Eng Ru
Отправить письмо

Электроэнергетика - это что такое? Развитие и проблемы электроэнергетики России. Виды электроэнергии


Виды электроэнергетики

Все существующие виды электроэнергетики можно разделить на уже достигшие зрелости и находящиеся на стадии разработки и развития. Для одних требуется только модернизация, для других – инновационные технологические решения.

К зрелым видам электроэнергетики в первую очередь можно отнести тепловую, атомную, и гидроэнергетику. С определенными оговорками в эту группу попадают также некоторые виды альтернативной энергетики: солнечная, ветровая, приливная и пр. Они активно применяются во многих странах, но в силу некоторых ограничений не получили повсеместное распространение. Ну а на стадии формирования сейчас находятся другие виды энергетики: бестопливная энергетика, термоядерная энергетика и пр.

На территории России наибольшее распространение среди различных видов электроэнергетики получила тепловая энергетика, преимущественно газовая и угольная. Тепловые электростанции, которые работают на органическом топливе, традиционно находятся на лидирующих позициях в российской электроэнергетике. Это сложилось исторически и считается экономически оправданным.

Атомную энергетику на практике также иногда относят к подвиду тепловой электроэнергетики, потому как в результате деления атомных ядер в реакторе выделяется тепло, и далее все происходит так же, как и при сгорании органического топлива. Атомная энергетика в России — довольно популярный вид электроэнергетики. В нашей стране применяется полный цикл технологий от добычи урановых руд до выработки электроэнергии. Однако крупные аварии АЭС, которые имели место в последние десятки лет, настроили мировую общественность против этого вида электроэнергетики.

В гидроэнергетике для получения электрической энергии используют кинетическую энергию течения воды. ГЭС для функционирования требуется практически столько же электроэнергии, сколько они вырабатывают. Поэтому ГЭС, по сути, не являются генерирующими мощностями в чистом виде. Но такие станции при необходимости эффективно покрывают пиковые нагрузки, тем самым гидроэнергетика выгодно выделяется среди других видов электроэнергетики.

К альтернативным видам электроэнергетики относят ветровую и солнечную энергетику, которые по некоторым причинам не получили достаточное распространение. На данный момент ветровые и солнечные станции являются маломощными при дороговизне оборудования для них. К тому же обязательно необходим резервный источник питания (при отсутствии ветра или в ночное время соответственно). Также к альтернативным видам электроэнергетики относят приливную гидроэнергетику. Для строительства приливной электростанции необходимо морское побережье с достаточно сильными колебаниями уровня воды, иначе это будет экономически нецелесообразно.

Преимуществом альтернативных видов электроэнергетики является возобновляемость источников такой энергии. Их применение позволяет существенно сэкономить органическое топливо, сохраняя запасы углеводородов. Научные исследования, проводимые в области альтернативных видов электроэнергетики, делают их все более доступными для применения. Возобновляемая энергетика получает все большее географическое распространение по всему миру.

Существуют и другие виды электроэнергетики, технология которых пока малоизвестна. К ним можно отнести разработку прямых способов получения электроэнергии из окружающей среды с помощью накапливающихся зарядов ионосферы, использования энергии вращения земли и др. Использование различных видов электроэнергетики позволяет наиболее эффективно распределить нагрузку, покрывая мировой спрос на электроэнергию и создавая необходимый резерв мощности.

Метки: альтернативная энергетика, атомная энергетика, виды электроэнергетики, гидроэнергетика, современная электроэнергетика, тепловая энергетика, электроэнергетика, электроэнергетика в России

Интересная статья? Поделитесь ей с друзьями:

novostienergetiki.ru

Виды энергии известные человечеству типы энергии на сегодня

Рубрика: Виды энергии 20 11 2016      greenman       Пока нет комментариев Применение атомной энергии Применение ядерной энергии в современном мире оказывается настолько важным, что если бы мы завтра проснулись, а энергия ядерной реакции исчезла, мир, таким как мы его знаем, пожалуй, перестал бы существовать. Мирное использование источников...Читать далее » 20 11 2016      greenman       Пока нет комментариев Система измерения теплоты два века назад базировалась на представлении о том, что тепловая энергия сохраняется, никуда не пропадает, а только переходит из одного места в другое. Мы до сих пор пользуемся следующими правилами: Для измерения количества тепла заставим его...Читать далее » 03 08 2016      greenman       Пока нет комментариев Постоянные магниты, хотя и обладают запасом энергии, отдают ее весьма неохотно, так что нет нужды как-то специально называть эту энергию. Однако электрический ток создает вокруг себя протяженные, сильные магнитные поля. Как только ток выключается, магнитное поле...Читать далее » 01 08 2016      greenman       Пока нет комментариев Наиболее часто встречающаяся нам в повседневной жизни – механическая энергия. Это энергия непосредственного взаимодействия и движения физических тел и их частей. В рамках Механики (раздела Физики), механическую энергию подразделяют на потенциальную (для покоящихся...Читать далее » 27 07 2016      greenman       Пока нет комментариев Световая энергия знакома всем людям всех времен с самого рождения. С древности известны такие источники световой энергии, как Солнце, Луна и Звезды, костер, факел, хемилюминесцентные животные и растения. В настоящее время Солнце продолжает оставаться основным и...Читать далее » 25 07 2016      greenman       Пока нет комментариев Холодно или жарко в нашем мире? На первый взгляд, материя Вселенной не так уж горяча. Дышим мы прохладным воздухом, пьем холодную воду, катаемся по льду, лепим снежки. Нас не греет черное ночное небо. Чтобы согреться, приходится зажигать костры и топить печи. Между тем,...Читать далее » 23 07 2016      greenman       Пока нет комментариев Химическая энергия известна каждому современному человеку и широко используется во всех сферах деятельности. Она известна Человечеству с самых давних времен и всегда применялась как в быту, так и на производстве. Наиболее распространенными устройствами, использующими...Читать далее » 22 07 2016      greenman       Пока нет комментариев Электрическая энергия широко известна человеку из повседневной жизни. Это энергия, заключенная в электромагнитном поле. В рамках Электродинамики (Раздела Физики), электромагнитная энергия включает в себя и такие виды энергии, как электрическая и...Читать далее » 20 07 2016      greenman       Пока нет комментариев Во многих случаях электрическая и магнитная энергии тесно связаны друг с другом, каждую из них можно рассматривать как «оборотную сторону» другой. Переменные токи создаются переменными электрическими полями и образуют вокруг себя переменные магнитные поля. Во время...Читать далее » 20 06 2016      greenman       Пока нет комментариев Энергия, переносимая волной может быть огромна. Пример тому – Мировой Океан. Когда спокойная, ласково лижущая берег гладь превращается в шторм, морские волны способны крушить корабли, выбрасывать на берег огромные камни, выплескивать воду в высоко поднятые водоемы,...Читать далее » Понятие «энергия» определяется как мера различных форм движения материи и как мера перехода движения материи из одной формы в другую. Соответственно, виды и типы энергии различают по формам движения материи. Челочек имеет дело с различными видами энергии. По сути, весь технологический процесс есть преобразование одних видов энергии в другие. В процессе прохождения технологического тракта энергия многократно преобразуется из одного вида в другой, что ведет к уменьшению ее полезного количества из-за потерь и рассеяния в окружающей среде.

Типы энергии известные сегодня

  • Механическая
  • Электрическая
  • Химическая
  • Тепловая
  • Световая (Лучистая)
  • Ядерная (Атомная)
  • Термоядерная (Термоядерного синтеза)
Кроме того, нам известны и другие виды энергии, названия которых имеют не физический, а описательный смысл, такие как ветровая энергия, или геотермальная энергия. В подобных случаях физическая форма характера энергии подменяется названием ее источника. Поэтому правильно говорить скорее о механической энергии ветра, энергии потока ветра, или тепловой энергии геотермальных источников. В противном случае, количество псевдо энергий можно будет плодить до бесконечности, выдумывая мусорную энергию, водородную энергию, ментальную энергию, или жизненную энергию, и энергию рук. Сочетая слово «энергия» с конкретными объектами мы лишаем эту связку физического смысла. Невозможно измерить количество психической энергии, или энергии воли. Остается лишь намек, что предмет имеет какую-то энергию, а какую – нам неизвестно. Налицо оказывается замусоривание текста или речи словом, не несущим смысловой нагрузки, ведь каждый предмет несет энергию и упоминать об этом бессмысленно. А по аналогии с энергией мысли должна появиться масса мысли, длина, ширина и высота мысли, а также ее плотность. Короче говоря, такие обороты – очевидное свидетельство глупости и неграмотности автора, или оратора.

Физические понятия, связанные с определением слова «энергия»

Но вернемся к реальным физическим понятиям, связанным с определением слова «энергия». Выше перечисленные типы энергии известны человеку и использовались им на протяжении всей истории цивилизации. Исключение составляет разве что энергия атомного распада, полученная лишь в начале 20-го века. Так, механическую энергию мы используем до сих пор, катаясь на велосипеде, используя маятниковые часы, поднимая и опуская грузы краном. Электрическая энергия знакома нам издревле в виде молний и статического электричества. Однако широко этот тип энергии стал применяться лишь с 19 века, когда были изобретены Вольтов столб – батарея постоянного тока и генератор постоянного тока. Однако и в древности люди знали и использовали этот вид энергии, хотя и не повсеместно. Известны древнеегипетские украшения и предметы культа, покрытие которых могло быть выполнено только электролизом. Химическая энергия — пожалуй, самая распространенный и широко используемый вид энергии, как в древности, так и в наши дни. Костер, угли, горелка, спички и многие другие предметы, связанные с горением имеют в своей основе энергию химического взаимодействия органического вещества и кислорода. Сегодня высокотехнологичное «горение» осуществляется в двигателях внутреннего сгорания и газовых турбинах, в плазменных генераторах и топливных элементах. Однако такие устройства, как турбины и двигатели внутреннего сгорания между сырьем (химической энергией) и конечным продуктом (электрической энергией) имеют нехорошего посредника – тепловую энергию. К большому сожалению, к.п.д. тепловых машин невелик, причем ограничения накладывает не материал, а теория. Для тепловой машины предел КПД равен 40%. На основе химических взаимодействий, химической энергии действуют и человеческие тела и все животные. Употребляя в пищу растения, мы получаем от них энергию химических связей, сформированную благодаря поглощению солнечной энергии. То есть, опосредованно, человек также питается солнечной энергией, как питается ей все живое на Земле. Световая лучистая энергия Солнца – это та энергия, без которой не существовало бы жизни на нашей планете. Практически все виды и типы энергии, кроме атомной и термоядерной, можно полагать вторичными, по отношению к лучистой солнечной энергии. Механическая энергия приливов-отливов, а также тепловая геотермальных источников также не связаны с солнечным излучением.

Термоядерная энергия лежит в основе работы нашего центрального светила – Солнца

А это значит, что и солнечная энергия в свою очередь является порождением термоядерной энергии синтеза, выделяющейся в недрах Солнца. Таким образом, подавляющее большинство видов энергии, используемых нами на Земле, имеют своего первичного прародителя в виде термоядерной энергии синтеза. Ядерная, или атомная энергия – единственный вид энергии, выпадающий за пределы «стандартного» природного энергетического оборота. До появления человека, природа не знала (за редким исключением) процессов массового точечного распада атомных ядер с выделением огромной энергии. Исключение составляет африканский природный «атомный реактор» — месторождение урановых руд, где идут реакции атомного распада с нагревом окружающих пород. Однако в природе атомный распад длится миллионы лет, ведь периоды полураспада урана и плутония весьма велики. И хотя атомному распаду подвержены также многие другие атомы, помимо урана и плутония, в целом, в единицу времени эти процессы не вызывают существенных изменений в окружающем веществе. Человек внес свои изменения в энергетический баланс планеты, взрывая бомбы, строя атомные станции, сжигая нефть, газ и уголь. Безусловно, подобные процессы происходили и до человека, но они были растянуты на миллионы лет. Падали метеориты, горели леса, происходили выбросы углекислого газа из болот и толщ мирового океана, распадался уран. Но медленно — в небольших объемах на единицу времени.

Альтернативные источники

Сегодня активно развиваются альтернативные виды энергии и альтернативные источники энергии. Однако в самих этих словах уже кроется ошибочное отношение к слову «энергия». Называя источники энергии «альтернативными» мы противопоставляем их «традиционным» источникам – углю, нефти и газу. И это понятно. Но, говоря «альтернативный вид энергии» мы несем чушь, потому что различные виды энергии существуют вне наших желаний. И не ясно, чему альтернативна энергия ветра, ведь она просто есть. Или чему альтернативна солнечная и термоядерная энергия нашего светила. Мы в любом случае, пользуемся ею, и странно называть ее альтернативной, поскольку как раз для нее альтернатив то и нет. В ближайшие тысячи лет мы никуда не уйдем от использования солнечной энергии, поскольку на ней базируется вся экосистема планеты. Аналогично странно выглядят слова «нетрадиционные виды энергии», «возобновляемые виды энергии», или «экологически чистые виды энергии». Какой вид энергии традиционен? Как можно возобновить тот или иной вид энергии? А как проверить энергию на экологическую чистоту? «Традиционность», «возобновляемость» и «экологичность» разумнее и правильнее отнести к источникам энергии. Тогда все сразу станет ясно и понятно. И тогда, упорядочив причинно-следственные связи можно приступать к поиску. Нетрадиционные виды источников энергии можно легко найти, изучая природу и окружающий мир. Здесь Вам и навоз для отопления, и сено, и генератор, использующий мускульную силу.

Возобновляемые источники энергии следует искать только в среде природных процессов

Подобных процессов не так уж много и все они связаны с движением по планете вещества – земли, воды, воздуха, а также с деятельностью живых организмов. Хотя, строго говоря, возобновляемых источников энергии – нет, поскольку главная наша «батарейка» — Солнце – имеет ограниченный срок службы. А для поиска экологически чистых источников следует для начала ясно определить критерии экологичности, ведь, по сути, любое вмешательство человека в энергобаланс планеты наносит урон экологии. Строго говоря, не может быть экологически чистых источников энергии, ведь они в любом случае будут влиять на экологию. Мы можем лишь свести это влияние к минимуму, или компенсировать его. При этом любые компенсационные воздействия должны производиться в рамках глобальной аналитической прогнозной модели.

greensource.ru

это что такое? Развитие и проблемы электроэнергетики России

Промышленность любой страны состоит из большого количества разнообразных отраслей, таких как машиностроение или электроэнергетика. Это те направления, в которых развивается конкретная страна, и у разных государств могут быть различные акценты в зависимости от многих факторов, таких как природные ресурсы, технологическое развитие и так далее. В данной статье речь пойдет об одной очень важной и активно развивающейся на сегодняшний день отрасли промышленности – об электроэнергетике. Электроэнергетика – это отрасль, которая развивалась в течение многих лет постоянно, однако именно в последние годы она начала активно двигаться вперед, подталкивая человечество к использованию более экологичных источников энергии.

Что это такое?

электроэнергетика это

Итак, в первую очередь необходимо разобраться, что вообще представляет собой данная отрасль. Электроэнергетика – это подразделение энергетики, которое отвечает за производство, распределение, передачу и продажу именно электрической энергии. Среди других отраслей данной сферы именно электроэнергетика является самой популярной и распространенной сразу по целому ряду причин. Например, из-за легкости ее дистрибуции, возможности передачи ее на огромные расстояния за кратчайшие промежутки времени, а также из-за ее универсальности – электрическую энергию можно без проблем при необходимости трансформировать в другие виды энергии, такие как тепловая, световая, химическая и так далее. Таким образом, именно развитию данной отрасли огромное внимание уделяют правительства мировых держав. Электроэнергетика – это отрасль промышленности, за которой будущее. Именно так считают многие люди, и именно поэтому вам необходимо более детально ознакомиться с ней с помощью данной статьи.

Прогресс производства электроэнергии

фз об электроэнергетике

Чтобы вы могли полностью понять, насколько важной является для мира данная отрасль, необходимо взглянуть на то, как происходило развитие электроэнергетики на протяжении всей истории ее существования. Сразу же стоит отметить, что производство электроэнергии обозначается в миллиардах киловатт в час. В 1890 году, когда электроэнергетика только начинала развиваться, производилось всего девять млрд кВт/ч. Большой скачок произошел к 1950 году, когда производилось уже более чем в сто раз больше электроэнергии. С того момента развитие шло гигантскими шагами – каждое десятилетие добавлялось сразу по несколько тысяч миллиардов кВт/ч. В результате к 2013 году мировыми державами производилось в сумме 23127 млрд кВт/ч – невероятный показатель, который продолжает расти с каждым годом. На сегодняшний день больше всего электроэнергии дают Китай и Соединенные Штаты Америки – именно эти две страны имеют наиболее развитые отрасли электроэнергетики. На долю Китая приходится 23 процента вырабатываемой во всем мире электроэнергии, а на долю США – 18 процентов. Следом за ними идут Япония, Россия и Индия – каждая из этих стран имеет как минимум в четыре раза меньшую долю в мировом производстве электроэнергии. Что ж, теперь вам также известна и общая география электроэнергетики – пришло время перейти к конкретным видам этой отрасли промышленности.

Тепловая электроэнергетика

электроэнергетика россии

Вы уже знаете, что электроэнергетика – это отрасль энергетики, а сама энергетика, в свою очередь, является отраслью промышленности в целом. Однако разветвление не заканчивается на этом – электроэнергетики имеется несколько видов, некоторые из них очень распространенные и используются повсеместно, другие не так популярны. Существуют и альтернативные области электроэнергетики, где используются нетрадиционные методы, позволяющие добиваться масштабного производства электроэнергии без вреда окружающей среде, а также с нейтрализацией всех негативных особенностей традиционных методов. Но обо всем по порядку.

В первую очередь необходимо рассказать о тепловой электроэнергетике, так как она является самой распространенной и известной во всем мире. Как получается электроэнергия данным способом? Легко можно догадаться, что в данном случае происходит преобразование тепловой энергии в электрическую, а тепловая получается путем сжигания различных видов топлива. Теплоэлектроцентрали можно найти практически в каждой стране – это самый простой и удобный процесс получения больших объемов энергии при малых затратах. Однако именно этот процесс и является одним из самых вредных для окружающей среды. Во-первых, для получения электроэнергии используется природное топливо, которое когда-нибудь гарантированно закончится. Во-вторых, продукты горения выбрасываются в атмосферу, отравляя ее. Именно поэтому и существуют альтернативные методы получения электроэнергии. Однако это еще далеко не все традиционные виды электроэнергетики - есть и другие, и дальше мы сконцентрируемся именно на них.

Ядерная электроэнергетика

развитие электроэнергетики

Как и в предыдущем случае, при рассмотрении ядерной электроэнергетики можно многое почерпнуть уже из названия. Выработка электроэнергии в данном случае производится на атомных реакторах, где происходит расщепление атомов и деление их ядер – в результате этих действий происходит большой выброс энергии, которая затем и трансформируется в электрическую. Вряд ли кому-то еще неизвестно, что это самая небезопасная электроэнергетика. Промышленность далеко не каждой страны имеет свою долю в мировом производстве ядерной электроэнергии. Любая утечка из такого реактора может привести к катастрофическим последствиям – достаточно вспомнить Чернобыль, а также происшествия в Японии. Однако в последнее время безопасности уделяется все больше внимания, поэтому атомные электростанции строятся и дальше.

Гидроэнергетика

 география электроэнергетики

Еще одним популярным способом производства электроэнергии является получение ее из воды. Этот процесс происходит на гидроэлектростанциях, он не требует ни опасных процессов деления ядра атома, ни вредных для окружающей среды сжиганий топлива, но имеет и свои минусы. Во-первых, это нарушение естественного течения рек – на них строятся дамбы, за счет которых создается необходимое течение воды в турбины, благодаря чему и получается энергия. Зачастую из-за строительства дамб осушаются и гибнут реки, озера и другие природные водохранилища, поэтому нельзя сказать, что это идеальный вариант для данной отрасли энергетики. Соответственно, многие предприятия электроэнергетики обращаются не к традиционным, а к альтернативным видам получения электроэнергии.

Альтернативная электроэнергетика

 отрасль энергетики

Альтернативная электроэнергетика – это собрание видов электроэнергетики, отличных от традиционных в основном тем, что они не требуют нанесения того или иного вида вреда окружающей среде, а также не подвергают никого опасности. Речь идет о водородной, приливной, волновой и многих других разновидностях. Самым распространенными из них являются ветро- и гелиоэнергетика. Именно на них делается акцент – многие считают, что именно за ними будущее данной отрасли. В чем суть этих видов?

Ветроэнергетика – это получение электроэнергии из ветра. В полях строятся ветряные мельницы, которые работают очень эффективно и позволяют обеспечивать энергией ненамного хуже, чем описанные ранее методы, но при этом для действия ветряков нужен только лишь ветер. Естественно, недостатком данного метода является то, что ветер – это природная стихия, которую невозможно себе подчинить, однако ученые работают над улучшением функциональности ветряных мельниц современности. Что касается гелиоэнергетики, то здесь электроэнергия получается из солнечных лучей. Как и в случае с предыдущим видом, здесь также необходимо работать над увеличением аккумулирующей мощности, так как солнце светит далеко не всегда – и даже если погода безоблачная, в любом случае в определенный момент наступает ночь, когда солнечные панели не способны производить электроэнергию.

Передача электроэнергии

области электроэнергетики

Что ж, теперь вы знаете все основные виды получения электроэнергии, однако, как вы уже могли понять из определения термина электроэнергетики, получением все не ограничивается. Энергию необходимо передавать и распределять. Так, электрическая энергия передается по линиям электропередач. Это металлические проводники, которые создают одну большую электрическую сеть во всем мире. Ранее чаще всего использовались воздушные линии – именно их вы можете видеть вдоль дорог, перекинутые от одного столба к другому. Однако в последнее время большую популярность обретают кабельные линии, которые прокладываются под землей.

История развития электроэнергетики России

Электроэнергетика России начала развиваться тогда же, когда и мировая – в 1981 году, когда впервые была удачно осуществлена передача электрической мощности на практически двести километров. В реалиях дореволюционной России электроэнергетика была невероятно слабо развита – годовая выработка электричества на такую огромную страну составляла всего 1.9 млрд кВт/ч. Когда же состоялась революция, Владимир Ильич Ленин предложил план электрификации России, реализация которого была начата немедленно. Уже к 1931 году задуманный план был выполнен, однако скорость развития оказалась настолько впечатляющей, что к 1935 году план был перевыполнен в три раза. Благодаря этой реформе уже к 1940 году годовая выработка электроэнергии в России составила 50 млрд кВт/ч, что в двадцать пять раз больше, чем до революции. К сожалению, резкий прогресс был прерван Второй мировой войной, однако после ее завершения работы восстановились, и к 1950 году Советский Союз вырабатывал 90 млрд кВт/ч, что составляло около десяти процентов всеобщей выработки электроэнергии по всему миру. Уже к середине шестидесятых годов Советский Союз вышел на второе место в мире по производству электроэнергии и уступал только Соединенным Штатам. Ситуация оставалась на таком же высоком уровне вплоть до распада СССР, когда электроэнергетика оказалась далеко не единственной отраслью промышленности, которая сильно пострадала из-за этого события. В 2003 году был подписан новый ФЗ об электроэнергетике, в рамках которого в ближайшие десятилетия должно происходить стремительное развитие этой отрасли в России. И страна определенно движется в этом направлении. Однако одно дело – подписать ФЗ об электроэнергетике, и совершенно другое – его реализовать. Именно об этом и пойдет речь далее. Вы узнаете о том, какие на сегодняшний день существуют проблемы электроэнергетики России, а также какие будут выбираться пути для их решения.

Избыток электрогенерирующих мощностей

Электроэнергетика России находится уже в гораздо более хорошем состоянии, чем десять лет назад, так что можно смело сказать, что прогресс идет. Однако на недавно проведенном энергетическом форуме были выявлены основные проблемы этой отрасли в стране. И первая из них – избыток электрогенерирующих мощностей, который был вызван массовой постройкой электростанций низкой мощности в СССР вместо строительства малого количества электростанций высокой мощности. Все эти станции все равно нужно обслуживать, поэтому выхода из ситуации два. Первый – это вывод мощностей из эксплуатации. Этот вариант был бы идеальным, если бы не огромные стоимости такого проекта. Поэтому Россия, скорее всего, будет двигаться в сторону второго выхода, а именно увеличения объема потребления.

Импортозамещение

После введения западных станций промышленность России очень остро ощутила свою зависимость от заграничных поставок – это сильно затронуло и электроэнергетику, где практически ни в одной из современных сфер деятельности полный процесс производства тех или иных генераторов не проходил исключительно на территории РФ. Соответственно, правительство планирует наращивать производственные мощности в нужных направлениях, контролировать их локализацию, а также пытаться максимально избавиться от зависимости от импорта.

Чистый воздух

Проблема заключается в том, что современные российский компании, работающие в сфере электроэнергетики, очень сильно загрязняют воздух. Однако Министерство экологии РФ ужесточило законодательство и стало чаще собирать штрафы за нарушение установленных норм. К сожалению, компании, страдающие от этого, не планируют пытаться оптимизировать свое производство – они бросают все силы на то, чтобы задавить «зеленых» количеством, и требуют смягчения законодательства.

Миллиарды долга

На сегодняшний день суммарный долг пользователей электроэнергии по всей России составляет около 460 миллиардов российских рублей. Естественно, если бы в распоряжении страны были все те деньги, которые ей задолжали, то она могла бы значительно быстрее развивать электроэнергетику. Поэтому правительство планирует ужесточить наказания за просрочки в оплате счетов за электричество, а также будет призывать тех, кто не хочет платить по счетам в будущем, устанавливать собственные солнечные панели и снабжать себя энергией самостоятельно.

Регулируемый рынок

Самая главная проблема отечественной электроэнергетики – это полная регулируемость рынка. В европейских странах регулирование рынка энергетики практически полностью отсутствует, там имеется самая настоящая конкуренция, поэтому отрасль развивается огромными темпами. Все эти правила и регуляции очень сильно тормозят развитие, и в результате РФ уже начала закупки электроэнергии из Финляндии, где рынок практически не регулируется. Единственное решение этой проблемы – переход к модели свободного рынка и полный отказ от регуляции.

fb.ru

Виды источников энергии и их использование

Люди используют различные виды энергии для всего, от собственных движений до отправки космонавтов в космос.

Существует два типа энергии:

  • способность совершить (потенциальная)
  • собственно работа (кинетическая)

Поставляется в различных формах:

  • тепла (тепловая)
  • свет (лучистая)
  • движение (кинетическая)
  • электрическая
  • химическая
  • ядерная энергия
  • гравитационная

виды энергииНапример пища, которую человек ест содержит химическую и тело человека хранит её  пока он или она израсходует как кинетическую во время работы или жизни.

Классификация видов энергии

Люди используют ресурсы разных видов: электричество в своих домах, добываемое  путем сжигания угля, ядерной реакции или ГЭС на реке. Таким образом, уголь, ядерная и гидро называются источником. Когда люди заполняют топливный бак бензином источником может быть нефть или даже выращивание и переработка зерна.

Источники энергии делятся на две группы:

  • Возобновляемые
  • Невозобновляемые

Возобновляемые и невозобновляемые источники можно использовать в качестве первичных для получения пользы, такого как тепло или использовать для производства вторичных энергетических источников, таких, как электричество.

Когда люди используют электричество в своих домах, электроэнергия вероятно создается сжиганием угля или природного газа, ядерной реакции или ГЭС на реке, или из нескольких источников. Люди используют для топлива своих автомобилей сырую нефть (невозобновляемая), но могут и биотопливо (возобновляемая) как этанол, который производится из переработанной кукурузы

Возобновляемые

Есть пять основных возобновляемых источников энергии:

  • Солнечная
  • Геотермальное тепло внутри Земли
  • Энергия ветра
  • Биомасса из растений
  • Гидроэнергетика из проточной воды

Биомасса, которая включает древесину, биотопливо и отходы биомассы, является крупнейшим источником возобновляемой энергии, на которую приходится около половины всех возобновляемых и около 5% от общего объема потребления.

Невозобновляемые

Большая часть ресурсов, потребляемых в настоящее время  из невозобновляемых источников:

  • Нефтепродукты
  • Углеводородный сжиженный газ
  • Природный газ
  • Уголь
  • Ядерная энергия

На невозобновляемые виды энергии приходится около 90% всех используемых ресурсов.

Электроэнергетическая системаСырая нефть, природный газ и уголь представляют ископаемые виды топлива, поскольку они были сформированы в течение миллионов лет под действием Солнца, тепла от ядра земли и давления почвы на остатки (или окаменелости) из отмерших растений и существ как микроскопическая диатомия. Большинство нефтяных продуктов, потребляемых в мире изготовлены из сырой нефти, но нефтяные жидкости также могут быть сделаны из природного газа и угля.

Ядерная  энергетика работает  больше на уране, источнике невозобновляемого топлива, чьи атомы делятся (с помощью процесса, называемого ядерным делением) для создания тепла и, в конечном счете, электричества.

Основным видом энергии, потребляемой во многих странах являются нефтепродукты, природный газ, уголь, ядерное и возобновляемое топливо.

Основными пользователями этих запасов являются жилые и коммерческие здания, промышленность, транспорт и электроэнергетика. Характер использования топлива широко варьируется в зависимости от системы применения. Например, нефть обеспечивает 92% топлива, используемого для транспортировки, но  обеспечивает лишь около 1% ресурсов, используемых для выработки электроэнергии. Понимание взаимосвязей между различными видами энергии  и её использование дает представление о многих важных вопросах энергетики.

Первичная энергия

Первичная энергия как вид включает в себя нефть, природный газ, уголь, ядерная энергия и возобновляемые источники энергии.

Электричество является вторичным источником, который создается с помощью этих первичных форм. Например, уголь является первичным источником, который сжигается на электростанциях для выработки электроэнергии, которая является вторичным источником.

Первичные виды энергии обычно измеряются в различных единицах, например, баррелях нефти, кубометрах газа, тоннах угля. Также используется общая единица измерения британская тепловая единица, или БТЕ, для измерения содержания для каждого типа.

1 Гкал/час = 1,163 МВт

1 Вт = 859.8 кал/час

1 Вт = 3.412 BTU/час

BTU — британская тепловая единица (БТЕ) Россия потребляет квадриллионы БТЕ.

В терминах физических величин, один квадриллион составляет примерно 172 миллиона баррелей нефти, 51 млн. тонн угля или 1 трлн. куб. м газа.

На нефть приходится наибольшая доля в потреблении первичной энергии, затем природный газ, уголь, атомные электростанции и  возобновляемые источники энергии (включая гидроэнергию, ветра, биомассы, геотермальные, солнечные).

Как распределяются виды энергии в каждой системе

Различные виды энергии  используются в жилых и коммерческих зданиях, на транспорте, в промышленности и электроэнергетике. Электроэнергетическая система является крупнейшим потребителем первичной и используется для выработки электроэнергии. Почти вся электроэнергия используется в зданиях и промышленности. Общее количество электроэнергетической системы, используемой в жилых и коммерческих зданиях, промышленности и транспорте огромное.

Почти все ядерное топливо используется в электроэнергетической системе для выработки электроэнергии. Её доля в России составляет 18% от первичной энергии. Во Франции – 75%, Венгрии – 52% , Украине – 56%. В среднем в мире порядка 10%.

Смесь первичных источников широко варьируется в различных системах спроса. Энергетическая политика, призванная повлиять на использование конкретного основного источника с целью повлиять на  окружающую среду, экономическую или энергетическую безопасность сосредоточивается на системах, которые являются основными пользователями этого типа энергии. Например, 71% нефти используется в транспортной системе, где она потребляет  92% от общего объема первичного энергопотребления.

Политика по сокращению потребления нефти чаще всего относится к транспортной системе. Эта политика обычно стремится увеличить эффективность автомобильного топлива или поощрять развитие  альтернативных видов топлива.

Около 91% угля и только 1% из нефти, используется для выработки электроэнергии, что выявляет стратегию, влияющую на выработку электроэнергии, и имеет гораздо большее значение на использование угля, чем использование нефти.

Некоторые первичные виды энергии, такие как ядерная и угольная, полностью или преимущественно используются для добычи электричества. Другие, такие как природный газ и возобновляемые источники, более равномерно распределены по системам. Аналогичным образом сейчас транспорт почти полностью зависит от одного вида топлива (нефтяного).

Однако электроэнергетика с внедрением новых технологий больше использует различные источники энергии для выработки электричества. Например, идут практические реализации для получения электричества из биомассы.

Изменяется ли потребление топлива с течением времени

Источники потребляемой энергии с течением времени меняются, но изменения происходят медленно. Например, уголь когда-то широко использовался в качестве топлива для отопления домов и коммерческих зданий, однако конкретное использование угля для этих целей сократилось за последние полвека.

Хотя доля возобновляемого топлива от общего потребления первичной энергии еще относительно невелика, его использование растет во всех отраслях. Кроме того, использование природного газа в электроэнергетике возросло в последние годы из-за низких цен на природный газ, в то время как использование угля в этой системе сократилось.

beelead.com

Производство электроэнергии в России. Производство, передача и использование электроэнергии :: SYL.ru

Производство электроэнергии в мире в наши дни играет огромную роль. Она - стержень государственной экономики любой страны. Гигантские суммы денег ежегодно вкладываются в производство и использование электроэнергии и научные исследования, связанные с этим. В повседневной жизни мы постоянно сталкиваемся с ее действием, поэтому современный человек должен иметь представление об основных процессах ее выработки и потребления.

Как получают электроэнергию

Производство электроэнергии осуществляется из других ее видов при помощи специальных устройств. Например, из кинетической. Для этого применяют генератор – прибор, преобразующий механическую работу в электрическую энергию.

Другие существующие способы ее получения - это, например, преобразование излучения светового диапазона фотоэлементами или солнечной батареей. Или производство электроэнергии путем химической реакции. Или использование потенциала радиоактивного распада либо теплоносителя.

Вырабатывают ее на электростанциях, которые бывают гидравлическими, атомными, тепловыми, солнечными, ветряными, геотермальными и проч. В основном все они работают по одной схеме - благодаря энергии первичного носителя определенным устройством вырабатывается механическая (энергия вращения), передаваемая затем в специальный генератор, где и вырабатывается электроток.

Основные виды электростанций

Производство и распределение электроэнергии в большинстве стран ведутся путем строительства и эксплуатации ТЭС - тепловых электростанций. Их функционирование требует большого запаса органического топлива, условия добычи которого из года в год усложняются, а стоимость растет. Коэффициент полезной отдачи топлива в ТЭС не слишком высок (в пределах 40%), а число экологически грязных отходов велико.

Все эти факторы снижают перспективность такого способа выработки.

Наиболее экономично производство электроэнергии гидроэнергетическими установками (ГЭС). КПД их доходит до 93%, себестоимость 1 кВт/ч впятеро дешевле других способов. Природный источник энергии таких станций практически неисчерпаем, количество работников - минимально, ими легко управлять. По развитию данной отрасли наша страна - признанный лидер.

К сожалению, темпы развития ограничены серьезными затратами и длительными сроками строительства ГЭС, связанными с их удаленностью от больших городов и магистралей, сезонным режимом рек и трудными условиям работы.

Кроме того, гигантские водохранилища ухудшают экологическую ситуацию - затапливают ценные земли вокруг водоемов.

Использование атомной энергии

В наши дни производство, передача и использование электроэнергии производятся атомными электростанциями - АЭС. Они устроены практически по тому же принципу, что и тепловые.

Главный их плюс - малое количество требующегося топлива. Килограмм обогащенного урана по своей производительности эквивалентен 2,5 тыс. тонн угля. Именно поэтому АЭС теоретически можно строить в любом районе независимо от наличия близлежащих топливных ресурсов.

В настоящее время запасы урана на планете значительно больше, чем минерального горючего, а воздействие АЭС на окружающую природу минимально при условии безаварийной работы.

Огромный и серьезный недостаток АЭС - вероятность страшной аварии с непредсказуемыми последствиями, отчего для их бесперебойной работы требуются очень серьезные меры по обеспечению безопасности. К тому же производство электроэнергии на АЭС регулируется с трудом - как для их запуска, так и для полной остановки понадобится несколько недель. И практически отсутствуют технологии утилизации опасных отходов.

Что такое электрический генератор

Производство и передача электроэнергии осуществимы благодаря электрогенератору. Это устройство преобразования любых видов энергии (тепловой, механической, химической) в электрическую. Принцип его действия построен на процессе электромагнитной индукции. ЭДС индуктируется в проводнике, который движется в магнитном поле, пересекает его силовые магнитные линии. Таким образом, проводник может служить источником электроэнергии.

Основа любого генератора - система электромагнитов, формирующих магнитное поле, и проводников, которые его пересекают. Большинство всех генераторов переменного тока основаны на применении вращающегося магнитного поля. Его неподвижную часть именуют статором, подвижную - ротором.

Понятие трансформатора

Трансформатор – электромагнитное статическое устройство, предназначенное для преобразования одной системы тока в другую (вторичную) при помощи электромагнитной индукции.

Первые трансформаторы в 1876 г. были предложены П. Н. Яблочковым. В 1885 г. венгерскими учеными разработаны промышленные однофазные приборы. В 1889-1891 гг. изобретен трехфазный трансформатор.

Простейший однофазный трансформатор состоит из стального сердечника и пары обмоток. Применяются они для распределения и передачи электроэнергии, ведь генераторы электростанций вырабатывают ее при напряжении от 6 до 24 кВт. Передавать ее выгодно при больших значениях (от 110 до 750 кВт). Для этого на электростанциях устанавливают повышающие трансформаторы.

Как используется электроэнергия

Ее львиная доля идет на снабжение электричеством предприятий промышленности. Производство потребляет до 70% всей вырабатываемой в стране электроэнергии. Эта цифра значительно разнится для отдельных регионов в зависимости от климатических условий и уровня индустриального развития.

Другая статья расходов - снабжение электротранспорта. От электросетей ЭЭС работают подстанции городского, междугороднего, промышленного электротранспорта, использующего постоянный ток. Для транспорта на переменном токе применяются понижающие подстанции, которые тоже потребляют энергию электростанций.

Другой сектор потребления электроэнергии - коммунально-бытовое снабжение. Потребителями здесь являются здания жилых районов любых населенных пунктов. Это дома и квартиры, административные здания, магазины, заведения образования, науки, культуры, здравоохранения, общественного питания и т. д.

Как происходит передача электроэнергии

Производство, передача и использование электроэнергии - три кита отрасли. Причем передать полученную мощность потребителям – самая сложная задача.

"Путешествует" она главным образом посредством ЛЭП - воздушных линий электропередачи. Хотя все чаще начинают применять кабельные линии.

Вырабатывается электроэнергия мощными агрегатами гигантских электростанций, а потребителями ее служат относительно небольшие приёмники, разбросанные по обширной территории.

Существует тенденция концентрировать мощности, связанная с тем, что с их увеличением уменьшаются относительные затраты возведения электростанций, а следовательно, и себестоимость получаемого киловатт-часа.

Единый энергокомплекс

На принятие решения о размещении крупной электростанции влияет ряд факторов. Это вид и количество имеющихся в наличии ресурсов, доступность транспортировки, климатические условия, включенность в единую энергосистему и т. д. Чаще всего электростанции строятся вдали от крупных очагов потребления энергии. Эффективность ее передачи на немалые расстояния влияет на успешную работу единого энергетического комплекса огромной территории.

Производство и передача электроэнергии должны происходить с минимальным количеством потерь, главная причина которых - нагрев проводов, т. е. увеличение внутренней энергии проводника. Для сохранения передаваемой на большие расстояния мощности нужно пропорционально увеличить напряжение и уменьшить в проводах силу тока.

Что такое ЛЭП

Математические расчеты показывают, что величина потерь в проводах на нагрев обратно пропорциональна квадрату напряжения. Именно поэтому электроэнергию на большие расстояния передают при помощи ЛЭП - высоковольтных линий электропередач. Между их проводами напряжение исчисляется десятками, а порой сотнями тысяч вольт.

Электростанции, расположенные неподалеку друг от друга, объединяются в единую энергосистему именно при помощи ЛЭП. Производство электроэнергии в России и ее передача ведутся путем централизованной энергетической сети, в которую входит огромное количество электростанций. Единое управление системой гарантирует постоянную подачу потребителям электроэнергии.

Немного истории

Как формировалась единая электрическая сеть в нашей стране? Попробуем заглянуть в прошлое.

До 1917 года производство электроэнергии в России велось недостаточными темпами. Страна отставала от развитых соседей, что отрицательно сказывалось на экономике и обороноспособности.

После Октябрьской революции проект электрификации России разрабатывался Государственной комиссией по электрификации России (сокращенно ГОЭЛРО), возглавляемой Г. М. Кржижановским. С ней сотрудничали более 200 ученых и инженеров. Контроль осуществлялся лично В. И. Лениным.

В 1920 г. был готов «План электрификации РСФСР», рассчитанный на 10-15 лет. Он включал восстановление прежней энергосистемы и строительство 30 новых электростанций, оборудованных современными турбинами и котлами. Главная идея плана - задействовать гигантские отечественные гидроэнергоресурсы. Предполагались электрификация и коренная реконструкция всего народного хозяйства. Упор делался на рост и развитие тяжёлой промышленности страны.

Знаменитый план ГОЭРЛО

Начиная с 1947 года СССР стал первым в Европе и вторым в мире производителем электроэнергии. Именно благодаря плану ГОЭЛРО была сформирована в кратчайшие сроки вся отечественная экономика. Производство и потребление электроэнергии в стране вышло на качественно новый уровень.

Выполнение намеченного стало возможным благодаря сочетанию сразу нескольких важных факторов: высокого уровня научных кадров страны, сохранившегося с дореволюционных времен материального потенциала России, централизации политической и экономической власти, свойству российского народа верить "верхам" и воплощать провозглашаемые идеи.

План доказал эффективность советской системы централизованной власти и государственного управления.

Результаты плана

В 1935 году принятая программа была выполнена и перевыполнена. Построено 40 электростанций вместо запланированных 30, введено мощностей почти втрое больше, чем предусматривалось по плану. Возведено 13 электроцентралей мощностью по 100 тыс. кВт каждая. Общая мощность российских ГЭС составила около 700 000 кВт.

В эти годы были возведены крупнейшие объекты стратегического значения, такие как всемирно известная Днепровская ГЭС. По суммарным показателям Единая советская энергосистема превзошла аналогичные системы самых развитых стран Нового и Старого Света. Производство электроэнергии по странам Европы в те годы значительно отставало от показателей СССР.

Развитие села

Если до революции в деревнях России электричества практически не существовало (небольшие электростанции, устанавливаемые крупными землевладельцами не в счет), то с реализацией плана ГОЭЛРО благодаря использованию электроэнергии сельское хозяйство получило новый толчок к развитию. На мельницах, лесопилках, зерноочистительных машинах появились электродвигатели, что способствовало модернизации отрасли.

Помимо того, электричество прочно вошло в быт горожан и селян, в буквальном смысле вырвав "темную Россию" из мрака.

www.syl.ru

Электроэнергия: понятие, особенности

Что такое электроэнергия

Термин электроэнергия (электрическая энергия, электричество) является физическим и широко распространенным термином. В быту и промышленности он означает процесс производства (выработки), передачи и распределения электроэнергии, которая может быть получена 2 способами:

  • от энергопоставляющей компании;
  • с помощью специальных устройств, называемых генераторами.

Единицей измерения потребления электроэнергии является кВт-час. Электричество обладает рядом положительных свойств и благодаря им она широко применяется во всех отраслях нашего хозяйства и, конечно, в быту. К ним относят:

  1. простоту выработки;
  2. возможность передачи на огромные расстояния;
  3. способность преобразовываться в другие виды энергии;
  4. легко и просто распределяться между разными потребителями.

ЭнергияВ настоящее время тяжело представить производство, сельское хозяйство и быт людей без использования электричества. С его помощью освещаются здания, помещения и территории, работает различная техника, оборудование и устройства, передвигается электротранспорт, обогреваются дома и производственные площади, осуществляется связь и многое другое.

Генерация (преобразование различных видов энергии в электрическую) электроэнергии происходит с помощью тепло-, гидро-, ядерной и альтернативной энергетики. Вырабатывается электроэнергия на специальных электростанциях, функционирование и принцип действия которых определяется их названием.

Активная и реактивная электроэнергия

Передача электроэнергии осуществляется по линиям воздушным или кабельным. Такие линии называют электрическими сетями. Расчет потребляемой электроэнергии с абонентами производится с учетом полной мощности тока, проходящего через электрическую цепь. Затраты полной мощности делят на 2 показателя энергии:

  • активная;
  • реактивная.

Активная энергия, которая является составляющей выработанной полной мощности (измеряется в кВ·А), совершает полезную работу и у большинства электроприборов в расчетах она совпадает с ней. Например, если в паспорте на какое-то устройство (утюг, электропечь, обогреватель и т.д.) указана активная мощность в кВт, то и полная мощность будет такой же, только уже в кВ·А.

В электрических цепях с реактивными элементами (емкостной или индуктивной нагрузкой)  часть полной мощности расходуется не на совершение полезной роботы. Это и будет реактивная электроэнергия. Такое Электроэнергияпонятие характерно для цепей переменного тока. Здесь присутствует такое явление, как несоответствие фазы напряжения фазе тока. Происходит или ее опережение (при емкостной нагрузке) или отставание (при индуктивной нагрузке). Потери происходят из-за нагревания. Многие бытовые и промышленные приборы и оборудование имеют реактивную составляющую (электродвигатели, переносной электроинструмент, бытовая техника и т.д.). Тогда при расчете за потребленную электроэнергию вводят поправочный коэффициент мощности. Обозначается он как cos fi и его величина лежит обычно в пределах от 0,6 до 0,9 (указывается в паспортных данных на конкретное электроустройство). Например, если в паспорте переносного инструмента указана мощность в 0,8 кВт и значение cos = 0,8, то в этом случае полная потребляемая мощность составит — 1 кВт(0,8/0,8). Считается негативным явлением и при уменьшении показателя cos снижается полезная мощность.

Обратите внимание! При отсутствии или потере паспорта на конкретное электроустройство для вычисления полной мощности применяют коэффициент cos = 0,7.

Чем выше значение cos , тем меньше потери активной электроэнергии и, конечно, такое электричество будет стоить дешевле. Для повышения этого коэффициента используются различные компенсирующие устройства. Это могут быть генераторы опережающего тока, батареи конденсаторов и др. устройства.

Помимо передачи по проводникам существует еще беспроводная передача электроэнергии. В данный момент существует технология беспроводной зарядки мобильных телефонов и некоторых бытовых устройств, электромобилей и т.п. Они имеют ограничения по дальности и малую эффективность передачи энергии, поэтому говорить об их широком применении не приходится.

amperof.ru

Электроэнергетика

электроэнергетикаЭлектроэнергетика является ключевой мировой отраслью, которая определяет технологическое развитие человечества в глобальном смысле этого слова. Данная отрасль включает в себя не только весь спектр и разнообразие методов производства (генерации) электроэнергии, но и ее транспортировку конечному потребителю в лице промышленности о всего общества в целом. Развитие электроэнергетики, ее совершенство и оптимизация, призванная удовлетворить постоянно растущий спрос на электроэнергию – это ключевая общая мировая задача современности и дальнейшего обозримого будущего.

Развитие электроэнергетики

уголльная электростанция

Несмотря на то, что электричество, как некий энергетический ресурс, было известно человечеству сравнительно давно, перед его бурным стартом развития стояла серьезная проблема – отсутствие возможности передачи электричества на большие расстояния. Именно эта проблема сдерживала развитие электроэнергетики до конца восемнадцатого века. Основываясь на открытии эффективного способа электропередачи, начали развиваться и технологии, основой которых стал электрический ток. Телеграф, электромоторы, принцип электрического освещения – все это стало настоящим прорывом, который повлек за собой не только изобретение и постоянное совершенствование механических электровырабатывающих машин (генераторов), но и целых электростанций.

строительство Волжской ГЭС

Одной из самых значимых вех в развитии электроэнергетики можно назвать гидроэлектростанции (ГЭС), функционирование которых основано на так называемых возобновляемых источниках энергии, которые имеют вид заранее подготовленных водных масс. На сегодняшний день данный тип электростанций является одним из самых эффективных и проверенных десятилетиями.

лампочка СССР

Отечественная история становления и развития электроэнергетики наполнена уникальными свершениями и ярчайшим контрастом дореволюционного и послереволюционного периода. И если первый из двух периодов обусловлен ничтожным объемом электрогенерации и практически полным отсутствием развития электроэнергетики как глобальной промышленной отрасли, то второй период – это настоящий и неоспоримый технологический рывок, обеспечивший в самые кротчайшие временные сроки повсеместную электрификацию, которая коснулась и множества советских фабрик и заводов, и каждого советского гражданина. Повсеместная тотальная электрификация нашей страны позволила догнать и во многих отраслях существенно перегнать в развитии технологий многие зарубежные страны, сформировав тем самым на середину двадцатого века непревзойденный промышленный потенциал. Разумеется, за рубежом электроэнергетика так же стремительно развивалась, но по своей массовости и доступности так и не сумела превзойти уровень Советского Союза.   

Отрасли промышленности электроэнергетики

На сегодняшний день, электроэнергетику можно разделить на три фундаментальных технологических ветви, каждая из которых осуществляет электрогенерацию своим, уникальным способом.

Атомная энергетика

атомная энергетика

Высокотехнологичная и самая перспективная ветвь электроэнергетики, в основу которой положен процесс деления ядер атомов в специально приспособленных для этого реакторах. Тепловая энергия, образуемая при ядерном делении преобразуется в электричество.

Тепловая энергетика

тепловая энергетика

Основой данной энергетики является то или иное топливо (Газ, уголь, определенные типы нефтепродуктов), которое, сгорая, трансформируется в электроэнергию.

Гидроэнергетика

гидроэнергетика

Ключевым аспектом электрогенерации в данном типе энергетики является вода, которая определенным образом запасается в реках и водоемах (водохранилищах). Запасенные водные массы проходят через электрогенерирующие турбины, вырабатывая тем самым существенное количество электроэнергии.

Альтернативная энергетика

Альтернативная энергетика

В дополнение к этому можно отметить и так называемую альтернативную энергетику, которая, в большей части, основывается на экологически чистых ресурсах. К таким ресурсам можно отнести солнечных свет, силу ветра и геотермальные источники. Однако, альтернативная энергетика - это, прежде всего, смелый эксперимент, нежели полноценная электроэнергетическая отрасль, не обладающая требуемой эффективностью.

Электроэнергетика в России

электроэнергетика в России

Россия - это один из гигантов электрогенерации и передовая держава в области электроэнергетики. Передовые технологии, богатые природные ресурсы, множество быстрых полноводных рек позволили разработать и ввести в эксплуатацию современные высокоэффективных атомные электростанции и гидроэлектростанции. Постоянная разработка и совершенствование технологий привело к образованию одной из крупнейших мировых энергосетей, включающей в себя колоссальное количество вырабатываемого и потребляемого электрического тока.

электроэнергетическая отрасль России

Электроэнергетическая отрасль России поделена на несколько крупных энергокомпания, которые, как правило, функционируют по территориальному признаку и отвечают за свою, строго определенную долю отрасли. Основные генерационные мощности страны заключены в атомных и гидроэлектростанциях, где последние обеспечивают порядка 18-20% электроэнергии в год.

Важно отметить, что постоянно производится модернизация имеющихся и ввод в эксплуатацию новых электрогенерационных станций. На сегодняшний день, общий объем вырабатываемой электроэнергии полностью покрывает все нужны промышленности и общества, позволяя стабильно наращивать энергоэкспорт в соседние государства.

Электроэнергетика стран мира

Электростанция в США

(Электростанция в США)

Любое крупное государство с развитым промышленным сектором всегда будет являться очень крупным производителем и потребителем электроэнергии. Следовательно, электроэнергетика в любом из подобных государств - это стратегически важная промышленная отрасль, которая постоянно нуждается в развитии. К странам с развитой электроэнергетикой можно отнести: Россию, США, Германию, Францию, Японию, Китай, Индию и некоторые другие страны, где или прослеживается стабильно высокий уровень экономики и промышленного потенциала, или присутствует активных экономический рост.   

xn----8sbiecm6bhdx8i.xn--p1ai


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта