Eng Ru
Отправить письмо

My-chip.info - Дневник начинающего телемастера. Все о резисторах


Как определить номинал и мощность резистора

Привет. Сегодня статья будет посвящена такому радиоэлементу как резистор, или как было принято называть его ранее сопротивление.

Основной задачей резисторов является создание сопротивления электрическому току. Для более наглядной визуализации, давайте представим электрический ток, как воду, которая течет по трубе. В конце этой трубы установлен кран, который полностью откручен, и он просто пропускает через себя водный поток. Стоит нам немного начать закрывать кран, как мы сразу увидим, что поток стает слабее вплоть до того момента, когда течь воды полностью остановится.

По такому принципу и работают резисторы, только вместо трубы у нас электрический проводник, вместо воды ток, а вместо крана наш резистор. Чем больше номинал резистора, тем больше он делает сопротивление электрическому току. Сопротивление резистора измеряется такой единицей измерения как Ом.

Так как в схемах могут использоваться очень большие резисторы, номинал которых может составлять порядка 1000 -1000000 Ом, то для облегчения вычислений используют производные единицы, такие как кОм, мОм и гОм.

Для большего понимания этих единиц измерения, привожу следующую расшифровку:

1кОм = 1000 Ом;

1 мОм = 1000 кОм;

1гОм = 1000 мОм;

На практике все очень просто. Если нам попался резистор с надписью 1,8 кОм, то проведя не сложные вычисления, увидим, что номинал в Омах будет соответствовать 1800 Ом.

По принципу работы, резисторы делятся на постоянные и переменные.

Из самих названий можно догадаться, что постоянные резисторы в процессе работы никогда не меняют своего номинала. Переменные же резисторы, могут менять свой номинал в процессе работы, и используются для выполнения какой-то настройки. Примером для использования переменных резисторов может быть ручки управления громкостью, тембром на магнитофонах.

Постоянные резисторы

Поговорим более детально о постоянных резисторах. На практике, обозначение номинала резисторов наносится на корпусе. Это может быть буквенно–цифровой код или обозначение цветными полосками (цветовая маркировка резисторов). Как узнать номинал резистора по цветовой маркировке, можем узнать из этой статьи.

Что касается буквенно-цифрового обозначения, то его принято обозначать такими способами:

  1. Буква R – означает, что номинал резистора будет измеряться в Омах. Очень важным является позиция этой буквы. Если на резисторе надпить типа 12R то номинал резистора будет 12Ом. Если же буква будет в начале R12, то сопротивление будет 0,12Ом. Также возможно обозначение типа 12R1, что будет означать 12,1 Ом.
  2. Буква K – означает, что номинал резистора будет измеряться в кОмах. Действуют теже правила что и для предыдущего примера. 12K = 12кОм, K12 = 0,12 кОм и 12К1 = 12,1кОм.
  3. Буква М– означает, что номинал резистора будет измеряться в мОмах. 12М = 12мОм, М12 = 0,12 мОм и 12М1 = 12,1мОм.

Так же на корпусе резистора обозначают такую величину как отклонение от номинала. При массовом производстве сопротивлений, в виду не совершенства технологий производства, сопротивления могут иметь некоторые отклонения от заявленного номинала. Это возможное отклонение обозначается на корпусе резистора в виде ±0,7% или ±5%. Цифры могут быть разные, в зависимости от метода производства.

Мощность резисторов

В процессе работы, при больших нагрузках резистор выделяет тепло. Если в схему, где идут большие нагрузки поставить резистор маленькой мощности, то он быстро разогреется и сгорит. Чем больше по размерам резистор, тем больше его мощность. На рисунке ниже видно обозначение мощности резисторов на схемах.

Мощность резисторов

Обозначение мощности резисторов на схеме

Резисторы разной мощности

Резисторы разной мощности

Переменные резисторы

Как говорилось ранее, переменные резисторы используются для плавной регулировки силы тока и напряжения в пределах номинала резистора. Переменные резисторы бывают построечные и регулировочные. С помощью регулировочных резисторов проводятся постоянные пользовательские регулировки аппаратуры (регулировка звука, яркости тембра и др.), а построечные используются для настройки аппаратуры в режиме наладки во время сборки техники. Для регулировочных резисторов приемлемо наличия удобной ручки, построечные же обычно регулируются отверткой.

Переменный резистор

Переменный резистор

Подстроечные резисторы

Подстроечные резисторы

Если на переменном резисторе написано что он имеет номинал 10кОм, то это означает, что он производит регулировку в пределах от 0 до 10 кОм. В среднем положении ручки его номинал будет приблизительно около 5 кОм, в крайнем или 0 или 10 кОм.

Если Вам необходимо рассчитать номинал своего резистора, то советуем Вам воспользоватся нашим онлайн калькулятором цветовой маркировки резисторов.

Весь инструмент и расходники, которые я использую в ремонтах находится здесь. Если у Вас возникли вопросы по ремонту телевизионной техники, вы можете задать их на нашем новом форуме . Загрузка...

my-chip.info

О резисторах начинающему радиолюбителю: стабильный, переменный, цветовая маркировка

В радиотехнике для ограничения тока используют резисторы. Они являются пассивным элементом электроцепи. Название «resisto» латинского происхождения и означает — сопротивляюсь, соответственно сопротивление (R) и является основной его характеристикой. Его единицей измерения принято считать — Ом (кОм -килоом, МОм -мегаом).

Стабильные резисторы

Для высокоточной аппаратуры выпускаются дорогостоящая стабильная категория. Например, фольговые резисторы специальных сплавов (C-Foil, K-Foil) имеют точность ±0,01…0,001%;, высокое предельное напряжение 180 В, с низким значением токового шума — 40 дБ, низкий температурный коэффициент ±0,05ppm/°C (0…55°C), ±0,2 ppm/°C (-50…120°C) и большой диапазон номинальных сопротивлений.

Резисторы категории общего назначения

Говоря о данной категории необходимо помнить, что для них считается нормой отклонение в пределах ±10% от номинала. Существует класс точности с процентной погрешностью: 1 — ± 5%, 2 — ± 10%, 3 — ±20 %.

Для обеспечения нормальной работы резистора, необходимо не пренебрегать следующими его характеристиками: температурным коэффициентом, предельным рабочим напряжением, а также номинальной мощностью рассеивания.Предельным рабочим напряжением принято считать максимальное значение напряжения на концах, которое обеспечивает надежную работу сопротивления.  Посредством температурного коэффициента сопротивления (ТКС) показывается величина изменения R в связи с отклонением окружающей температуры на 1 °С. В зависимости от материала изготовления, ТКС может быть как положительным, так и отрицательным. Номинальной мощностью рассеивания считается та мощность, которая рассеивается резистором, при которойсама деталь не выйдет из строя. Чаще всего колебание этой величины находится в пределах от 0,125 до 2 Вт. Номинал сопротивления с его допустимым отклонением указывают непосредственно на детали специальными обозначениями, например 57 Е — 57 Ом, К12 — 120 Ом, 2К2 — 2,2кОм, 150К -150кОм. Измерить номинал R можно с помощью омметра (тестера).На схемах резистор изображается следующим образом:

как обозначают резисторы на электрических схемах

Помимо обычного постоянного резистора в радиоэлектронике используют подстроечные,которые способны менять сопротивление. Это в основном все регуляторы высокой, низкой частотыи громкости.

Переменный резистор

Маркировка резисторов

С развитием новых технологий их размеры настолько уменьшились,что не позволяют разместитьна себе необходимую информацию, исходя из этого была изобретена цветовая шкала маркировки.К ним стала прилагаться таблица зависимости нанесенного цвета кольца от соответствующиххарактеристик резистора. Обычно на корпусе бывает от 3-х до 6-ти полос. За величину допускаотвечает последняя полоса. Первые полосы отвечают за величину сопротивления.

цветовая маркировка резисторов

Похожие радиосхемы и статьи:

eschemo.ru

РЕЗИСТОРЫ

   Продолжаем наш цикл справочных материалов для начинающих радиолюбителей, и в этой статье мы поговорим о резисторах, они присутствуют в любой электронной схеме, даже самой простой. Делятся они на два вида: переменные и постоянные. Распространенные постоянные резисторы, используемые в электронных схемах, имеют мощность от 0.125 до 2 Ватт. Если быть более точным, то это ряд 0.125 Вт, 0.25 Вт, 0.5 Вт, 1 Вт, 2 Вт. Конечно, есть и более мощные резисторы, например проволочные, но они редко используются в электронных схемах. На рисунке ниже изображены внешний вид и габариты резисторов, а также их обозначения на принципиальных схемах. 

Схематическое обозначение постоянных резисторов

Схематическое обозначение постоянных резисторов

   Из них чаще всего в электронике используются резисторы мощностью от 0.125 до 0.5 Ватт. Резисторы бывают как обычные, с допуском 5-10%, так и прецизионные с допуском 0.1-1%. Существуют и более точные резисторы, но в большинстве радиолюбительских конструкций такая точность не требуется. Если резистор может менять сопротивление - его называют переменным (или подстроечным). Фото переменных резисторов:

Резисторы переменные

Резисторы переменные

   Переменные резисторы также бывают проволочные и непроволочные, проволочные обычно бывают рассчитаны на большую мощность. Устройство непроволочного переменного резистора можно видеть на рисунке:

Конструкция переменного резистора

Конструкция переменного резистора

   Устроен резистор следующим образом, на основании из гетинакса в виде дуги нанесен слой из сажи смешанной с лаком. У этого резистора между первым и вторым контактом (на рисунке), другими словами между крайними выводами сопротивление неизменно, а между средним и крайними выводами изменяется при вращении ручки резистора. К этому слою обладающему сопротивлением прилегает подвижный контакт, соединенный с центральным выводом. Очень часто при интенсивном использовании регулятором, этот слой сажи истирается, и сопротивление резистора при вращении ручки резистора изменяется скачкообразно, становясь иногда даже больше максимального положенного по номиналу. Из-за этого износа и происходит шуршание и треск из динамиков, а иногда при сильном износе звучание пропадает совсем. Переменные резисторы бывают как одинарные, так и сдвоенные, сдвоенные обычно используются в устройствах со стерео звучанием. Также к переменным резисторам относятся подстроечные резисторы:

Подстроечный резистор

Подстроечный резистор

   Они отличаются от стандартных переменных отсутствием ручки и регулируются вращением вала отвёрткой. Также переменные резисторы бывают однооборотные и многооборотные. Схематическое изображение переменного и подстроечного резистора на рисунке ниже:

Схематическое изображение переменного резистора

Схематическое изображение переменного резистора

   На советских резисторах МЛТ был написан номинал резистора, на импортных резисторах маркировка осуществляется нанесением разноцветных колец, в первых двух кольцах закодирован номинал, третье кольцо множитель, четвёртое кольцо это допуск резистора (для обычных не прецизионных резисторов). 

Цветовая маркировка резисторов

Цветовая маркировка резисторов

   Встречается маркировка большим, чем четыре, количеством колец, расшифровать маркировку поможет следующий рисунок:

Прецизионные резисторы цветовая маркировка

Прецизионные резисторы цветовая маркировка

   Иногда возникает надобность узнать номинал резистора, а по цветовой маркировке это сделать, по каким-либо причинам затруднительно. В таком случае нужно обратиться к принципиальной схеме устройства. На таких схемах номинал резистора обозначается следующим образом, например: 150 означает 150 Ом (единицы измерения не указываются), 100 К означает 100 КилоОм, 2 М означает 2 МегаОма. Иногда при сборке какой-либо схемы нужного номинала нет под рукой, но есть много резисторов других номиналов, в таком случае может помочь последовательное или параллельное соединение резисторов. Формулы подсчета всем известны из учебников физики, но если кто подзабыл, приведу здесь их:

При последовательном соединении

При параллельном соединении

   В последнее время многие переходят на SMD детали, из них наиболее распространены резисторы размеров 0805 и 1206. Определить номинал SMD резистора очень просто, первые две цифры показывают сопротивление резистора, третья цифра количество нулей. Пример: нанесена маркировка 332, это значит 33 плюс два нуля, получается 3300, то есть 3.3 КилоОма. Менее распространены в электронике, но тем не менее находят применение терморезисторы и фоторезисторы. На рисунке ниже изображено схематическое изображение терморезисторов:

Терморезисторы схематическое изображение

Терморезисторы схематическое изображение

   У терморезисторов сопротивление зависит от температуры. Если с повышением температуры сопротивление терморезистора увеличивается, то температурный коэффициент сопротивления ТКС положительный, если же с повышением температуры сопротивление уменьшается, то ТКС отрицательный. Терморезистор изображен на фотографии ниже:

Терморезистор фото

Терморезистор фото

   На следующем рисунке изображён фоторезистор, как его рисуют на схемах:

Фоторезистор схематическое изображение

Фоторезистор схематическое изображение

   Он представляет собой полупроводниковый прибор, сопротивление которого меняется под действием света.

Фоторезистор - внешний вид

Фоторезистор - внешний вид

   Фоторезисторы особенно широко используются в устройствах автоматики. Привожу типовую схему включения полупроводникового фотодетектора:

Типовая схема полупроводникового фотодетектора

Типовая схема полупроводникового фотодетектора

   В общем резистор можно смело считать кирпичиком любой радиосхемы, так как это самый распространённый элемент в радиоэлектронике. С вами был AKV.

   Форум по деталям

   Обсудить статью РЕЗИСТОРЫ

radioskot.ru

Введение в электронику. Резисторы

Серия статей известного автора множества радиолюбительских публикаций  Дригалкина В.В.  для начинающих радиолюбителей

Доброго дня уважаемые радиолюбители!Приветствую вас на сайте “Радиолюбитель“

Резисторы

Резисторы делятся на постоянные, подстроечные и переменные (потенциометры).Практически в каждой конструкции встречается постоянный резистор. Он представляет собой фарфоровую трубочку (или стержень), на которую снаружи напылена тончайшая пленка металла или сажи (углерода).

Резистор имеет сопротивление и используется для того, чтобы установить нужный ток в электрической цепи.

Вспомните пример с резервуаром: изменяя диаметр трубы (сопротивление нагрузки) , можно получить ту или другую скорость потока води (электрический ток разной силы). Чем тоньше пленка на фарфоровой трубочке или стержне, тем большее сопротивление тока. Поэтому эту деталь иногда просто называют сопротивлением. Из постоянных ранее применялись резисторы типа МЛТ (металлизированный лакированный теплостойкий). Их корпуса были окрашены в красный или зеленый цвет. Сегодня радиомагазины чаще заполнены резисторами белового цвета с цветными полосами. И те, и другие Вы можете смело использовать в своих устройствах. Подстроечные резисторы предназначены для настройки аппаратуры, а резистор со сменным сопротивлением (переменный или потенциометр) применяют для регулировки, например, для установки громкости в усилителях. Резисторы различают по сопротивлению и мощности. Сопротивление, как Вы уже знаете, измеряют в омах, килоомах и мегоомах, а мощность – в ваттах. Резисторы разной мощности отличаются размерами. Чем больше мощность резистора, тем больше его размеры. Внешний вид постоянных резисторов показан на Рис. 1. Там же показано условно-графическое обозначение резисторов на принципиальной схеме с указанием мощности. Чаще мощность указывают рядом с резистором или рассказывают об этом в описании схемы.

Внешний вид резисторов

Для миниатюризации своих устройств некоторые используют ЧИП-компоненты, среди которых могут быть как резисторы, так и конденсаторы. На Рис. 1г показан внешний вид ЧИП-резистора. В зарубежной электронике он называется SMD (от Surface Mounted Device – прибор, монтируемый на поверхность). Другими словами ЧИП-компоненты – это безвыводные радиодетали для монтажа со стороны печатных проводников. Номинальное значение сопротивления резистора указывается производителем на корпусе изделия. Там же наносится и ряд других его характеристик. Для маркировки резисторов используют специальные кодировки: буквенно-цифровую, цветовую и цифровую. В буквенно-цифровой маркировке единицу сопротивления Ом сокращенно обозначают буквой Е или R, килоом – буквой К, мегоом – буквой М. Если номинальное сопротивление резистора выражают целым числом, то буквенное обозначение единицы измерения ставят после этого числа, например: ЗЗЕ (33 Ом), 47К (47 кОм), ЮМ (10 мОм) . Когда же сопротивление резистора выражают десятичной дробью меньшим за единицу, то буквенное обозначение единицы измерения размещают перед числом, например: К22 (220 Ом) , М47 (470 кОм) . Выражая сопротивление резистора целым числом с десятичной дробью, целое число ставят впереди буквы, а десятичная дробь – после буквы, которая символизирует единицу измерения (буква заменяет запятую после целого числа), например: 1Е5 (1,5 Ом), 2К2 (2,2 кОм), 1М5 (1,5 мОм). Кроме этого, на корпус резистора производители наносят и допустимую мощность. Например, МЛТ-1 обозначает резистор мощностью 1 Вт. Как Вы догадались, данная маркировка верна для отечественных резисторов. В зарубежной принято применять цвета и цифры.

Цветовая маркировка резисторов

Цветовую маркировку наносят на цилиндрическую поверхность резистора в виде  точек или колец-поясков. Маркировочные знаки располагают на резисторе слева направо в следующем порядке: первый знак – первая цифра; второй знак – вторая; третий – множитель. Эти знаки определяют номинальное сопротивление. Четвертый знак – допустимое отклонение сопротивления. Для резисторов с номинальным сопротивлением, выраженным тремя цифрами и множителем, цветовая маркировка состоит из пяти знаков (колец): первые три знака – три цифры номинала: четвертый знак – множитель, пятый – допустимое отклонение сопротивления (см. Рис. 2) . В связи с этим в Интернете появилось множество онлайн калькуляторов для определения сопротивления резисторов. Но, как по мне, проще узнать сопротивление резистора с помощью цифрового прибора – тестера.  При цифровой маркировке величина сопротивления резистора наносится тремя цифрами, из которых две первые показывают ее мантиссу, а третья служит показателем степени 10 для дополнительного множителя. Например, 150 означает 15 Ом, 151 это 150 Ом, 152 – 1500 Ом и т.д. Соответственно, на резисторе с сопротивлением 15 МОм увидим в этом коде: 156. Цифровая маркировка применяется в основном в SMD-компонентах. В следующей таблице приведены примеры некоторых цифровых маркировок.

Чип-резисторы

Сравнение мощных транзисторовРанее я упоминал о мощности резисторов. В отечественной электронике стандарты жестче не только к резисторам, но и к другим компонентам. Это явно демонстрирует Рис. 3. От сюда следует: если в описании схемы говорится об использовании, например, МЛТ-2, его необходимо заменять зарубежным резистором большей мощности. Иначе Ваше устройство долго не “протянет”.

В отличие от постоянных резисторов, которые имеют два вывода, у переменных резисторов таких выводов три. Потенциометры могут содержать и более трех выводов. Такие переменные резисторы обычно используются для компенсации частот в звуковой аппаратуре.

Переменные резисторыОтечественные переменные резисторыНа схеме указывают сопротивление между крайними выводами сменного резистора. Сопротивление же между средним выводом и крайними изменяется при вращении оси резистора, которое выступает наружу. Причем, если ось возвращают в одну сторону, сопротивление между средним выводом и одним из крайних возрастает, соответственно уменьшаясь между средним выводом и другим крайним. Если же ось возвращают назад, происходит обратное. Переменные резисторы, как и постоянные, могут быть разной мощности, что можно определить по их размерам. Особенно большой мощностью обладают проволочные резисторы, которые предназначены для работы в цепях постоянного и переменного токов. Внешний вид некоторыхпеременных резисторов и их обозначение на принципиальной схеме представлены на Рис. 4.Подобным образом работают и подстроечные резисторы, однако, они, как уже понятно из названия, служат для подстройки, а точнее для установки более точного сопротивления. После чего их больше не трогают. Внешний вид некоторых подстроечников и их обозначение на принципиальной схеме представлены на Рис.5.

Отечественные подстроечникиИмпортные подстроечникиРезисторы шумят! Различают собственные шумы и шумы скольжения. Собственные шумы резисторов складываются из тепловых и токовых шумов. Их возникновение связано с тепловым движением свободных электронов и прохождением электрического тока. Собственные шумы резисторов тем выше, чем больше температура и напряжение. Высокий уровень шумов резисторов ограничивает чувствительность электронных схем и создает помехи при воспроизведении полезного сигнала. Шумы скольжения (вращения) присущи переменным резисторам. Они возникают в динамическом режиме при движении подвижного контакта по резистивному элементу в виде напряжения помех. В приемных устройствах эти помехи приводят к различным шорохам и трескам. Поэтому в электронике стали использовать цифровую регулировку. Теперь не часто в аппаратуре встретишь регулятор громкости, построенный на потенциометре.

Кроме указанных выше резисторов, существуют полупроводниковые нелинейные резисторы – изделия электронной техники, основное свойство которых заключается в способности изменять свое электрическое сопротивление под действием управляющих факторов: температуры, напряжения, магнитного поля и др. В зависимости от воздействующего фактора они получили название фоторезисторы, терморезисторы и варисторы. В последнее время их стали относить к управляемым полупроводниковым резисторам. Иными словами, это элементы, чувствительные к воздействию определенного управляющего фактора (см. Рис. 6).

Нелинейные полупроводниковые элементы

Среди них – фоторезисторы, меняющие свое сопротивление в зависимости от степени освещенности. Чем интенсивней свет, тем больше создается свободных носителей зарядов и тем меньше становится сопротивление элемента. У фоторезисторов обязательно определен и диапазон температуры. Если использовать датчик при разных температурах, то следует обязательно ввести уточняющие преобразования , т.к. свойство сопротивления зависит от внешней температуры. В зависимости от назначения фоторезисторы имеют совершенно различное конструктивное оформление. Иногда это просто пластина полупроводника на стеклянном основании с токонесущими выводами, в других случаях фоторезистор имеет пластмассовый корпус с жесткими штырьками. Широко используются фоторезисторы в полиграфической промышленности при обнаружении обрывов бумажной ленты, контроле за количеством листов, подаваемых в печатную машину. Не обходятся без них и автоматические выключатели уличного освещения.Терморезисторы, или термисторы – изменяют свое сопротивление в зависимости от температуры. Существуют терморезисторы как с отрицательным, так и с положительным температурным коэффициентом сопротивления – позисторы.Терморезисторы используются в системах дистанционного и централизованного измерения и регулирования температур, противопожарной сигнализации, теплового контроля и защиты машин, измерения мощности, измерения вакуума, скоростей движения жидкостей и газов и др. Номинальное сопротивление RH – электрическое сопротивление, значение которого обозначено на терморезисторе или указано в нормативной документации, измеренное при определенной температуре окружающей среды (для большинства типов этих резисторов при 20 °С, а для терморезисторов с высокими рабочими температурами до 300 °С).Отличительной особенностью варисторов является резко выраженная зависимость электрического сопротивления от приложенного к ним напряжения. Их используютдля стабилизации и защиты от перенапряжений, преобразования частоты и напряжения, а также для регулирования усиления в системах автоматики, различных измерительных устройствах, в телевизионных приемниках. Например, варистор часто используют в сетевых (на 220В) удлинителях. Подключив такую деталь параллельно розеткам удлинителя, разработчики не стесняются заявлять о множестве различных защит и фильтров.

Перейти к следующей статье: Конденсаторы

radio-stv.ru

Виды резисторов | joyta.ru

Виды резисторов. Резисторы являются наиболее часто используемыми компонентами электронных схем и устройств. Основное назначение резистора является поддержание заданных значений напряжения и тока в электронной цепи, на основе такого физического свойства как сопротивление. Единицей измерения сопротивления является Ом, от имени немецкого физика Георга Ома.

Работа резистора основана на законе Ома, который гласит, что напряжение на выводах резистора прямо пропорционально величине тока, протекающего через него.

Виды резисторов

В настоящее время существует несколько видов  резисторов. Вот некоторые из них:

  • Проволочные резисторы
  • Металлопленочные резисторы
  • Толстопленочные и тонкопленочные резисторы
  • Резисторы для поверхностного монтажа (SMD)
  • Резисторная сборка
  • Переменные резисторы
  • Специальные резисторы

Проволочные резисторы

Проволочные резисторы

Этот вид резисторов различаются по внешности и размера. Проволочные резисторы, как правило, изготавливают из длинного провода на основе сплавов, обычно хрома, никеля или сплава медно-никель-марганца. Этот вид резистора, пожалуй, один из самых старых видов. Проволочные резисторы имеют превосходные свойства, такие как высокие показатели мощности и низкие значения сопротивления. В процессе эксплуатации эти резисторы могут сильно нагреваться, и по этой причине их зачастую  помещают в металлический ребристый корпус для лучшего охлаждения.

Металлопленочные резисторы

Металлопленочные резисторы

Металлопленочные резисторы изготавливаются из оксида металла или в виде небольших керамических стержней с нанесением на них тонкого слоя металла.

Они похожи на углеродно-пленочные резисторы и их сопротивление регулируется за счет толщины слоя покрытия. Характерными свойствами металлопленочных резисторов можно считать их надежность, точность и стабильность. Эти резисторы могут быть изготовлены в широком диапазоне сопротивлений (от нескольких Ом до МОм). Номинал сопротивлений резисторов наносится на корпус в буквенно-цифровом виде или в виде цветовой маркировке.

Толстопленочные и тонкопленочные резисторы

тонкопленочные резисторы

Тонкопленочные резисторы изготавливаются путем напыления определенного резистивного материала на изоляционной подложке (методом вакуумного напыления) и поэтому их стоимость значительно выше, чем стоимость толстопленочных резисторов. Толщина резистивного элемента этих резисторов составляет приблизительно 1000 Ангстрем. Тонкопленочные резисторы имеют лучший температурный коэффициент сопротивления, низкую емкость, малую паразитную индуктивность и низкий уровень шума.

Эти резисторы являются предпочтительными для устройств на основе СВЧ, где требуется высокая точность и стабильность.

Обычно толстопленочные резисторы изготавливаются путем смешивания порошкового стекла с органическим связующим. Отклонение сопротивления от номинала у подобных резисторов составляет от 1% до 2%. Толстопленочные резисторы широко используются в качестве недорогих резисторов.

Резисторы для поверхностного монтажа (SMD)

Резисторы для поверхностного монтажа (SMD)

Резисторы для поверхностного монтажа бывают различных размеров и форм. Они сделаны путем нанесения пленки резистивного материала и не имеют достаточно места для нанесения цветовой маркировки резисторов вследствие малого размера. Поэтому маркировка smd резисторов состоит только из 3 или 4 цифр.

Резисторная сборка

Резисторная сборка

Резисторная сборка представляют собой комбинацию сопротивлений, которые дают одинаковые значения для всех выводов. Эти резисторы изготавливаются в виде одиночного и сдвоенного пакета. Резисторная сборка широко используются в таких схемах, как АЦП (аналого-цифровые преобразователи) и ЦАП (Цифро-аналоговый преобразователь) в качестве подтягивающих резисторов.

Переменные резисторы

Переменные Резисторы

Наиболее часто используемые типы переменных резисторов являются потенциометры и подстрочные резисторы. Эти резисторы имеют три вывода, сопротивление между двумя крайними выводами имеет постоянное значение, а третий вывод связан с подвижным контактом и играет роль своеобразного делителя напряжения. Данный тип резистора в основном используется для настройки чувствительности датчиков и в качестве делителя напряжения.

 Если же соединить центральный вывод с одним из крайних выводов, то получится переменный резистор.

Фоторезистор (LDR)

Фоторезистор (LDR)

Фоторезистор является очень полезным радиоэлементом в различных электронных схемах, например, в схемах управления уличным освещением, в электронных часах, будильниках. Когда резистор не освещен, его сопротивление очень высокое (около 1 МОм) и если же фоторезистор осветить, то его сопротивление падает до нескольких кОм.

Эти резисторы бывают разных форм и цветов. В зависимости от внешнего освещения, эти резисторы используются, для того чтобы включать или выключать устройства.

К специальным резисторам также можно отнести терморезисторы (термисторы и позисторы) и варисторы.

www.joyta.ru

Типы резисторов

Слово «резистор» произошло от латинского « resisto », что значит сопротивляюсь. Резисторы относятся к наиболее распространенным деталям радиоэлектронной аппаратуры.

Как обозначается резистор на схеме

Постоянные резисторы

Основным параметром резисторов является их номинальное сопротивление, измеряемое в Омах ( Ом ), килоомах ( кОм ) или мегаомах ( МОм ). Номинальные значения сопротивлений указываются на корпусе резисторов, однако действительная величина сопротивления может отличаться от номинального значения. Эти, отклонения устанавливаются стандартом в соответствии с классом точности, определяющим величину погрешности.

Широко используются три класса точности допускающие отклонение сопротивления от номинального значения:

  • I класс – на ± 5 %
  • II класс – на ± 10 %
  • III класс – на ± 20 %

Существует так же так называемые прецизионные резисторы, они выпускаются с допусками:

  • ± 2 %
  • ± 1 %
  • + 0,2 %
  • ± 0,1 %
  • ± 0,5 %
  • ± 0,02 %
  • ± 0,01 %

Помимо сопротивления резисторы характеризуются предельным рабочим напряжением, температурным коэффициентом сопротивления и номинальной мощностью рассеяния.

Предельным рабочим напряжением называют максимально допустимое напряжение, приложенное к выводам резистора, при котором он надежно работает. Температурный коэффициент сопротивления ( ТКС ) отражает относительное изменение величины сопротивления резистора при колебании температуры окружающей среды на 1 °С . В зависимости от материала, из которого изготовлен резистор, его сопротивление с увеличением температуры может возрастать либо уменьшаться. В первом случае ТКС оказывается положительным, а во втором – отрицательным.

Если на резисторе выделяется большая мощность, чем предусмотрено, его температура будет повышаться, и он даже может перегореть. В большинстве устройств РЭА применяются резисторы с номинальной мощностью рассеяния от 0,125 до 2 Вт.

Номинальное значение сопротивления и допускаемое отклонение указываются на резисторе с помощью специальных буквенных обозначений:

  • Е (К) – от 1 до 99 Ом
  • К – от 0,1 до 99 кОм
  • М – от 0,1 до 99 МОм

Пример обозначений номинальных сопротивлений резисторов:

  • 27Е – 27 Ом
  • 4Е7 – 4,7 Ом
  • К680 – 680 Ом
  • 1К5 – 1,5 кОм
  • 43К – 43 кОм
  • 2М4 – 2,4 МОм
  • 3М – 3 МОм

Различают два основных вида резисторов: нерегулируемые ( постоянные ) и регулируемые ( переменные и подстроечные ). Особую группу составляют полупроводниковые резисторы.

Постоянные резисторы

Постоянные резисторы могут быть проволочными и непроволочными. Проволочные резисторы представляют собой цилиндрическое тело, на которое наматывается проволока из металла, обладающего большим удельным сопротивлением. Первыми элементами обозначения таких резисторов являются буквы:

  • ПЭ
  • ПЭВ
  • ПЭВ-Р
  • ПЭВТ

Из наиболее широко применяемых непроволочных резисторов можно назвать углеродистые, типа:

Металлизированные резисторы, лакированные эмалью, теплостойкие:

  • МЛТ
  • ОМЛТ
  • МТ
  • МТЕ

Композиционные резисторы, с стеклянным основанием, на которое наносится токопроводящий материал-смесь нескольких веществ:

На электрических схемах постоянные резисторы, независимо от их типа, изображаются в виде прямоугольников, выводы от концов резисторов – линиями, проведенными от середин меньших сторон. Допустимая рассеиваемая мощность резистора указывается внутри прямоугольника. Рядом с условным графическим обозначением наносят латинскую букву R, после которой следует порядковый номер резистора, согласно принципиальной схеме, а также номинальное его сопротивление.

Номинал резисторов на схеме

Обозначение постоянного резистора

Для сопротивления от 0 до 999 Ом единицу измерения не указывают, для сопротивления от 1 кОм до 999 и от 1 МОм и выше к числовому его значению добавляют обозначения единиц измерения.

Изображение резистора на схеме

Сопротивление резистора ориентировочное

 

 

Если величина сопротивления резистора на схеме указана ориентировочно и в процессе настройки может быть изменена, к условному обозначению резистора добавляется звездочка *.

При необходимости подчеркнуть, что данный резистор должен обязательно быть проволочным, рядом с символом R делается надпись « пров ».

Переменные резисторы

Регулируемые, или переменные резисторы являются радиоэлементами, сопротивления которых можно изменять от нуля до номинальной величины. Как и постоянные, регулируемые резисторы могут быть проволочными и непроволочными.

Резистор переменный регулирующий

Регулируемый резистор без отводов

Регулируемый непроволочный резистор представляет собой токопроводящее покрытие, нанесенное на диэлектрическую пластинку в виде дуги, по которому перемещается пружинящий контакт (движок), скрепленный с осью. От этого контакта и от краев токопроводящего покрытия сделаны выводы.

Функциональная характеристика резисторов

Функциональная характеристика переменного резистора

По виду зависимости сопротивления между начальным выводом от токопроводящей части и движком от угла поворота оси различают резисторы типов:

  • А – линейная зависимость
  • Б – логарифмическая
  • В – показательная зависимость
Переменный резистор с отводом

Регулируемый резистор с двумя дополнительными отводами

Двойной переменный резистор конструкция

Сдвоенный переменный резистор

Резистор переменный сдвоенный

Двойной переменный резистор

Резистор выключатель

Регулируемый резистор с выключателем

Подстроечные резисторы

Разновидностью регулируемых резисторов являются подстроечные резисторы, которые не имеют выступающей оси, скрепленной с движком. Изменять положение движка и, следовательно, сопротивление между ним и одним из концов токопроводящего слоя в подстроечном резисторе можно только с помощью отвертки.

Подстроечные резисторы обозначение

Подстроечные резисторы

Терморезисторы

Терморезистор – полупроводниковый резистор, включаемый в электрическую цепь, сопротивление которого возрастает при уменьшении температуры и понижается при ее увеличении. Температурный коэффициент сопротивления ( ТКС ) таких резисторов отрицательный.

Позистор – полупроводниковый резистор, включаемый в электрическую цепь, сопротивление которого увеличивается при увеличении температуры и уменьшается при ее уменьшении. Температурный коэффициент сопротивления ( ТКС ) таких резисторов положительный.

Обозначение терморезистора на схеме

Терморезисторы (термисторы)

Обозначение варистора

Условное графическое обозначение варисторов

 

 

Варисторами – называют полупроводниковые резисторы, в которых используется свойство уменьшения сопротивления полупроводникового материала при увеличении приложенного напряжения.

Система обозначений варисторов включает буквы СН (сопротивление нелинейное) и цифры.

Первая из цифр обозначает материал

  • 1 – карбид кремния
  • 2 – селен

Вторая цифра – конструкцию

  • 1,8 – стержневая
  • 2, 10 – дисковая
  • 3 – микромодульная

Третья цифра – порядковый номер разработки. Последним элементом обозначения также является число. Оно указывает на классификационное напряжение в вольтах, например – СН-1-2-1-100.

Варисторы применяют для защиты от перенапряжений контактов, приборов и элементов радиоэлектронных устройств, высоковольтных линий и линий связи, для стабилизации и регулирования электрических величин и т. д.

Фоторезисторы

Фоторезисторами – называют полупроводниковые резисторы, сопротивление которых изменяется от светового или проникающего электромагнитного излучения. Более широко используются фоторезисторы с положительным фотоэффектом. Их сопротивление уменьшается при освещении или облучении электромагнитными волнами.

Фоторезистор условное обозначение

Условное графическое обозначение фоторезисторов

 

Благодаря высокой чувствительности, простоте конструкции, малым габаритам фоторезисторы применяются в фотореле различного назначения, счетчиках изделий в промышленности, системах контроля размеров и формы деталей, устройствах регулирования различных величин, телеуправлении и телеконтроле, датчиках различных величин и др.

Система обозначений фоторезисторов ранних выпусков содержит три буквы и цифру. Первые две буквы – ФС (фотосопротивление), за ними следует буква, обозначающая материал светочувствительного элемента:

  • А – сернистый свинец
  • К – сернистый кадмий
  • Д – селенистый кадмий

Затем идет цифра, указывающая на вид конструкции, например: ФСК-1.

В новой системе обозначений первые две буквы СФ (сопротивление фоточувствительное). Следующая за ними цифра указывает на материал чувствительного элемента, а последняя цифра означает порядковый номер разработки, например: СФ2-1.

selectelement.ru

Резистор. Резисторы переменного сопротивления | Для дома, для семьи

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем тему о резисторах. В первой части статьи мы познакомились с резисторами постоянного сопротивления (постоянными резисторами), а в этой части статьи поговорим о резисторах переменного сопротивления, или переменных резисторах.

Резисторы переменного сопротивления, или переменные резисторы являются радиокомпонентами, сопротивление которых можно изменять от нуля и до номинального значения. Они применяются в качестве регуляторов усиления, регуляторов громкости и тембра в звуковоспроизводящей радиоаппаратуре, используются для точной и плавной настройки различных напряжений и разделяются на потенциометры и подстроечные резисторы.

1. Потенциометры.

Потенциометры применяются в качестве плавных регуляторов усиления, регуляторов громкости и тембра, служат для плавной регулировки различных напряжений, а также используются в следящих системах, в вычислительных и измерительных устройствах и т.п.

Потенциометром называют регулируемый резистор, имеющий два постоянных вывода и один подвижный. Постоянные выводы расположены по краям резистора и соединены с началом и концом резистивного элемента, образующим общее сопротивление потенциометра. Средний вывод соединен с подвижным контактом, который перемещается по поверхности резистивного элемента и позволяет изменять величину сопротивления между средним и любым крайним выводом.

Потенциометр представляет собой цилиндрический или прямоугольный корпус, внутри которого расположен резистивный элемент, выполненный в виде незамкнутого кольца, и выступающая металлическая ось, являющаяся ручкой потенциометра. На конце оси закреплена пластина токосъемника (контактная щетка), имеющая надежный контакт с резистивным элементом. Надежность контакта щетки с поверхностью резистивного слоя обеспечивается давлением ползунка, выполненного из пружинных материалов, например, бронзы или стали.

При вращении ручки ползунок перемещается по поверхности резистивного элемента, в результате чего сопротивление изменяется между средним и крайними выводами. И если на крайние выводы подать напряжение, то между ними и средним выводом получают выходное напряжение.

Схематично потенциометр можно представить, как показано на рисунке ниже: крайние выводы обозначены номерами 1 и 3, средний обозначен номером 2.

В зависимости от резистивного элемента потенциометры разделяются на непроволочные и проволочные.

1.1 Непроволочные.

В непроволочных потенциометрах резистивный элемент выполнен в виде подковообразной или прямоугольной пластины из изоляционного материала, на поверхность которых нанесен резистивный слой, обладающий определенным омическим сопротивлением.

Резисторы с подковообразным резистивным элементом имеют круглую форму и вращательное перемещение ползунка с углом поворота 230 — 270°, а резисторы с прямоугольным резистивным элементом имеют прямоугольную форму и поступательное перемещение ползунка. Наиболее популярными являются резисторы типа СП, ОСП, СПЕ и СП3. На рисунке ниже показан потенциометр типа СП3-4 с подковообразным резистивным элементом.

Отечественной промышленностью выпускались потенциометры типа СПО, у которых резистивный элемент впрессован в дугообразную канавку. Корпус такого резистора выполнен из керамики, а для защиты от пыли, влаги и механических повреждений, а также в целях электрической экранировки весь резистор закрывается металлическим колпачком.

Потенциометры типа СПО обладают большой износостойкостью, нечувствительны к перегрузкам и имеют небольшие размеры, но у них есть недостаток – сложность получения нелинейных функциональных характеристик. Эти резисторы до сих пор еще можно встретить в старой отечественной радиоаппаратуре.

1.2. Проволочные.

В проволочных потенциометрах сопротивление создается высокоомным проводом, намотанным в один слой на кольцеобразном каркасе, по ребру которого перемещается подвижный контакт. Для получения надежного контакта между щеткой и обмоткой контактная дорожка зачищается, полируется, или шлифуется на глубину до 0,25d.

Устройство и материал каркаса определяется исходя из класса точности и закона изменения сопротивления резистора (о законе изменения сопротивления будет сказано ниже). Каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо, или же берут готовое кольцо, на которое укладывают обмотку.

Для резисторов с точностью, не превышающей 10 – 15%, каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо. Материалом для каркаса служат изоляционные материалы, такие как гетинакс, текстолит, стеклотекстолит, или металл – алюминий, латунь и т.п. Такие каркасы просты в изготовлении, но не обеспечивают точных геометрических размеров.

Каркасы из готового кольца изготавливают с высокой точностью и применяют в основном для изготовления потенциометров. Материалом для них служит пластмасса, керамика или металл, но недостатком таких каркасов является сложность выполнения обмотки, так как для ее намотки требуется специальное оборудование.

Обмотку выполняют проводами из сплавов с высоким удельным электрическим сопротивлением, например, константан, нихром или манганин в эмалевой изоляции. Для потенциометров применяют провода из специальных сплавов на основе благородных металлов, обладающих пониженной окисляемостью и высокой износостойкостью. Диаметр провода определяют исходя из допустимой плотности тока.

2. Основные параметры переменных резисторов.

Основными параметрами резисторов являются: полное (номинальное) сопротивление, форма функциональной характеристики, минимальное сопротивление, номинальная мощность, уровень шумов вращения, износоустойчивость, параметры, характеризующие поведение резистора при климатических воздействиях, а также размеры, стоимость и т.п. Однако при выборе резисторов чаще всего обращают внимание на номинальное сопротивление и реже на функциональную характеристику.

2.1. Номинальное сопротивление.

Номинальное сопротивление резистора указывается на его корпусе. Согласно ГОСТ 10318-74 предпочтительными числами являются 1,0; 2,2; 3,3; 4,7 Ом, килоом или мегаом.

У зарубежных резисторов предпочтительными числами являются 1,0; 2,0; 3,0; 5.0 Ом, килоом и мегаом.

Допускаемые отклонения сопротивлений от номинального значения установлены в пределах ±30%.

Полным сопротивлением резистора считается сопротивление между крайними выводами 1 и 3.

2.2. Форма функциональной характеристики.

Потенциометры одного и того же типа могут отличаться функциональной характеристикой, определяющей по какому закону изменяется сопротивление резистора между крайним и средним выводом при повороте ручки резистора. По форме функциональной характеристики потенциометры разделяются на линейные и нелинейные: у линейных величина сопротивления изменяется пропорционально движению токосъемника, у нелинейных она изменяется по определенному закону.

Существуют три основных закона: А — Линейный, Б – Логарифмический, В — Обратно Логарифмический (Показательный). Так, например, для регулирования громкости в звуковоспроизводящей аппаратуре необходимо, чтобы сопротивление между средним и крайним выводом резистивного элемента изменялось по обратному логарифмическому закону (В). Только в этом случае наше ухо способно воспринимать равномерное увеличение или уменьшение громкости.

Или в измерительных приборах, например, генераторах звуковой частоты, где в качестве частотозадающих элементов используются переменные резисторы, также требуется, чтобы их сопротивление изменялось по логарифмическому (Б) или обратному логарифмическому закону. И если это условие не выполнить, то шкала генератора получится неравномерной, что затруднит точную установку частоты.

Резисторы с линейной характеристикой (А) применяются в основном в делителях напряжения в качестве регулировочных или подстроечных.

Зависимость изменения сопротивления от угла поворота ручки резистора для каждого закона показано на графике ниже.

Для получения нужной функциональной характеристики большие изменения в конструкцию потенциометров не вносятся. Так, например, в проволочных резисторах намотку провода ведут с изменяющимся шагом или сам каркас делают изменяющейся ширины. В непроволочных потенциометрах меняют толщину или состав резистивного слоя.

К сожалению, регулируемые резисторы имеют относительно невысокую надежность и ограниченный срок службы. Часто владельцам аудиоаппаратуры, эксплуатируемой длительное время, приходится слышать шорохи и треск из громкоговорителя при вращении регулятора громкости. Причиной этого неприятного момента является нарушение контакта щетки с токопроводящим слоем резистивного элемента или износ последнего. Скользящий контакт является наиболее ненадежным и уязвимым местом переменного резистора и является одной из главной причиной выхода детали из строя.

3. Обозначение переменных резисторов на схемах.

На принципиальных схемах переменные резисторы обозначаются также как и постоянные, только к основному символу добавляется стрелка, направленная в середину корпуса. Стрелка обозначает регулирование и одновременно указывает, что это средний вывод.

Иногда возникают ситуации, когда к переменному резистору предъявляются требования надежности и длительности эксплуатации. В этом случае плавное регулирование заменяют ступенчатым, а переменный резистор строят на базе переключателя с несколькими положениями. К контактам переключателя подключают резисторы постоянного сопротивления, которые будут включаться в цепь при повороте ручки переключателя. И чтобы не загромождать схему изображением переключателя с набором резисторов, указывают только символ переменного резистора со знаком ступенчатого регулирования. А если есть необходимость, то дополнительно указывают и число ступеней.

Для регулирования громкости и тембра, уровня записи в звуковоспроизводящей стереофонической аппаратуре, для регулирования частоты в генераторах сигналов и т.д. применяются сдвоенные потенциометры, сопротивления которых изменяется одновременно при повороте общей оси (движка). На схемах символы входящих в них резисторов располагают как можно ближе друг к другу, а механическую связь, обеспечивающую одновременное перемещение движков, показывают либо двумя сплошными линиями, либо одной пунктирной линией.

Принадлежность резисторов к одному сдвоенному блоку указывается согласно их позиционному обозначению в электрической схеме, где R1.1 является первым по схеме резистором сдвоенного переменного резистора R1, а R1.2 — вторым. Если же символы резисторов окажутся на большом удалении друг от друга, то механическую связь обозначают отрезками пунктирной линии.

Промышленностью выпускаются сдвоенные переменные резисторы, у которых каждым резистором можно управлять отдельно, потому что ось одного проходит внутри трубчатой оси другого. У таких резисторов механическая связь, обеспечивающая одновременное перемещение, отсутствует, поэтому на схемах ее не показывают, а принадлежность к сдвоенному резистору указывают согласно позиционному обозначению в электрической схеме.

В переносной бытовой аудиоаппаратуре, например, в приемниках, плеерах и т.д., часто используют переменные резисторы со встроенным выключателем, контакты которого задействуют для подачи питания в схему устройства. У таких резисторов переключающий механизм совмещен с осью (ручкой) переменного резистора и при достижении ручкой крайнего положения воздействует на контакты.

Как правило, на схемах контакты включателя располагают возле источника питания в разрыв питающего провода, а связь выключателя с резистором обозначают пунктирной линией и точкой, которую располагают у одной из сторон прямоугольника. При этом имеется в виду, что контакты замыкаются при движении от точки, а размыкаются при движении к ней.

4. Подстроечные резисторы.

Подстроечные резисторы являются разновидностью переменных и служат для разовой и точной настройки радиоэлектронной аппаратуры в процессе ее монтажа, наладки или ремонта. В качестве подстроечных используют как переменные резисторы обычного типа с линейной функциональной характеристикой, ось которых выполнена «под шлиц» и снабжена стопорным устройством, так и резисторы специальной конструкции с повышенной точностью установки величины сопротивления.

В основной своей массе подстроечные резисторы специальной конструкции изготавливают прямоугольной формы с плоским или кольцевым резистивным элементом. Резисторы с плоским резистивным элементом (а) имеют поступательное перемещение контактной щетки, осуществляемое микрометрическим винтом. У резисторов с кольцевым резистивным элементом (б) перемещение контактной щетки осуществляется червячной передачей.

При больших нагрузках используются открытые цилиндрические конструкции резисторов, например, ПЭВР.

На принципиальных схемах подстроечные резисторы обозначаются также как и переменные, только вместо знака регулирования используется знак подстроечного регулирования.

5. Включение переменных резисторов в электрическую цепь.

В электрических схемах переменные резисторы могут применяться в качестве реостата (регулируемого резистора) или в качестве потенциометра (делителя напряжения). Если в электрической цепи необходимо регулировать ток, то резистор включают реостатом, если напряжение, то включают потенциометром.

При включении резистора реостатом задействуют средний и один крайний вывод. Однако такое включение не всегда предпочтительно, так как в процессе регулирования возможна случайная потеря средним выводом контакта с резистивным элементом, что повлечет за собой нежелательный разрыв электрической цепи и, как следствие, возможный выход из строя детали или электронного устройства в целом.

Чтобы исключить случайный разрыв цепи свободный вывод резистивного элемента соединяют с подвижным контактом, чтобы при нарушении контакта электрическая цепь всегда оставалась замкнута.

На практике включение реостатом применяют тогда, когда хотят переменный резистор использовать в качестве добавочного или токоограничивающего сопротивления.

При включении резистора потенциометром задействуются все три вывода, что позволяет его использовать делителем напряжения. Возьмем, к примеру, переменный резистор R1 с таким номинальным сопротивлением, которое будет гасить практически все напряжение источника питания, приходящее на лампу HL1. Когда ручка резистора выкручена в крайнее верхнее по схеме положение, то сопротивление резистора между верхним и средним выводами минимально и все напряжение источника питания поступает на лампу, и она светится полным накалом.

По мере перемещения ручки резистора вниз сопротивление между верхним и средним выводом будет увеличиваться, а напряжение на лампе постепенно уменьшаться, отчего она станет светить не в полный накал. А когда сопротивление резистора достигнет максимального значения, напряжение на лампе упадет практически до нуля, и она погаснет. Именно по такому принципу происходит регулирование громкости в звуковоспроизводящей аппаратуре.

Эту же схему делителя напряжения можно изобразить немного по-другому, где переменный резистор заменяется двумя постоянными R1 и R2.

Ну вот, в принципе и все, что хотел сказать о резисторах переменного сопротивления. В заключительной части рассмотрим особый тип резисторов, сопротивление которых изменяется под воздействием внешних электрических и неэлектрических факторов — нелинейные резисторы.Удачи!

Литература:В. А. Волгов — «Детали и узлы радиоэлектронной аппаратуры», 1977 г.В. В. Фролов — «Язык радиосхем», 1988 г.М. А. Згут — «Условные обозначения и радиосхемы», 1964 г.

sesaga.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта