трансформаторе равны:

Если на подстанции с суммарной нагрузкой S работает параллельно n одинаковых трансформаторов, то их эквивалентные сопротивления в n раз меньше, а проводимости в n раз больше. Тогда,

Для n параллельно работающих одинаковых трехобмоточных трансформаторов (автотрансформаторов) потери мощности рассчитываются по формулам:

где Sв, Sс, Sн – соответственно мощности, проходящие через обмотки высшего, среднего и низшего напряжений трансформатора.

7.5. Приведенные и расчетные нагрузки потребителей

Расчетная схема замещения участка сети представляет собой довольно сложную конфигурацию, если учитывать полную схему замещения ЛЭП и трансформаторов. Для упрощения расчетных схем сетей с номинальным напряжением до 220 кВ включительно вводят понятие “приведенных”, “расчетных” нагрузок.

Приведенная к стороне высшего напряжения нагрузка потребительской ПС представляет собой сумму заданных мощностей нагрузок на шинах низшего и среднего напряжений и потерь мощности в сопротивлениях и проводимостях трансформаторов. Приведенная к стороне высшего напряжения нагрузка ЭС представляет собой сумму мощностей генераторов за вычетом нагрузки местного района и потерь мощности в сопротивлениях и проводимостях трансформаторов.

Расчетная нагрузкка ПС или ЭС определяется как алгебраическая сумма приведенной нагрузки и половин зарядных мощностей ЛЭП, присоединенных к шинам высшего напряжения ПС или ЭС.

Зарядные мощности определяются до расчета режима по номинальному, а не реальному напряжению, что вносит вполне допустимую погрешность в расчет.

Возможность упрощения расчетной схемы при использовании понятий “при-веденных” и “расчетных” нагрузок показано на рис. 7.3:

Рисунок 7.3 – Этапы упрощения расчетной схемы:

а) исходная схема; б) полная схема замещения;

в) схема замещения с приведенной нагрузкой;

г) схема замещения с расчетной нагрузкой

studfiles.net


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта