Eng Ru
Отправить письмо

Правильный выбор трансформатора тока для счетчика. Типы трансформаторов тока


Классификация трансформаторов тока | Заметки электрика

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока_12

Добро пожаловать на страницы сайта «Заметки электрика».

В прошлой статье я рассказал Вам про трансформаторы тока и их назначение.

Но в настоящее время на рынке существует большой выбор и разнообразие трансформаторов тока. И чтобы Вам было легче ориентироваться среди  них, необходимо их классифицировать.

Вот сегодня мы и поговорим об их разновидностях и классификации.

Классификация ТТ по назначению

Как разделяются трансформаторы тока по назначению, я подробно описал в статье про применение и назначение трансформаторов тока.

Еще существуют лабораторные трансформаторы тока, о которых я не упомянул в вышесказанной статье. Эти лабораторные ТТ имеют высокий класс точности и имеют несколько коэффициентов трансформации.

Так выглядит лабораторный трансформатор тока УТТ-6м1, установленный на моем рабочем стенде для проверки релейной защиты. Также мы его используем для измерения тока в первичной цепи при прогрузке автоматических выключателей более 100 (А).

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

Сейчас я подробно на нем останавливаться не буду. Расскажу о нем в отдельной статье. Кому интересно, то можете подписываться на статьи (в правой колонке сайта) и получать уведомление на почту о выходе новой статьи на сайте.

Классификация трансформаторов тока по месту установки

По месту установки трансформаторов тока их можно классифицировать следующим образом:

  • наружные

  • внутренние

  • встроенные

  • переносные

  • специальные

Наружные трансформаторы тока могут устанавливаться на открытом воздухе, т.е. это может быть открытое распределительное устройство (ОРУ). Категория размещения электрооборудования в данном случае является I и регламентируется ГОСТ 15150-69.

На фотографии ниже показаны трансформаторы тока наружной установки, установленные на стороне 110 (кВ).

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

Внутренние трансформаторы тока могут быть установлены только в закрытых помещениях. Это может быть закрытое распределительное устройство (ЗРУ), так и комплектное распределительное устройство (КРУ), а также все помещения закрытого типа, регламентируемого ГОСТом 15150-69.

Пример внутренней установки трансформаторов тока смотрите на фотографиях ниже.

Вот установка высоковольтного трансформатора тока  ТПШЛ-10 в ЗРУ-110 (кВ). Этот трансформатор стоит в цепи короткозамыкателя.

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

На фотографии ниже показан пример установки высоковольтных трансформаторов тока ТПЛ-10 в кабельном отсеке ячейки КРУ напряжением 10 (кВ).

transformatory_toka_трансформаторы_тока

Это трансформаторы ТПФМ-10 на одной из распределительных подстанций 10 (кВ).

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока_11

А это несколько примеров низковольтных трансформаторов тока внутренней установки: КЛ-0,66 и ТТИ-А.

Встроенные трансформаторы тока встраиваются в силовые трансформаторы, выключатели, генераторы и другие электрические машины. В качестве внутренней среды электрооборудования применяется трансформаторное масло или газ.

Пример встроенных ТТ Вы можете посмотреть на фотографии ниже. Эти трансформаторы тока ТВТ встроены в бак силового трансформатора 110/10 (кВ) мощностью 40 (МВА). Они установлены на стороне 110 (кВ) и основная цель их установки — это осуществление дифференциальной защиты трансформатора.

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

Переносные ТТ применяются для  лабораторных электрических измерений и испытаний электрооборудования. Примером переносного трансформатора тока является лабораторный трансформатор тока, о котором я говорил в самом начале статьи.

Специальные ТТ предназначаются и устанавливаются в специальных электроустановках шахт, морских судов, электровозов. Сюда можно отнести трансформаторы тока, установленные в силовой цепи питания электрических печей высокой частоты. Мне лично не приходилось их видеть своими глазами.

Разделение ТТ по способу установки

По способу установки трансформаторов тока их можно классифицировать следующим образом:

  • проходные

  • опорные

Проходные ТТ применяют тогда, когда необходимо их установить в проеме стены или металлической поверхности (основания).  Чаще всего они применяются в качестве вводов, а также на старых подстанциях с бетонным распределительным устройством (БРУ), по особенностям конструкций бетонных перегородок. Проходные трансформаторы тока играют роль проходного изолятора.

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

Как видно по фотографиям, проходные трансформаторы тока легко узнать по особенностям расположения выводов первичной обмотки. Один вывод всегда расположен вверху, другой — внизу.

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

Опорные трансформаторы тока применяют и устанавливают на ровную опорную плоскость.

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

Отличительной особенностью опорных трансформаторов тока является то, что вывода первичной обмотки располагаются либо все вверху, либо один вывод слева, другой — справа.

Классификация трансформаторов тока по коэффициенту трансформации

В чем же заключается классификация трансформаторов тока по коэффициенту трансформации?

Трансформаторы тока бывают:

  • с одним постоянным коэффициентом трансформации (одноступенчатые)

  • с несколькими коэффициентами трансформации (многоступенчатые)

Трансформаторы тока с одним коэффициентом трансформации имеют на протяжении всего срока их службы и  эксплуатации один постоянный коэффициент, который никаким образом изменить нельзя. Они и нашли самое широкое применение.

У трансформаторов тока с несколькими коэффициентами трансформации можно изменить этот коэффициент путем несложных манипуляций. Например, изменить число витков обмоток, как первичной, так и вторичной.

Опять же в пример Вам привожу свой лабораторный трансформатор тока УТТ-6м1.

Классификация трансформаторов тока по первичной обмотке

По конструкции первичной обмотки, трансформаторы тока можно разделить следующим образом:

Об этом мы поговорим с Вами в отдельной статье про одновитковые и многовитковые трансформаторы тока, т.к. материала по этой теме очень много.

Разделение ТТ по типу изоляции

Суть этого разделения заключается в способах изоляции обмоток трансформатора тока (первичной и вторичной). Существует следующие способы изоляции обмоток между собой:

  • твердая изоляция
  • вязкая изоляция
  • смешанная изоляция
  • газовая изоляция

Под твердой изоляцией подразумевается использование фарфора, полимерных материалов, бакелита, капрона и эпоксидной изоляции (смолы).

Вязкая изоляция состоит из компаундов различных составов.

Под смешанной изоляцией понимают бумажно-масляную изоляцию.

В качестве газовой изоляции применяется воздух или элегаз.

Классификация ТТ по методу преобразования

Классификация трансформаторов тока по методу преобразования заключается в самом принципе преобразования переменного электрического тока.

Различают следующие методы преобразования:

Классификация трансформаторов тока по классу напряжения

Ну вот мы и добрались до класса напряжения. И конечно же трансформаторы тока тоже по ним делятся. Деление происходит очень легко и просто:

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

Разницу по классу напряжения трансформаторов тока видно не вооруженным глазом.

 

Выводы

Из опыта эксплуатации и технического обслуживания трансформаторов тока на подстанциях своего предприятия скажу, что чаще всего трансформаторы тока с классом напряжения от 3-10 (кВ) выполняются проходными, реже опорными. Все они предназначены для внутренней установки и имеют один коэффициент трансформации. Также у них используется 2 вторичные обмотки, одна из которых используется для цепей измерения и учета электроэнергии, а другая — для релейной защиты.

P.S. Если Вам необходимо узнать все классификационные характеристики конкретного трансформатора тока, то воспользуйтесь его паспортом. Если во время прочтения статьи у Вас появились вопросы, то смело задавайте их в комментариях.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:

zametkielectrika.ru

Виды трансформаторов тока

Трансформатор тока является устройством, предназначение которого состоит в изменении значения напряжения в сетях переменного тока. Основой работы каждого трансформатора служит электромагнитная индукция. Когда первичная обмотка подключается к переменному току, то происходит генерация магнитного поля, вызывающее электродвижущую силу во вторичной обмотке.

Какие типы трансформаторов тока бывают

По своему назначению бывают измерительными, защитными, промежуточными, лабораторными. По количеству ступеней они могут быть одноступенчатыми и многоступенчатыми. Исходя из значения номинального напряжения, трансформаторы бывают высоковольтными и низковольтными. Могут устанавливаться внутри и снаружи, на опорах и шинах. Кроме того, трансформаторы изготавливаются в переносном и стационарном варианте.

Наибольшее распространение получили силовые трансформаторы. Они изменяют в электросетях энергетических систем энергию переменного тока. То же самое осуществляется с сетями питания электрооборудования и освещения. Данные трансформаторы различаются между собой номинальным напряжением и количеством фаз.

Измерительные трансформаторы являются электротехническими устройствами, с помощью которых производятся измерения уровней напряжения с максимальной точностью. Их различия связаны с назначением, а также с изменением тока или уровня напряжения. При этом, вторичные обмотки измерительных трансформаторов соединяются с амперметрами, вольтметрами, электросчетчиками, реле тока, фазометрами и прочими приборами. Они изолируют измерительное оборудование от действия высоких напряжений и больших токов измеряемой цепи.

Особенности автотрансформаторов

Устройства с гальваническим соединением обмоток называются автотрансформаторами. Они обладают небольшим коэффициентом трансформации, поэтому, у них небольшие габариты и невысокая стоимость. Они предназначены для того, чтобы изменять напряжение пусковых устройств в больших электрических машинах переменного тока. С их помощью осуществляется плавное регулирование напряжения в различных видах систем релейной защиты. Кроме того, эти устройства очень часто устанавливаются в стабилизаторы напряжения.

Для того, чтобы изменять импульсы тока или напряжения применяются импульсные трансформаторы, имеющие в своем устройстве ферромагнитный сердечник. Эти приборы, чаще всего используются в электронных вычислительных устройствах, в системах импульсной радиосвязи и радиолокации. Они успешно сохраняют форму импульса при изменениях, используя для этого уменьшение числа обмоток и смену взаимного положения.

Таким образом, все известные типы трансформаторов тока используются по конкретному назначению. Правильное применение, в значительной степени повышает эффективность их работы.

Классификация трансформаторов

electric-220.ru

Трансформаторы тока и напряжения

Для удобства измерения тока в установках высокого напряжения и для изоляции измерительных приборов и устройств релейной защиты от высокого напряжения служат трансформаторы тока (ТТ). ТТ имеет замкнутый магнитопровод с двумя обмотками. Через первичную обмотку пропускается измеряемый ток, вторичная подключается к измерительным приборам или реле. Первичная обмотка изолирована от вторичной в соответствии с классом изоляции аппарата. Один вывод вторичной обмотки обязательно заземляется.

Основными параметрами ТТ являются:

Номинальное напряжение - это линейное напряжение энергосистемы, в которой ТТ должен работать, которое определяет изоляцию между первичной обмоткой, находящейся под высоким потенциалом, и вторичной обмоткой, один конец которой заземляется.

Номинальный первичный и вторичный токи - это длительные токи, которые аппарат может пропускать. ТТ обычно имеют запас по нагреву и позволяют длительно пропускать токи, которые примерно на 20 % выше номинального значения. Номинальный вторичный ток ТТ равен 1 или 5 А.

Номинальный коэффициент трансформации - это отношение номинальных значений первичного и вторичного токов:

. (21.1)

Действительный коэффициент трансформации не равен номинальному вследствие погрешности, вызываемой потерями в трансформаторе. Различают токовую погрешность и угловую.

Токовая погрешность в процентах определяется выражением:

(21.2)

где - вторичный ток; - первичный приведенный ток.

В соответствии с ГОСТ 7746-78 приняты следующие условные положительные направления токов: первичного тока - ток втекает в начало первичной обмотки, вторичного - ток вытекает из начала вторичной обмотки. Обе обмотки намотаны в одну сторону. При таком положительном направлении токов в ТТ без погрешностей векторы вторичного и первичного токов совпадают по фазе. В реальном ТТ между векторами и существует угол, который называется угловой погрешностью и измеряется в минутах. Если вторичный ток опережает первичный, то погрешность по углу положительная. Угловую погрешность необходимо учитывать при измерении активной мощности цепи ( - угол сдвига между током и напряжением), а также при измерениях энергии и в ряде релейных защит, работа которых зависит от угла .

Класс точности трансформатора определяется его погрешностью по току (в процентах) при первичном токе, равном

В зависимости от погрешности по ГОСТ 7746- 78 различают классы точности 0,2; 0,5; 1; 3; 5; 10.

Наряду с токовой и угловой погрешностью ГОСТ 7746-78 предусмотрена полная погрешность ε, %, которая характеризует относительный намагничивающий ток:

(21.3)

где - действующее значение первичного тока;

- мгновенное значение вторичного тока;

- мгновенное значение первичного тока;

Т - период частоты переменного тока (0,02 с).

Номинальная нагрузка ТТ – это сопротивление нагрузки при котором он работает с заданным классом точности при номинальном значении Иногда применяется понятие номинальной мощности ТТ:

. (21.4)

Поскольку значение тока стандартизовано, то номинальное сопротивление нагрузки однозначно определяет номинальную мощность трансформатора.

Номинальная предельная кратность первичного тока по отношению к его номинальному значению, при которой полная погрешность достигает 5 или 10 %. Соответственно ТТ имеют класс точности 5Р и 10Р, при этом нагрузка и ее коэффициент мощности должны быть номинальными.

Максимальная кратность вторичного тока - это отношение наибольшего вторичного тока к его номинальному значению при номинальной вторичной нагрузке. Максимальная кратность вторичного тока определяется насыщением магнитопровода, когда дальнейшее возрастание первичного тока не ведет к возрастанию потока.

В аварийном режиме ТТ обтекаются током КЗ и их обмотки подвергаются воздействию больших токов.

Динамическая стойкость ТТ (кратность) – определяется отношением допустимого тока ударного КЗ к амплитуде номинального первичного тока.

Термическая стойкость ТТ (кратность) - задается отношением допустимого в течение 1 с тока КЗ к номинальному значению первичного тока.

Так как ток первичной обмотки задается сетью, то большим термическим и динамическим воздействиям подвергается первичная обмотка. Вторичный ток часто ограничивается насыщением магнитопровода, и поэтому вторичная обмотка работает в облегченных условиях.

Различают одно- и многовитковые трансформаторы тока. В одновитковом ТТ первичная обмотка может быть выполнена в виде стержня, шины или пакета шин. Примером такого исполнения является трансформатор типа ТПOЛ-I0 с номинальным напряжением 10 кВ (рис. 21.1), который используется, как проходной изолятор при переходе линии из одного помещения в другое.

Первичная обмотка-стержень 4, магнитопроводы 1, крепежное кольцо 3 устанавливаются в специальную форму и заливаются жидкой смесью эпоксидной смолы, пылевидного кварцевого песка и отвердителя. После затвердения и полимеризации эта смесь приобретает высокие электрические и механические свойства.

Магнитопроводы трансформатора выполняются в виде двух тороидальных сердечников 1, навитых лентой из текстурованного материала, например марки 3413. Если вторичная обмотка 2 равномерно распределена на тороидальном магнитопроводе, то ее индуктивное сопротивление X2схеме замещения равно нулю, что позволяет снизить погрешность измерения ТТ. Конструкция допускает установку нескольких ТТ с разными параметрами на одной стержневой первичной обмотке.

Рис. 21.1. Oднoвиткoвый ТТ типа ТПOЛ-10

 

Oдновитковые ТТ могут быть встроенными. В этом случае используются токоведущий стержень и изолятор другого аппарата или оборудования (выключателя, силового изолятора, проходного изолятора и др.).

Применение встроенных ТТ дает большой экономический эффект. На проходном изоляторе встроенных ТТ, как правило, устанавливается несколько ТТ, вторичные обмотки которых можно соединять последовательно или параллельно. При последовательном соединении вторичных обмоток коэффициент трансформации не изменяется, так как удваивается число первичных и вторичных витков.

Вторичный ток сохраняется неизменным, а вторичная ЭДС удваивается, что позволяет увеличить в 2 раза вторичную мощность. Для встроенных ТТ это очень важно, так как они удалены от реле и измерительных приборов, благодаря чему сопротивление соединяющих проводов получается большим. При параллельном соединении вторичных обмоток коэффициент трансформации уменьшается, так как первичные обмотки включаются последовательно. При этом вторичный ток двух ТТ увеличивается. Это даёт возможность получить вторичный ток, приближающийся к стандартному значению 5 А, например при первичном токе

Вторичные обмотки имеют отводы, которые позволяют в небольшом диапазоне регулировать коэффициент трансформации.

При малых первичных токах (ниже 400 А) для получения высокого класса точности применяются многовитковые ТТ. При любом значении первичного тока необходимая для данного класса точности первичная МДС получается за счет увеличения числа витков первичной обмотки W1. На рис. 21.2 показан многовитковый трансформатор тока на напряжение 10 кВ.

Рис. 21.2. Мнoгoвиткoвый ТТ

 

На прямоугольном шихтованном магнитопроводе 1 расположена вторичная обмотка 2. Первичная обмотка 3 выполняется из медной шины. Первичная обмотка выведена на контакты 5, вторичная - на контакты 6. Все детали ТТ залиты эпоксидным компаундом 4.

При КЗ на витки первичной обмотки действуют разрывающие электродинамические силы, что снижает стойкость ТТ. Кроме того, на первичной обмотке из-за ее относительно большой индуктивности может появиться значительное падение напряжения. Это является недостатком данной конструкции ТТ.

При напряжении 35 кВ и выше для открытых установок применяются ТТ с масляной изоляцией. Наиболее распространены ТТ так называемого звеньевого типа (рис. 21.3). Три тороидальных магнитопровода 1 со вторичными обмотками 2 охвачены первичной обмоткой 4, выполняемой мягким многожильным проводом, которая обычно имеет несколько параллельных ветвей (на рис. 21.3 две ветви).

При переходе с параллельного соединения на последовательное первичный номинальный ток трансформатора уменьшается в 2 раза.

Первичная и вторичная обмотки изолируются кабельной бумагой 5 толщиной 0,12 мм. После наложения изоляции магнитопровод с обмотками крепится к основанию ТТ с помощью лап 3.

К этому же основанию крепится фарфоровый кожух, который защищает обмотки от воздействия окружающей среды. Внутренняя полость ТТ после вакуумной сушки заполняется трансформаторным маслом. Масло пропитывает кабельную бумагу и заполняет все пустоты. Такие ТТ выполняются на напряжение до 220 кВ. Общий вид ТТ типа ТФН-35 на напряжение 35 кВ представлен на рис. 21.4.

Рис. 21.3. ТТ звеньевого типа

 

На рис. 21.4: 1 - вывод ветвей первичной обмотки; 2- вывод первичной обмотки; 3 – магнитопровод; 4 - вторичная обмотка; 5 - изоляция из кабельной бумаги; 6 – фарфоровая покрышка; 7 - трансформаторное масло.

При напряжении свыше 220 кВ применяют каскадные ТТ. На рис. 21.5,б показан двухступенчатый каскадный ТТ на напряжение 500 кВ. Схема включения его обмоток показана на рис. 21.5,а.

Общая компоновка ТТ показана на рис. 21.5,б. Каждая ступень представляет собой ТТ на напряжение аналогичный показанному на рис. 21.3. Вторичная обмотка первой ступени питает первичную обмотку второй ступени. При перевозке каждая ступень, залитая маслом, доставляется к месту установки отдельно. Стоимость двухступенчатого трансформатора примерно в 2 раза меньше, чем одноступенчатого. Недостатком каскадного ТТ является увеличение погрешности из-за увеличения сопротивления обмоток.

 

Рис. 21.4. Трансформатор тока типа ТФН – 35

 

Трансформаторы напряжения (ТН) служат для преобразования высокого напряжения в низкое стандартное напряжение, удобное для измерения. Обычно за номинальное вторичное напряжение принимается напряжение или

Первичная обмотка ТН изолируется от вторичной соответственно классу напряжения установки. Для безопасности обслуживания один вывод вторичной обмотки заземляется. Таким образом, ТН изолирует измерительные приборы и реле от цепи высокого напряжения и делает безопасным их обслуживание.

 

Рис. 21.5. Двухступенчатый каскадный ТТ:

а - принципиальная схема; б - общая компоновка;

W1 - первичная обмотка верхней ступени;

W2 - вторичная обмотка верхней ступени;

W3 - первичная обмотка нижней ступени;

W4, W5 - вторичные обмотки нижней ступени;

- нагрузка ТТ

 

Схема включения однофазного ТН показана на рис. 21.6.

Первичная обмотка присоединена к цепи высокого напряжения через предохранители FU1, FU2. Вторичная обмотка питает нагрузку в виде обмоток измерительных приборов или реле защиты через предохранители FU3, FU4. В нормальной конструкции заземляются и вторичная обмотка , и магнитопровод.

Предохранители FU3, FU4 служат для защиты ТН от КЗ в цепи нагрузки.

Рис. 21.6. Схема включения однофазного ТН

 

Предохранители FU1, FU2 на высоковольтной стороне служат для защиты сети от КЗ в ТН. Целесообразно применение токоограничивающих предохранителей типа ПКТ или стреляющих с ограничивающим резистором. Вследствие высокого сопротивления обмоток самого ТН при КЗ во вторичной цепи ток в первичной цепи мал (порядка нескольких ампер) и недостаточен для срабатывания предохранителей FU1, FU2. Этим объясняется установка предохранителей FU3, FU4 во вторичной цепи. Основными параметрами ТН являются:

- номинальное напряжение первичной и вторичной обмоток, указанное на щитке. Номинальное напряжение ТН равно номинальному напряжению первичной обмотки;

- номинальный коэффициент трансформации - это отношение номинального первичного напряжения к номинальному вторичному:

; (21.5)

- погрешность по напряжению, %, определяется уравнением

(21.6)

где - напряжение, поданное на первичную обмотку; - напряжение, измеренное на выводax вторичной обмотки.

При погрешность

Погрешности ТН не должны превышать значений, предусмотренных классом точности при колебании напряжения в пределах и колебаний мощности вторичной цепи в пределах от номинальной.

- номинальная вторичная нагрузка. ТН включаются (рис. 21.6) так же, как силовые трансформаторы. Ток вторичной обмотки определяется сопротивлением нагрузки:

, (21.7)

а вторичная мощность

. (21.8)

При уменьшении сопротивления вторичная мощность увеличивается. Вторичная нагрузка кроме модуля характеризуется также коэффициентом мощности ;

- номинальная мощность ТН представляет собой наибольшее значение вторичной мощности при при которой погрешность ТН не выходит за пределы, oопределенные классом точности. Требования к ТН определяются ГОСТ 1983-77.

Погрешность ТН обусловлена наличием aктивных и peaктивных сопротивлений обмоток и тока холостого хода. Схема замещения ТН дана на рис. 21.7, а векторная диаграмма - на рис. 21.8.

 

 

Рис. 21.7. Схема замещения ТН

 

Рис. 21.8. Векторная диаграмма ТН

 

Все вeличины пpиведены к первичной обмотке. Поток Ф создает вторичную ЭДС , отстающую от него на 90°. Под действием этой ЭДС во вторичной цепи возникают напряжение и ток , проходящий по сопротивлению нагрузки , который создает падения напряжения на сопротивлениях вторичной обмотки . При выбранных положительных направлениях ток отстает от ЭДС .

Намагничивающий ток (ток холостого хода) на угол потерь опережает поток Ф. В первичной обмотке создается падение напряжения .

Но так как

тогда

Согласно рис. 21.7 можно написать:

уравнение равновесия получается:

(21.5)

Катеты треугольника АВС пропорциональны падениям напряжения от тока холостого хода , катеты треугольника CDЕ - падениям напряжения от тока нагрузки .

При отсутствии погрешности или и точки А и Е должны совпасть.

Погрешность ТН по напряжению определяется:

Поскольку угол между и мал, то вместо арифметической разности модулей этих векторов можно взять проекцию вектора АЕ на ось . Таким образом, погрешность определяется отрезком AF .

Вышеприведенное уравнение показывает, что погрешность состоит из двух частей. Первая определяется током холостого хода, вторая - током нагрузки. Для того чтобы уменьшить погрешность по напряжению, снижают активное и реактивное сопротивления обмоток. Уменьшение активного сопротивления достигается малой плотностью токов в обмотках (около 0,3 А/мм2), что облегчает тепловой режим ТН.

На погрешность влияет коэффициент мощности нагрузки . С уменьшением погрешность увеличивается.

Погрешность по напряжению можно компенсировать путем уменьшения числа витков первичной обмотки. При этом коэффициент трансформации становится меньше номинального, вторичное напряжение возрастает, вводится положительная погрешность, которая компенсирует отрицательную. Обычно вводится такая коррекция, что при холостом ходе трансформатор имеет максимально допустимую для данного класса точности положительную погрешность.

На угловую погрешность витковая коррекция не влияет.

В трехфазных ТН угловую погрешность можно компенсировать с помощью специальных компенсирующих обмоток. При активной нагрузке вносится положительная коррекция. При индуктивной нагрузке применяется схема соединения, создающая отрицательную коррекцию.

Номинальное напряжение первичной обмотки ТН должно соответствовать номинальному напряжению сети, в которую он включается. Если ТН включается между фазой и землей - то номинальному фазному напряжению. Номинальное вторичное напряжение ТН должно соответствовать номинальному напряжению нагрузки. Нагрузка должна быть равномерно распределена по фазам ТН. Суммарная нагрузка на фазу ТН должна быть меньше допустимой при заданном классе точности и коэффициенте мощности.

Сечение проводников, соединяющих ТН с нагрузкой, должно быть таким, чтобы падение напряжения на них составляло доли процента номинального вторичного напряжения.

 

 

Лекция № 22

Похожие статьи:

poznayka.org

Как выбрать трансформатор тока для счетчика: таблица и формулы

При организации электроснабжения предприятий, жилых и коммерческих объектов, в тех случаях, когда суммарный ток нагрузки многократно превышает возможности узла учета, или же необходимо произвести учет электроэнергии высоковольтных потребителей, устанавливаются дополнительные узлы преобразования — трансформаторы тока (ТТ) и напряжения (ТН). Они позволяют произвести линейное преобразование и осуществить учет или контроль проходящего тока с помощью обычных однофазных или трехфазных электросчетчиков, амперметров, а также организовать систему защиты линии с помощью них. В этой статье мы узнаем как выбрать трансформатор тока для счетчика электроэнергии по мощности и другим параметрам.

Разновидность устройств

Ctil

При выборе трансформатора нужно учитывать его место расположение (закрытые или открытые распределительные установки, встраиваемые системы), а также конструктивные особенности исполнения (проходные, шинные, опорные, разъемные).

Проходной ТТ устанавливают в комплексных РУ и используют в качестве проходного изолятора. Опорные используют для установки на ровной поверхности. Шинный ТТ устанавливается непосредственно на токоведущие части. В роли первичной обмотки трансформатора выступает участок шины. Встроенные модели как элемент конструкции, устанавливаются в силовые трансформаторы, масляные выключатели и пр. Разъемные ТТ выполнены разборными для быстрой установки на жилы кабеля, без физического вмешательства в целостность электрических сетей.

ТТ фото

Кроме того, разделение также проходит по типу используемой изоляции:

  • литая;
  • пластмассовый корпус;
  • твердая;
  • вязкая компаудная;
  • маслонаполненная;
  • газонаполненная;
  • смешанная масло-бумажная.

И различают по спецификации и сфере применения:

  • коммерческий учет и измерения;
  • защита систем электроснабжения;
  • измерения текущих параметров;
  • контроль и фиксация действующих значений;

Также различаются трансформаторы по напряжению: для электроустановок до 1000 Вольт и выше.

Правила выбора

При выборе трансформатора его напряжение не должно быть меньшим, чем номинальное напряжение счетчика.

U ном ≥ U уст

Аналогично поступаем при выборе ТТ по току, который должен быть равен или больше максимального тока контролируемой установки. С учетом аварийных режимов работы.

 I ном ≥ I макс.уст

В ПУЭ описаны правила и нормативные требования к устройствам коммерческого учета счетчиками, а также уделено не мало внимания трансформаторам тока и нормам расчетных мощностей. Детально ознакомится можно в пункте ПУЭ 1.5.1.

Помимо этого существуют следующие правила выбора трансформатора тока для счетчика:

  1. Длина и сечение проводников от ТТ к узлу учета должны обеспечивать минимальную потерю напряжения (не более 0.25% для класса точности 0.5 и 0.5% для трансформаторов точностью 1.0). Для счетчиков, используемых для технического учета, допускается падение напряжения 1.5% от номинального.
  2. Для систем АИИС КУЭ трансформаторы должны иметь высокий класс точности. Для установки в такие системы используют ТТ класса S 0.5S и 0.2S, позволяя увеличить точность учета при минимальных первичных токах.
  3. Для коммерческого учета нужно выбрать класс точности ТТ не более 0.5. При использовании счетчика точностью 2.0 и для технического учета, допускается применение трансформатора класса 1.0.
  4. Выбор ТТ с завышенной трансформацией допускается, если при максимуме тока нагрузки, ток в трансформаторе не меньше 40% от I ном электросчетчика.
  5. При расчете количества потребленной энергии необходимо учитывать коэффициент преобразования.
  6. Расчет мощности ТТ производится в зависимости от сечения проводника и расчетной мощности.

Пример расчета:

Расчет параметров

По таблице ниже, согласно получившимся расчетным параметрам выбираем ближайший ТТ:

Номиналы ТТ

При заключении договора с энергоснабжающей организацией, в случае когда для производства учета необходима установка трансформаторов тока, для организации узла учета, выдаются технические условия, в которых указано модель узла учета а также тип ТТ, номинал автоматических выключателей место их установки для конкретной организации. В результате самостоятельные расчеты ТТ производить не нужно.

Напоследок советуем читателям https://samelectrik.ru просмотреть полезное видео по теме:

Надеемся, теперь вам стало понятно, как выбрать трансформаторы тока для счетчиков и какие варианты исполнения ТТ бывают. Надеемся, предоставленная информация была для вас полезной и интересной!

Наверняка вы не знаете:

samelectrik.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта