Eng Ru
Отправить письмо

Как защитить лампы лед от скачков напряжения в электросети? Защита от скачков напряжения светодиодных ламп


Блок защиты для светодиодных ламп 220В

Главная и, пожалуй, единственная причина выхода из строя обыкновенных ламп накаливания, галогенных и люминесцентных лампочек – перегорание спирали. С точки зрения физики этот процесс легко объясним. С раскалённой спирали постоянно испаряются атомы вольфрама.

В обыкновенных лампах быстрее, в галогенных – медленнее. После выключения часть испарившихся атомов оседает назад на спираль, часть на колбу. Как следствие неравномерного оседания, со временем образуются истончённые участки. А что приводит в негодность светодиодные лампы?

Почему лампы перегорают?

Все лампы со спиралью накаливания работают по принципу термоэлектронной эмиссии, то есть при прохождении тока спираль раскаляется, излучая свет видимой части спектра. Интенсивность тепловыделения обратно пропорциональна толщине проводника, соответственно истончённые зоны спирали нагреваются значительно сильнее, теряя прочность. На этих участках и происходят разрывы.

Место перегорания спирали

В качестве методов борьбы с этой «болезнью» разработано множество схем плавного розжига спирали, что действительно способно значительно увеличить срок её службы. Все эти схемы относятся к устройствам защиты.

Наряду с устройствами защиты ламп со спиралью накаливания появляются устройства защиты светодиодных ламп. Казалось бы, для чего они нужны, если у светодиодов нет спирали…

Действительно, свечение кристалла светодиода происходит благодаря возбуждению электронов в полупроводниковом слое, а не за счёт раскалённой спирали. Но в основе эффекта лежит тот же эффект термоэлектронной эмиссии. С годами очень тонкий полупроводниковый слой прогорает. Если внимательно присмотреться к светодиодной лампочке через несколько лет её работы, можно заметит отдельные потускневшие или нерабочие кристаллы, у которых произошёл пробой слоя полупроводника.

Существует ряд факторов, способных существенно сократить срок жизни таких устройств. К ним относятся:

  • Скачки напряжения;
  • наведённая пульсация;
  • паразитарная пульсация.

Скачки напряжения

Перепады в сети напряжения довольно привычное событие в нашей стране. Как ни странно, но к повышению напряжения выше номинального значения светодиодные лампы относятся достаточно спокойно. Драйверы питания способны легко с ними справиться.

Более опасны для светодиодов падения напряжения, когда за доли секунды ток, проходящий через полупроводниковый слой, падает, а потом возвращается к исходным величинам. Тогда в пространстве p-n перехода может произойти точечный пробой. Драйвер питания способен отсечь избыток тока, но не способен компенсировать его выраженное падение.

Защита светодиодных ламп частично решается установленным перед драйвером высоковольтным конденсатором средней ёмкости, играющим роль сглаживающего фильтра.

Подробнее о расчете конденсатора.

Фатальные скачки напряжения

Ситуация, которой я хочу коснуться скорее исключение из правил, тем не менее, такие случаи происходят с завидной регулярностью. Речь идет об ударах молний. Но не в линию электропередачи – такие ситуации как раз безопасны, поскольку из-за мгновенного расплавления проводов, заряд, скорее всего, не дойдёт до конечного потребителя электроэнергии. Опасны удары молний в непосредственной близости от линии электропередачи.

Удар молнии рядом с ЛЭПНапряжение коронного разряда достигает миллионов вольт и вокруг канала молнии образуется мощнейшее электромагнитное поле. Если в зоне его действия окажется линия передач, произойдет мгновенный скачок силы тока и напряжения.

Фронт нарастания амплитуды напряжения настолько быстрый, что защитные каскады электроники не успевают справиться и выгорают целые платы. В светодиодной лампочке будут многочисленные пробои кристаллов. Мы отнесли такие скачки напряжения к фатальным, поскольку адекватной защиты от такого форс-мажора нет.

При штатном режиме эксплуатации возникает такое явление как мерцание ламп в выключенном состоянии.

Подробно о мигании включенных ламп мы уже рассматривали в этой статье.

Наведённая пульсация

Сила тока, требующаяся для работы светодиодов очень мала — микроамперы. Если две линии внутриквартирной проводки находятся в непосредственной близости, а в одной из линий включена мощная нагрузка, электромагнитные волны способны возбуждать ток в проводнике достаточный для свечения светодиода.

Вечные светодиоды такой же миф, как и вечный двигатель. Каждый эпизод включения/выключения на чуть-чуть уменьшает срок его жизни. Никто не измерял такой параметр для светодиодов, но при частоте события пятьдесят раз в секунду (частота пульсации сети 50 Гц) даже очень большие числа — понятие относительное.

Паразитарная пульсация

Паразитарная пульсация светодиодной лампы возникает, когда для её включения используют выключатель с подсветкой. Через светодиод подсветки так же проходит достаточный ток для мигания светодиодов.

Наведённая и паразитарная пульсация – ведущий фактор риска для светодиодного освещения.

Блок защиты диодной лампыНаконец мы подошли к главной теме этого обзора — устройство защиты светодиодных ламп.

Блок защиты светодиодных ламп 220в представляет собой шунт с сопротивлением меньше, чем сопротивление светодиодов в лампочке. При возникновении паразитарных наводок они проходят через шунт, минуя лампу.

Одним из примеров таких устройств является вот такой девайс. Для активации защиты достаточно подключить его к клеммам входного напряжения драйвера питания светодиодной лампы. Применение даже такого элементарного способа защиты во много раз продлит срок жизни светодиодному освещению.

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

svetodiodinfo.ru

Как защитить лампы лед от скачков напряжения в электросети?

24.06.2015 17:47

Лампы ЛЕД пользуются сегодня заслуженным спросом. Они экономны, долговечны, обеспечивают мягкий комфортный свет, при этом практически не мерцают (частота свечения равна 200-400 герц, которые человеческий глаз не воспринимает). Производители уверяют, что светодиоды не восприимчивы к колебаниям напряжения в электросети. Но на практике оказывается, что негативное воздействие все же есть и весьма заметное.

 

Перепады напряжения в лампах ЛЕД вызывают увеличенную нагрузку на цепи питания, из-за чего могут перегорать дорожки на платах, соединяющие блок питания и сами светодиодные элементы. В свою очередь нагрузка возникает независимо от того, увеличено или уменьшено напряжение в сети (то есть, негативно воздействует не только ток в 240 Вольт, но и в 200В). Частые колебания напряжения в среднем снижают ресурс лампы лед в 3-4 раза. То есть, если производитель указывает, что светодиод проработает около 40 тысяч часов при активной эксплуатации, на деле выйдет всего 10-15 тысяч.

Встроенные блоки питания — не защищают

Проблема резких перепадов электричества в домашней электросети— довольно распространенная проблема в Украине. Если в Европе считается нормой отклонение до 3 Вольт, то в странах СНГ — около 15. Современное осветительное оборудование разрабатывается при соблюдении европейских норм качества, которые совершенно не подходят для жителей нашей страны. Практически все имеют встроенный блок питания, назначение которого — регулировать напряжение, а также преобразовывать переменный ток в постоянный. Но его мощность слишком мала, поэтому при повышении силы тока возникает сбой системы. То есть, напряжение, подаваемое на светодиод, получается выше номинала. От этого сам диодный элемент нагревается до температуры свыше 80 градусов, соответственно ЛЕД лампа быстро выходит из строя. Есть ли выход из сложившейся ситуации?

 

Целых два:

 

• можно использовать стационарные блоки питания и без интегрированного дросселя;

• подключить систему через ИБП (источник бесперебойного питания с функцией выравнивания напряжения).

 

Выбор зависит от конструктивных особенностей домашней системы освещения. Использование стационарного блока питания позволяет увеличить ресурс ЛЕД ламп в среднем в 2-4 раза.

vvnews.info

УЗС LED защита (LED protection) ⋆ Электротовары

Интенсивное развитие светодиодных технологий за последние пять лет привело к их внедрению во все сферы деятельности, которые нуждаются в подсветке. Надёжность и экономичность – вот главное преимущество, которое стало неоспоримым фактом. А если к этим показателям добавить длительный срок службы и безопасность эксплуатации, то становится понятным, почему привычные источники искусственного света постепенно сдают позиции.

Наряду с устройствами защиты ламп со спиралью накаливания появляются устройства защиты светодиодных ламп. Казалось бы, для чего они нужны, если у светодиодов нет спирали… Действительно, свечение кристалла светодиода происходит благодаря возбуждению электронов в полупроводниковом слое, а не за счёт раскалённой спирали. Но в основе эффекта лежит тот же эффект термоэлектронной эмиссии. С годами очень тонкий полупроводниковый слой прогорает. Если внимательно присмотреться к светодиодной лампочке через несколько лет её работы, можно заметит отдельные потускневшие или нерабочие кристаллы, у которых произошёл пробой слоя полупроводника.

Существует ряд факторов, способных существенно сократить срок жизни таких устройств. К ним относятся:

  • скачки напряжения;
  • наведённая пульсация;
  • паразитарная пульсация.
Скачки напряжения

Перепады в сети напряжения довольно привычное событие в нашей стране. Как ни странно, но к повышению напряжения выше номинального значения светодиодные лампы относятся достаточно спокойно. Драйверы питания способны легко с ними справиться. Более опасны для светодиодов падения напряжения, когда за доли секунды ток, проходящий через полупроводниковый слой, падает, а потом возвращается к исходным величинам. Тогда в пространстве p-n перехода может произойти точечный пробой. Драйвер питания способен отсечь избыток тока, но не способен компенсировать его выраженное падение. Защита светодиодных ламп частично решается установленным перед драйвером высоковольтным конденсатором средней ёмкости, играющим роль сглаживающего фильтра.

Наведённая пульсация

Сила тока, требующаяся для работы светодиодов очень мала — микроамперы. Если две линии внутриквартирной проводки находятся в непосредственной близости, а в одной из линий включена мощная нагрузка, электромагнитные волны способны возбуждать ток в проводнике достаточный для свечения светодиода. Вечные светодиоды такой же миф, как и вечный двигатель. Каждый эпизод включения/выключения на чуть-чуть уменьшает срок его жизни. Никто не измерял такой параметр для светодиодов, но при частоте события пятьдесят раз в секунду (частота пульсации сети 50 Гц) даже очень большие числа — понятие относительное.

Паразитарная пульсация

Паразитарная пульсация светодиодной лампы возникает, когда для её включения используют выключатель с подсветкой. Через светодиод подсветки так же проходит достаточный ток для мигания светодиодов. Наведённая и паразитарная пульсация – ведущий фактор риска для светодиодного освещения.

Блок защиты светодиодных ламп 220в представляет собой шунт с сопротивлением меньше, чем сопротивление светодиодов в лампочке. При возникновении паразитарных наводок они проходят через шунт, минуя лампу. Одним из примеров таких устройств является УЗС LED защита (Устройство Защиты Светодиодов) . Для активации защиты достаточно подключить его к клеммам входного напряжения драйвера питания светодиодной лампы. Применение даже такого элементарного способа защиты во много раз продлит срок жизни светодиодному освещению.

УЗС LED защита (Устройство Защиты Светодиодов) предназначено для предотвращения самопроизвольных включений (проблески, промаргивания) светодиодных источников света (лампы, светильники в т. ч. с преобразователями) возникающих вследствие воздействия малых токов в сети, особенно при коммутации через выключатели с подсветкой.

Применение. Светодиодные лампы и светильники в т. ч. работающие через внешние преобразователи (драйверы). Одно устройство подключается на одну линию питания (один выключатель), при этом количество LED- нагрузок не лимитировано.

Подключение. Устройство подключается только при отключенной сети. Устройство подключается параллельно цепи питания 230 VAC, после выключателя.

Технические характеристики. Напряжение сети ~ 230В ±20%. Мощность нагрузки не лимитирована (определяется характеристиками сопряженного выключателя).

elektro-tovars.ru

Защита ламп. Блок защиты, схема от перегорания всех видов ламп

Защита ламп

Осветительные лампы имеют небольшую долговечность, что является проблемой в современном мире. Во время включения питания ламп происходит выход их из строя, что является актуальной проблемой.Нить накаливания в холодном виде образует небольшое сопротивление. Оно слишком уменьшено, чем сопротивление раскаленной нити электротоком. Мы зажигаем свет, то нить лампы в холодном состоянии, и значение тока существенно выше номинала, поэтому она имеет свойство перегорать.

Лампы в светильниках и люстрах перегорают по различным причинам. Если она одна, то это уже лучше. Можно сэкономить на покупке лампочек, если знать основную причину. Кроме экономии у вас не выйдет из строя светильник, или того хуже, не случится пожар в доме.

Существует множество разных вариантов модуля защиты ламп. Некоторые способы защиты ламп разберем на примерах в материалах из жизни.

Полная защита осветительных ламп

Предлагаемый блок защиты ламп служит для продления срока службы ламп накаливания и от преждевременного выхода из строя накаливающей нити при резкой подаче напряжения при эксплуатации ламп. Данный способ особенно подойдет для ламп, расположенных в труднодоступных местах (рекламные щиты, столбы для освещения). Этот прибор хорош и дома, так как в квартире нередко перегорают лампы. Установив это устройство, решается проблема частой замены ламп в связи с выходом их из строя.

Устройство защиты светодиодных ламп создает медленный разогрев нити в течение нескольких секунд при включении света. Если напряжение внезапно отключится на короткое время, а затем снова включится, то процесс плавного нагрева нити повторится после вновь поданного напряжения. Происходит стабилизация питания, наибольшее значение его уменьшается до 220 вольт. Блок защиты ламп обладает минимальным временем реагирования на скачки напряжения – несколько миллисекунд. Контроллер управления имеет защиту.

Модуль защиты ламп выдерживает ток импульса 140 ампер, что дает возможность не ставить предохранитель, и быть уверенным в надежности системы и защите ламп.

Защита лампСхема устройства:Резистор для подстройки на 300 кОм изображен условно. При применении точных деталей он не нужен. В нашем случае R7 и R8 объединяются в одно сопротивление значением 1,15 мОм. Конкретное значение определяется выходом «Тест». Прибор подключается к сети с точным напряжением 220 вольт переменного тока, и регулировкой резистора ставится логическая единица на выходе «Тест». Для выбора порога стабильного напряжения меньше, чем 220 вольт, эту процедуру проводят при напряжении 215 вольт.

Мощностные характеристики ламп должны иметь границы наибольшим током триака ВТ139-600. Нельзя допустить ток выше 16 ампер. Прибор сочетается с лампами до 3,5 кВт мощности при условии, что триак будет установлен на радиаторе для теплоотвода. Без радиатора можно подсоединять лампы до 300 ватт. Для подключения к прибору ламп нагрузкой более 3500 ватт применяют триак мощнее.

Дроссель для подавления помех в схеме питающей цепи не предусмотрен, так как помехи могут поступать наружу от прибора только тогда, когда разогрев спирали ламп во время пуска за 2,5 секунды превышено напряжение питания сети более 220 вольт. Это незначительно, и триак после разогрева при малом напряжении открывается. Чтобы устройство стоило недорого, это можно не учитывать. Если необходимо полностью сделать защиту от помех радиоволн, то монтируют дроссель большой мощности между нагрузкой и вторым выводом, в этом нет особых проблем.

Контроллер схемы можно заменить другим, подходящим по параметрам. Также поступают и с триаком, подобного типа, подобранным по току нагрузки. Управляющий ток триака не рекомендуется подбирать выше 50 миллиампер. Защита ламп обеспечена.

Блок защиты ламп накаливания и галогенных

Он представляет собой конденсатор мощностью до 200 Вт. Существуют схемы защиты галогенных ламп и с большей мощностью. Он защищает лампы, плавный разогрев нити накаливания, что значительно замедлит процесс износа, увеличит срок службы.

Продемонстрируем его подключение на практике, на лампах накаливания и галогенных лампах. На энергосберегающие лампы он никак не действует.

Защита ламп

Для сравнения результатов сначала подключим без блока защиты. Лампа зажигается мгновенно. Теперь подключим блок защиты ламп. Он подключается на фазовый провод. Для определения фазы пользуемся индикаторной отверткой. Подключаем блок с помощью зажимных клемм.

Данный блок предназначен для работы с трансформаторами и с понижающими катушками. Он не рассчитан на работу с люминесцентными лампами, электромоторами и подобными механизмами, приборами подобными ему.Подключаем сеть, примерно две секунды лампа зажигается, очень плавный пуск. От резкого включения лампа не лопнет, и будет служить дольше.

Для сравнения подключим галогенную лампу. Вставляем лампу в патрон, подключаем к сети. Подключение защиты галогенных ламп получается аналогичным. Такой розжиг можно использовать там, где есть нить накаливания.

Еще можно поставить термистор. Деталь копеечная, но работает надежно, помех не создает. Нужно брать термистор большого размера для более медленного нагрева, с сопротивлением выше 0,5 кОм. Его можно легко встроить внутрь любого корпуса, выключателя. На выводы надевается изоляция, она не плавится, так как температура небольшая.

Обычные лампочки накаливания со спиралью лучше подключать на меньшее напряжение (180-200 В). Если напряжение 240 вольт, то можно две лампы соединить последовательно.

Галогеновые лампы любят постоянное точное напряжение, поэтому их необходимо подключать к стабильному напряжению, и сделать плавный пуск (блок защиты ламп).

Как сберечь лампы от перегорания?

Лампы бывают энергосберегающие, спиральные, диодные. Они часто сгорают, а мы не знаем почему, что происходит. Нужно понять, почему это происходит. Они сгорают из-за того, что существуют старые пылесосы, стиральные машины, моторы во дворе, у соседей есть старая техника. Люди ей пользуются, и при запуске этой техники происходит резкий скачок импульсной силы тока. Мотор взял на себя ток, запустился, затем идет резкий скачок в сеть, возникает большая сила тока.

Во время выплеска большой силы тока происходит сгорание ламп. Чтобы не было этой проблемы, продаются модули защиты ламп — сетевые фильтры. В нем находится варистор. Устройство защиты светодиодных ламп рассчитано на силу тока в 100 ампер. При резком скачке напряжения и силы тока варистор гасит эти скачки. В сетевом фильтре стоит один обыкновенный варистор, который стоит копейки.

Защита ламп

Французские фильтры имеют два варистора, и стоят они дорого. За эти деньги можно купить несколько сотен варисторов. Для этого каждый может сделать такой фильтр. Иногда умельцы ставят варисторы прямо в корпус розетки. Если варистор будет стоять в другой комнате, то он не поможет для лампочки на кухне или в коридоре.Поможет варистор, который находится ближе от этого объекта.

Конструкция патрона – причина перегорания ламп

Одной из причин перегорания ламп является конструкция патрона. На контактах колодки нет пружинящего эффекта.

Защита ламп

Средний контакт патрона пружинит, а боковые контакты просто упираются. Нужно немного подогнуть усики, сделать так, чтобы они пружинили. Простые колодки намного надежнее. В них боковые усы пружинят, им ничто не мешает, лампы в них перегорают реже. Боковые ступеньки под контактами можно просто откусить плоскогубцами. Теперь у боковых контактов появился ход и хороший пружинящий эффект. Защита ламп сделана, они перестают перегорать.

Вечная лампа накаливания

Для изготовления понадобится лампа, цоколь от другой лампы накаливания, предварительно снятый и очищенный, два диода Д226, инструменты (кусачки, плоскогубцы), надфиль, паяльные принадлежности. Подключение через диод позволяет повысить срок в разы. Исходя из опыта, можно сказать, что в подвале у меня лампочка такой конструкции работает исправно уже несколько лет.

В качестве диода применяется любой, на напряжение не менее 350 В. Учитываем силу тока, которая должна быть, не менее 0,5 А. Можно использовать диоды Д245, а в нашем случае Д226. Такие диоды использовались в старых советских телевизорах, в любой старой радиотехнике. Их можно купить в магазине радиодеталей, стоят они копейки. Схема подключения лампы через диод простая, но создает хорошую защиту.

Берем диод и откусываем один вывод корпуса под корень. Второй вывод в виде трубочки тоже откусываем.

Защита ламп

В трубочку вставляем проволочку и запаиваем. Получается так:

Защита ламп

Теперь наш диод без проблем влезет в цоколь. Берем паяльник и припаиваем диод к цоколю лампы:

Защита ламп

Теперь берем цоколь и надеваем его, и опаиваем конец провода. Лишнюю часть провода откусываем. Зафиксируем в 3-4 местах два цоколя между собой паяльником.

Защита лампВечная лампочка готова. Единственный недостаток этой лампочки – мерцающий свет. Для подъезда или подвала мерцание не играет важной роли.

Принцип диода можно применить, поставив диод не в лампочке, а в выключателе или в светильнике. Этот способ будет полезен тем, кто не особо дружит с электричеством.

Можно использовать такую схему подключения лампы накаливания:

Защита ламп

elektronchic.ru

Стабилитрон для светодиода для защиты

Многие из тех, кто ставил популярные нынче светодиоды на автомобили, сталкивались с проблемой их преждевременного перегорания. Первая реакция – нелестные отзывы о производителе, ведь до гарантированной им продолжительности эксплуатации, установленные светодиоды явно не дотягивают.

К сожалению, о том, что можно использовать светодиод в качестве стабилитрона, обеспечивающего стабильное напряжение тока, подаваемого на светоизлучающие диоды, многим и не известно.

Установит, бывало, автолюбитель в салоне, габаритных огнях, подсветке багажника светодиоды. А пройдет 3-4 месяца, как они начинают мерцать (именно моргать как стробоскоп). Простая замена светодиодов дает результат на пару месяцев, не более. Почему же это происходит? Качество компонентов влияет либо или существует иная причина?

Обусловлено это тем, что светодиод «запитывается» строго определенным током, что нормируется производителем. Меньше – пожалуйста, больше – нельзя. Используемая в домашних условиях «гирлянда» диодов обязательно имеет элемент, ограничивающий/стабилизирующий ток до параметров, рекомендованных производителем.

Относительно долговечности функциональности светодиодов, имеющих встроенный стабилизатор (драйвер), претензий нет, вот только, желая снизить стоимость реализуемой продукции, многие производители выпускают лампы для габаритов, приборной панели, подсветки салона, поворотников, без применения драйвера, устанавливая лишь резистор, ограничивающий напряжение.

Эффективным вариантом защиты от скачков бортового напряжения в автомобиле многие электрики признают стабилитрон для светодиода, монтаж которого для специалиста не составит труда, а срок эксплуатации светоизлучающего диода кардинально возрастает.

Что такое стабилитрон?

При использовании низковольтных источников питания хорошо зарекомендовало себя подключение стабилитрона к светодиоду. Что особенно важно, стабилитрон для светодиода – это полупроводниковый элемент (диод), изготовленный по специальной технологии, что и наделяет его особенным свойством. При подключении в обратном направлении, изменении напряжения - он «пробивается». В дальнейшем, несмотря на возрастание напряжения на входе – на выходе напряжение остается почти неизменным.

Благодаря таким характеристикам часто подключается светодиод через стабилитрон. В том случае, если необходимы малые образцовые напряжения, стабилитроны подключаются в прямом направлении, а напряжение стабилизации 1 стабилитрона равно, при этом, 0,7-0,8 В.

«Хороший» автоэлектрик предварительно изучит устанавливаемый на автомобиль светодиод. Предложит даже свою схему стабилизации напряжения.

Хорошо зарекомендовала себя защита светодиода стабилитроном с применением микросхем L7812 или LM317T.

Светодиод для стабилизации напряжения

Опытные радиолюбители знают о возможности использовать светодиод как стабилитрон, что также может быть применено в системе автомобильного освещения.

Поскольку большинство выпускаемых стабилитронов имеют напряжение стабилизации от 3 до 15 В, то при необходимости работать с более высоким напряжением, могут возникнуть проблемы. Да и стоимость стабилитронов довольно высокая.

Используя же подключенный в обратной полярности светодиод как стабилитрон, можно надежно защитить осветительные элементы от скачка напряжения. Это и надежно, и стоит значительно меньше, чем при использовании специальных диодов.

led-svetodiody.ru

Защита квартиры от перепадов напряжения. Причины перепадов напряжения.

Май 26, 2014

Должен знать каждый

14880 просмотров

В электросети дома или квартиры по ГОСТу напряжение должно быть 220 Вольт с максимальным отклонением не более 10 процентов. Увеличение напряжения более 242 Вольт- опасно для бытовой техники и может привести к ее поломкам и да же возгоранию. В этой статье Я расскажу о причинах и способах защиты от скачков напряжения  (перенапряжений).

Внимание! Скачки напряжения могут привести к возгоранию электроприборов. Не оставляйте включенной бытовую технику без присмотра. При подозрении в возникновения перенапряжения- немедленно выключайте светильники, люстры выключателем и все из розеток.возгорание бытовой техники

Не менее опасны и перепады напряжения в электросети. При котором напряжение снижается ниже допустимого минимального предела- 198 Вольт, но об этом Я расскажу в отдельной статье.

Признаки возникновения перепадов напряжения в сети.

причины скачков напряжения

  1.  Слишком часто перегорают лампочки.
  2. Лампы накаливания или галогенные светят ярче чем обычно.
  3. Периодическое изменение интенсивности светового потока освещения.
  4. Бытовая техника работает необычно. Гудит компрессор холодильника, с перебоями работает стиральная машина и т. п.
  5. Внезапные отключения и перезагрузки компьютера.
  6. Электроника в доме работает со сбоями.

При любых подозрениях в возникновении в вашем доме скачков напряжения необходимо проверить величину напряжения измерительными приборами по этой инструкции.

Причины перепадов напряжения.

  1. Перекос фаз, который возникает из-за отсутствия одинаковой нагрузки на разные три фазы. Да же если у Вас в квартире или частном доме только однофазное напряжение 220 Вольт, то другие дома или квартиры подключаются либо к той же фазе или двум другим разноименным. Все линии от подстанции идут 3 фазные. Проектировщики стараются составлять схему равномерного расключения всех квартир или индивидуальных домов пропорционально на три фазы одной линии электропитания, что бы избежать возникновения неравномерной нагрузки на все 3 фазы. Поэтому перекос фаз довольно редко встречается в домашних условиях.
  2. Аварийные режим работы электросети. Часто происходит при обрыве нуля в этажных, вводных электрощитах. При этом все однофазные линии начинают работать без нуля, место которого занимает другая разноименная фаза. В результате возникают перенапряжения, приводящие к поломкам электроприборов.Что бы этого избежать, необходимо проводить регулярное техническое обслуживание- проверять контакт и поджимать нулевой проводник в электрических щитах. Помните, что без нуля щит на 380 Вольт- это гибель всех ваших ламп и бытовой техники. Поэтому для частных домов и гаражей с вводом на 380 В обязательно и для однофазных рекомендуется делать заземляющий контур, который соединяется с нулем электрощита. Это гарантирует безотказную работу, да же в случае обрыва ноля в электропитающей линии.
  3. Очень редко причиной скачков напряжения являются удары молнии. Все современные трансформаторные подстанции надежно защищены от перенапряжений специальными устройствами. Стоит ишь опасаться жителям частных домов, подключенных к воздушной линии электропередач на опорах. В моей практике был лишь один случай попадания молнии в мачту с антенной на даче. В результате сгорел телевизор. Поэтому вынимайте штекер антенны во время грозы.
  4. Самостоятельный ремонт или неправильное подключение в электрощите. Нередко молодые специалисты или люди без опыта электрика в результате неумелых действий по подключению подают вместо 220 Вольт- 380. Или включают 3 фазный щиток с отсоединенным нулем.

Имейте ввиду, что причину скачков напряжения всегда поможет определить и устранить опытный электрик.

Способы защиты от скачков напряжения.

  1. Реле контроля напряжения, сокращенно РКН. Недорогой, но эффективный вариант. При скачках напряжения моментально обесточивает защищаемый участок цепи, с автоматическим обратным включением.Реле контроля напряжения Они выпускаются  для включения либо в розетку или для установки в электрощите. Первый вариант очень простой. Купили вставили в розетку и подключили в него электроприборы. Второй- зато защищает сразу все розетки и освещение в доме, но РКН при этом необходимо устанавливать в электрощите. Рекомендуется любые работы в электрощите доверять профессиональным электрикам.
  2. Сетевой фильтр защищает от небольших перенапряжений отдельно стоящий компьютер, телевизор. холодильник и т. д. От больших скачков он не спасет, Вам повезет если  при этом он перегорит и перестанет работать.
  3. Стабилизатор. В отличии от сетевого фильтра и РКН защищает электротехнику без ее отключения. При скачках напряжения снижает их, всегда выдавая номинальное напряжение величиной 220 Вольт. стабилизаторы напряжения
  4. Источник бесперебойного питания (ИБП). Чем то похож на стабилизатор, но так же оснащается дополнительно аккумулятором. А это позволяет ему не прерывать электроснабжение да же при пропадании полностью напряжения или выхода его за пределы, которые невозможно стабилизировать. Обязательно используйте для компьютера, что убережет информацию на нем при внезапном отключении электропитания.

Обязательно используйте устройства защиты от перенапряжений в своей квартире, особенно в частных домах. У меня например, источник бесперебойного питания защищает дорогую электронику в доме: компьютер, телевизор, спутниковый тюнер и отдельно- дорогой итальянский газовый котел.

jelektro.ru

Защита бытовых электроприборов от бросков напряжения

Последствия бросков напряженияСкачки и перепады напряжения в наших электросетях, к сожалению, не редкость. На предприятиях для защиты от таких сюрпризов установлены специальные устройства, а вот в распределительных щитах жилых квартир и домов их нет. И в обязанности служб ЖКХ установка таких приборов не входит.

Чем опасны «перепады настроения» в сети?

  • Потеря данных в компьютерах от сбоя в работе электроники.
  • Перегорает домашняя бытовая техника.
  • Возгорание электропроводки и, как следствие, пожар.

Согласно российского ГОСТа допустимое отклонение напряжения должно быть в пределах ±10% от номинального, т.е. в обычной бытовой розетке оно должно быть от 198 до 242 Вольт. Во время скачков напряжение в сети может колебаться от 35 до 400 вольт и выше.

Нужно знать, что опасно не только чрезмерное повышение напряжения, но и его значительное понижение.

При повышенном напряжении (броски) блоки питания, особенно импортной техники, либо сразу сгорают от перегрузки, либо на годы уменьшают ресурс своей работоспособности.

Пониженное напряжение (просадки) менее опасно, тем не менее, оно тоже может привести к выходу из строя, например, компрессора холодильника, блока питания бытовой техники и т.д.

Причин бросков напряжения несколько:

  • Грозовые разряды (молнии) вблизи линии электропередач. Поэтому во время грозы нужно обязательно выключать из сети всю бытовую технику.
  • Аварии на высоковольтных сетях и подстанциях, когда высокое напряжение (6 или 10 тысяч Вольт) попадает на сторону низкого напряжения.
  • Обрыв (отгорание) нулевого провода в электрошкафу или на подстанции - самая распространенная причина. Отгореть провод может в том случае, если он ненадежно или неправильно присоединен. В случае его обрыва (отгорания), происходит так называемый «перекос фаз», когда в части квартир напряжение поднимается до 380 В и выше, а у кого-то снижается до 25-40 В.

Чтобы уберечь бытовую технику от преждевременной гибели, а дом от пожара необходимо приобрести и установить специальные аппараты защиты.

Да, это дополнительные траты, но они того стоят. Ведь даже если удастся отремонтировать вышедшие из строя компьютер, холодильник, телевизор или стиральную машину - головная боль, потеря времени и денежные расходы пострадавшим все равно обеспечены.

В настоящее время технических устройств для защиты от перепадов напряжения достаточно много. И не все они равноценны, как по цене, так и по качеству. Кроме того, к сожалению, на защитные устройства этого класса пока не существует единого государственного стандарта. То есть, нет норм, устанавливающих, при каком значении напряжения следует отключать нагрузку, какова при этом должна быть задержка по времени и прочее. Ввиду отсутствия общего стандарта сертификация таких приборов происходит при технических условиях, определяемых самими производителями и за их счет. А это затрудняет сравнение подобных устройств друг с другом.

Рассмотрим наиболее проверенные и распространенные устройства защиты от бросков напряжения.

Сетевые фильтры1. Сетевые фильтры

Это самый доступный вариант защиты, но только для одного отдельно расположенного электроприбора. В народе это устройство приобрело название «пилот», благодаря названию марки одного из сетевых фильтров.

Сетевой фильтр защищает только маломощное оборудование (компьютер, аудио или видеосистема) и только от небольших перепадов напряжения. От значительных бросков он не спасет, в лучшем случае перегорит сам.

А точнее перегорит встроенный в него варистор – электронный элемент, который при кратковременном скачке напряжения рассеивает энергию скачка в виде тепла.

Второй важный элемент сетевого фильтра – режектор. Он защищает от высокочастотных помех, создаваемых работающими электродвигателями, генераторами и сварочными аппаратами вблизи вашего дома.

Третий элемент - плавкая вставка (предохранитель) - защищает от коротких замыканий.

Но все эти элементы встроены только в настоящие сетевые фильтры, а не в «удлинители», в которых нет никаких защищающих элементов, но которые вам с радостью продадут, если вы не знаете разницы. Поэтому, чтобы не ошибиться, перед покупкой следует изучить технический паспорт - там должны быть указаны все защитные системы той или иной модели.

Для любого, даже самого дорогого, сетевого фильтра обязательно наличие качественного грамотно сделанного заземления.

Потому что все импульсные помехи, перенапряжения фильтр сбрасывает на землю именно через заземляющий проводник.

Без наличия физического заземления фильтр превращается в обычный удлинитель.

Источники бесперебойного питания2. UPS (ИБП) - источники бесперебойного питания

Если Вы работаете с ценной информацией на компьютере или отключения напряжения непозволительны по каким-то другим причинам, тогда выбирайте ИБП – защитите оборудование от скачка напряжения и будете работать в тот момент, когда везде отключится свет.

При повышении напряжения до 270 В ИБП переходит на автономную работу от аккумуляторов, питание будет поступать в течение 5-30 минут (в зависимости от модели). Это позволит, например, выключить компьютер без потери данных. А при 300-330В в ИБП сгорает внутренний предохранитель, отключая ваши электроприборы.

Выбирать ИБП нужно по мощности электроприбора, который он будет защищать.

Стабилизаторы напряжения3. Стабилизаторы напряжения

Это идеальный вариант для тех, кто использует дорогостоящую аппаратуру. В отличие от сетевых фильтров и ИБП, если напряжение в сети колеблется в пределах допустимого, стабилизатор не отключает подачу энергии, а нормализует напряжение ровно до 220 В. А вот если напряжение повыситься до 250 В и более, отключит подачу электроэнергии от сети. После того, как работа электросети нормализуется, стабилизатор автоматически подключит питание.

Стабилизатор можно установить как на отдельный крупный электроприемник, так и на всю домашнюю сеть. Во втором случае нужно суммировать потребляемую мощность всего электрооборудования в доме и, исходя из этой мощности, выбрать стабилизатор.

4. Реле контроля напряжения (РКН)

Самые продвинутые в списке устройства, предназначенные именно для защиты от перепадов напряжения. Причем не только от повышенного, но и от пониженного. Эти умельцы самостоятельно включают подачу электроэнергии после того, как напряжение в сети придет в норму, с небольшой выдержкой времени.

Выглядят они как 2-3 обычных современных модульных автомата, соединенных вместе. И также устанавливаются в щитках на DIN-рейку.

Из достаточно большого количества предлагаемых на рынке РКН наиболее проверенные и востребованные – АЗМ-40 (автоматический защитный модуль) ООО «РЕСАНТА» и УЗМ-50 (устройство защиты многофункциональное) ЗАО «МЕАНДР».

Принцип работы обоих изделий основан на сравнении напряжения сети с эталонными величинами аналоговым устройством управления.

УЗМ-50, УЗМ-51Защита квартиры, офиса ото повышенного напряжения УЗМ-50, УЗМ-51

  • Номинальный ток коммутации 63 А
  • Максимальный ток коммутации 80 А (в течении 30 мин)
  • Установка верхнего порога срабатывания от 230 В до 280 В с шагом 5В
  • Установка нижнего порога срабатывания от 210 до 160 В с шагом 5В
  • Двухпороговая защита от перенапряжения /(задержка срабатывания) > 230...280 В /( 0,2 с) > 300В /( 20 мс)
  • Двухпороговая защита от снижения напряжения /(задержка срабатывания) < 210...160 В/ (10 с ) < 130В /(100 мс)

Устройство защиты многофункциональное УЗМ-51, УЗМ-50 защита оборудования (электрооборудования квартиры, офиса и пр.) при выходе сетевого напряжения за допустимые пределы однофазных сетях. После подачи питания либо после аварийного отключения, включение происходит автоматически при восстановлении сетевого напряжения до нормального.

ZUBR D340tZUBR D340t Улучшенная модель реле напряжения с термозащитой.

  • Встроенная защита от внутреннего перегрева
  • Возможность корректировки индикации напряжения
  • Регулируемый верхний предел напряжения 210-270 В
  • Регулируемый нижний предел напряжения 120-200 В
  • Время отключения при превышении не более 0,05 с
  • Время отключения при понижении не более 1,10 с
  • Максимальный ток нагрузки 40 А
  • Максимальная мощность нагрузки 7,2 кВт
  • Напряжение питания 100-400 В
  • Масса в полной комплектации 0,12 кг
  • Основные размеры 80 × 90 × 54 мм
  • Время задержки на включение 3-600 с
  • Коррекция индикации ±20 В

Реле напряжения ZUBR R216yРеле напряжения ZUBR R216y - удачная модель реле контроля напряжения для использования на кухне. Например, одновременно можно защитить холодильник и телевизор. Заземляющий контакт розетки и вилки устройства обеспечивает дополнительную безопасность, защищая от поражения электрическим током. Соответствует всем нормам эксплуатации бытового оборудования.

  • Отечественный стандарт вилки и гнезд Наличие заземляющего контакта
  • Регулируемый верхний предел напряжения 210-270 В
  • Регулируемый нижний предел напряжения 120-200 В
  • Время откл. при превышении не более 0,05 с
  • Время откл. при понижении не более 1,20 с
  • Максимальный ток нагрузки 16 А
  • Максимальная мощность нагрузки 3 кВт
  • Напряжение питания 100-400 В
  • Масса в полной комплектации 0,12 кг
  • Основные размеры 42 × 53 × 143 мм
  • Время задержки на включение 3-600 с

malahit-irk.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта