Eng Ru
Отправить письмо

Принцип работы центробежного насоса: устройство и характеристики. Устройство и принцип работы


Устройство и принцип работы электродвигателя

Электродвигатель – это электротехническое  устройство для преобразования электрической энергии в механическую. Сегодня повсеместно применяются электромоторы в промышленности для привода различных станков и механизмов. В домашнем хозяйстве они установлены в стиральной машине, холодильнике, соковыжималке, кухонном комбайне, вентиляторах, электробритвах и т. п. Электродвигатели приводят в движение, подключенные к ней устройства и механизмы.

В этой статье Я расскажу о самых распространенных видах и принципах работы электрических двигателей переменного тока, широко используемых в гараже, в домашнем хозяйстве или мастерской.

Содержание статьи

Как работает электродвигатель

Двигатель работает на основе эффекта, обнаруженного Майклом Фарадеем еще в 1821 году. Он сделал открытие, что при взаимодействии электрического тока в проводнике и магнита может возникнуть непрерывное вращение.

Принцип работы электродвигателя

Если в однородном магнитном поле расположить в вертикальном положении  рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться.

В результате рамка повернется в горизонтальное положения, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент.

На рисунке это делается при помощи двух полуколец, к которым примыкают контактные пластины от батарейки. В результате после совершения полуоборота меняется полярность и вращение продолжается.

В современных электродвигателях вместо постоянных магнитов для создания  магнитного поля используются катушки индуктивности или электромагниты. Если разобрать любой мотор, то Вы увидите намотанные витки проволоки, покрытой изоляционным лаком. Эти витки и есть электромагнит или как их еще называют обмотка возбуждения.

В быту же постоянные магниты используются в детских игрушках на батарейках.

В других же более мощных двигателях используются только электромагниты или обмотки. Вращающаяся часть с ними называется ротор, а неподвижная- статор.

Виды электродвигателей

Сегодня существуют довольно много электродвигателей разных конструкций и типов. Их можно разделить по типу электропитания:

  1. Переменного тока, работающие напрямую от электросети.
  2. Постоянного тока, которые работают от батареек, АКБ, блоков питания или других источников постоянного тока.

По принципу работы:

  1. Синхронные, в которых есть обмотки на роторе и щеточный механизм для подачи на них электрического тока.
  2. Асинхронные, самый простой и распространенный вид мотора. В них нет щеток и обмоток на роторе.

Синхронный мотор вращается синхронно с магнитным полем, которое его вращает, а у асинхронного ротор вращается медленнее вращающегося магнитного поля в статоре .

Принцип работы и устройство асинхронного электродвигателя

Устройство асинхронного электродвигателя

 

В корпусе асинхронного двигателя укладываются обмотки статора (для 380 Вольт их будет 3), которые создают вращающееся магнитное поле. Концы их для подключения выводятся на специальную клеммную колодку. Охлаждаются обмотки, благодаря вентилятору, установленному на вале в торце электродвигателя.

Ротор, являющиеся одним целым с валом, изготавливается из металлических стержней, которые замыкаются  между собой с обоих сторон, поэтому он и называется короткозамкнутым.Благодаря такой конструкции отпадает необходимость в частом периодическом обслуживании и замене токоподающих щеток, многократно увеличивается надежность, долговечность и безотказность.

Как правило, основной причиной поломки асинхронного мотора является износ подшипников, в которых вращается вал.

Устройство и принцип работы асинхронного электродвигателя

Принцип работы. Для того что бы работал асинхронный двигатель необходимо, что бы ротор вращался медленнее электромагнитного поля статора, в результате чего наводится ЭДС (возникает электроток) в роторе. Здесь важное условие, если бы ротор вращался с такой же скоростью как и магнитное поле, то в нем по закону электромагнитной индукции не наводилось бы ЭДС и, следовательно не было бы вращения. Но в реальности, из-за трения подшипников или нагрузки на вал, ротор всегда будет вращаться медленнее.

Магнитные полюса постоянно вращаются в обмотках мотора, и постоянно меняется направление тока в роторе. В один момент времени, например направление токов в обмотках статора и ротора изображено схематично в виде крестиков (ток течет от нас) и точек (ток на нас). Вращающееся магнитное поле изображено изображено пунктиром.

Например, как работает циркулярная пила. Наибольшие обороты у нее без нагрузки. Но как только мы начинаем резать доску, скорость вращения уменьшается и одновременно с этим ротор начинает медленнее вращаться относительно электромагнитного поля и в нем по законам электротехники начинает наводится еще большей величины ЭДС. Вырастает потребляемый ток мотором и он начинает работать на полной мощности. Если же нагрузка на вал будет столь велика, что его застопорит, то может возникнуть повреждение короткозамкнутого ротора из-за максимальной величины наводимой в нем ЭДС. Вот почему важно подбирать двигатель, подходящей мощности. Если же взять большей, то неоправданными будут энергозатраты.

Скорость вращения ротора зависит от количества полюсов. При 2 полюсах скорость вращения будет равна скорости вращения магнитного поля, равного максимум 3000 оборотов в секунду при частоте сети 50 Гц. Что бы понизить скорость вдвое, необходимо увеличить количество полюсов в статоре до четырех.

Весомым недостатком асинхронных двигателей является то, что они подаются регулировке скорости вращения вала только при помощи изменения частоты электрического тока. А так не возможно добиться  постоянной частоты вращения вала.

Принцип работы и устройство синхронного электродвигателя переменного тока

Устройство синхронного электродвигателя

Данный вид электродвигателя используется в быту там, где необходима постоянная скорость вращения, возможность ее регулировки, а так же если необходима скорость вращения более 3000 оборотов в минуту (это максимум для асинхронных).

Синхронные моторы устанавливаются в электроинструменте, пылесосе, стиральной машине и т. д.

В корпусе синхронного двигателя переменного тока расположены обмотки (3 на рисунке), которые также намотаны и на ротор или якорь (1). Их выводы припаяны к секторам токосъемного кольца или коллектора (5), на которые при помощи графитовых щеток (4) подается напряжение. При чем выводы расположены так, что щетки всегда подают напряжение только на одну пару.

Наиболее частыми поломками коллекторных двигателей является:

  1. Износ щетокили их плохой их контакт из-за ослабления прижимной пружины.
  2. Загрязнение коллектора.Чистите либо спиртом или нулевой наждачной бумагой.
  3. Износ подшипников.

Принцип работы. Вращающий момент в электромоторе создается в результате взаимодействия между током тока якоря и магнитным потоком в обмотке возбуждения. С изменением направления переменного тока будет меняться и направление магнитного потока одновременно в корпусе и якоре, благодаря чему вращение всегда будет в одну сторону.

Регулировка скорости вращения меняется методом изменения величины подаваемого напряжения. В дрелях и пылесосах для этого используется реостат или переменное сопротивление.

Изменение направления вращения происходит также как и у двигателей постоянного тока, о которых Я расскажу в следующей статье.

Самое главное о синхронных двигателях Я постарался изложить, более подробно Вы можете прочитать на них на Википедии.

 

Понравилась статья? Поделиться с друзьями:

elektro-enot.ru

Принцип действия и устройство электродвигателя

Любой электрический двигатель предназначен для совершения механической работы за счет расхода приложенной к нему электроэнергии, которая преобразуется, как правило, во вращательное движение. Хотя в технике встречаются модели, которые сразу создают поступательное движение рабочего органа. Их называют линейными двигателями.

Принцип работы электродвигателяВ промышленных установках электромоторы приводят в действие различные станки и механические устройства, участвующие в технологическом производственном процессе.

Внутри бытовых приборов электродвигатели работают в стиральных машинах, пылесосах, компьютерах, фенах, детских игрушках, часах и многих других устройствах.

Основные физические процессы и принцип действия

На движущиеся внутри магнитного поля электрические заряды, которые называют электрическим током, всегда действует механическая сила, стремящаяся отклонить их направление в плоскости, расположенной перпендикулярно ориентации магнитных силовых линий. Когда электрический ток проходит по металлическому проводнику или выполненной из него катушке, то эта сила стремится подвинуть/повернуть каждый проводник с током и всю обмотку в целом.

На картинке ниже показана металлическая рамка, по которой течет ток. Приложенное к ней магнитное поле создает для каждой ветви рамки силу F, создающую вращательное движение.

Принцип работы электродвигателя

Это свойство взаимодействия электрической и магнитной энергии на основе создания электродвижущей силы в замкнутом токопроводящем контуре положено в работу любого электродвигателя. В его конструкцию входят:

обмотка, по которой протекает электрический ток. Ее располагают на специальном сердечнике-якоре и закрепляют в подшипниках вращения для уменьшения противодействия сил трения. Эту конструкцию называют ротором;

статор, создающий магнитное поле, которое своими силовыми линиями пронизывает проходящие по виткам обмотки ротора электрические заряды;

корпус для размещения статора. Внутри корпуса сделаны специальные посадочные гнезда, внутри которых вмонтированы внешние обоймы подшипников ротора.

Упрощенно конструкцию наиболее простого электродвигателя можно представить картинкой следующего вида.

Принцип работы электродвигателя

При вращении ротора создается крутящий момент, мощность которого зависит от общей конструкции устройства, величины приложенной электрической энергии, ее потерь при преобразованиях.

Величина максимально возможной мощности крутящего момента двигателя всегда меньше приложенной к нему электрической энергии. Она характеризуется величиной коэффициента полезного действия.

По виду протекающего по обмоткам тока их подразделяют на двигатели постоянного или переменного тока. Каждая из этих двух групп имеет большое количество модификаций, использующих различные технологические процессы.

Электродвигатели постоянного тока

У них магнитное поле статора создается стационарно закрепленными постоянными магнитами либо специальными электромагнитами с обмотками возбуждения. Обмотка якоря жестко вмонтирована в вал, который закреплен в подшипниках и может свободно вращаться вокруг собственной оси.

Принципиальное устройство такого двигателя показано на рисунке.

Принцип работы электродвигателя

На сердечнике якоря из ферромагнитных материалов расположена обмотка, состоящая из двух последовательно соединенных частей, которые одним концом подключены к токопроводящим коллекторным пластинам, а другим скоммутированы между собой. Две щетки из графита расположены на диаметрально противоположных концах якоря и прижимаются к контактным площадкам коллекторных пластин.

На нижнюю щетку рисунка подводится положительный потенциал постоянного источника тока, а на верхнюю — отрицательный. Направление протекающего по обмотке тока показано пунктирной красной стрелкой.

Ток вызывает в нижней левой части якоря магнитное поле северного полюса, а в правой верхней — южного (правило буравчика). Это приводит к отталкиванию полюсов ротора от одноименных стационарных и притяжению к разноименным полюсам на статоре. В результате приложенной силы возникает вращательное движение, направление которого указывает коричневая стрелка.

При дальнейшем вращении якоря по инерции полюса переходят на другие коллекторные пластины. Направление тока в них изменяется на противоположное. Ротор продолжает дальнейшее вращение.

Простая конструкция подобного коллекторного устройства приводит к большим потерям электрической энергии. Подобные двигатели работают в приборах простой конструкции или игрушках для детей.

Электродвигатели постоянного тока, участвующие в производственном процессе, имеют более сложную конструкцию:

  • обмотка секционирована не на две, а на большее количество частей;
  • каждая секция обмотки смонтирована на своем полюсе;
  • коллекторное устройство выполнено определенным количеством контактных площадок по числу секций обмоток.

В результате этого создается плавное подключение каждого полюса через свои контактные пластины к щеткам и источнику тока, снижаются потери электроэнергии.

Устройство подобного якоря показано на картинке.

Принцип работы электродвигателя

У электрических двигателей постоянного тока можно реверсировать направление вращения ротора. Для этого достаточно изменить движение тока в обмотке на противоположное сменой полярности на источнике.

Электродвигатели переменного тока

Они отличаются от предыдущих конструкций тем, что электрический ток, протекающий в их обмотке, описывается по синусоидальному гармоническому закону. периодически изменяющему свое направление (знак). Для их питания напряжение подается от генераторов со знакопеременной величиной.

Статор таких двигателей выполняется магнитопроводом. Его делают из ферромагнитных пластин с пазами, в которые помещают витки обмотки с конфигурацией рамки (катушки).

Принцип работы электродвигателя

На картинке ниже показан принцип работы однофазного двигателя переменного тока с синхронным вращением электромагнитных полей ротора и статора.

Принцип работы электродвигателя

В пазах статорного магнитопровода по диаметрально противоположным концам размещены проводники обмотки, схематично показанные в виде рамки, по которой протекает переменный ток.

Рассмотрим случай для момента времени, соответствующего прохождению положительной части его полуволны.

В обоймах подшипника свободно вращается ротор с вмонтированным постоянным магнитом, у которого ярко выражены северный «N рот» и южный «S рот» полюса. При протекании положительной полуволны тока по обмотке статора в ней создается магнитное поле с полюсами «S ст» и «N ст».

Между магнитными полями ротора и статора возникают силы взаимодействия (одноименные полюса отталкиваются, а разноименные — притягиваются), которые стремятся повернуть якорь электродвигателя из произвольного положения в окончательное, когда осуществляется максимально близкое расположение противоположных полюсов относительно друг друга.

Если рассматривать этот же случай, но для момента времени, когда по рамочному проводнику протекает обратная — отрицательная полуволна тока, то вращение якоря будет происходить в противоположную сторону.

Для придания непрерывного движения ротору в статоре делают не одну обмотку-рамку, а определенное их количество с таким учетом, чтобы каждая их них питалась от отдельного источника тока.

Принцип работы трехфазного двигателя переменного тока с синхронным вращением электромагнитных полей ротора и статора показан на следующей картинке.

Принцип работы электродвигателя

В этой конструкции внутри магнитопровода статора смонтированы три обмотки А, В и С, смещенные на углы 120 градусов между собой. Обмотка А выделена желтым цветом, В — зеленым, а С — красным. Каждая обмотка выполнена такими же рамками, как и в предыдущем случае.

На картинке для каждого случая ток проходит только по одной обмотке в прямом или обратном направлении, которое показано значками «+» и «·».

При прохождении положительной полуволны по фазе А в прямом направлении ось поля ротора занимает горизонтальное положение потому, что магнитные полюса статора формируются в этой плоскости и притягивают подвижный якорь. Разноименные полюса ротора стремятся приблизиться к полюсам статора.

Когда положительная полуволна пойдет по фазе С, то якорь повернется на 60 градусов по ходу часовой стрелки. После подачи тока в фазу В произойдет аналогичный поворот якоря. Каждое очередное протекание тока в очередной фазе следующей обмотки будет вращать ротор.

Если к каждой обмотке подвести сдвинутое по углу 120 градусов напряжение трехфазной сети, то в них будут циркулировать переменные токи, которые раскрутят якорь и создадут его синхронное вращение с подведенным электромагнитным полем.

Принцип работы электродвигателя

Эта же механическая конструкция успешно применяется в трехфазном шаговом двигателе. Только в каждую обмотку с помощью управления специальным контроллером (драйвером шагового двигателя) подаются и снимаются импульсы постоянного тока по описанному выше алгоритму.

Принцип работы электродвигателя

Их запуск начинает вращательное движение, а прекращение в определенный момент времени обеспечивает дозированный поворот вала и остановку на запрограммированный угол для выполнения определенных технологических операций.

В обеих описанных трехфазных системах возможно изменение направления вращения якоря. Для этого надо просто поменять чередование фаз «А»-«В»-«С» на другое, например, «А»-«С»-«В».

Скорость вращения ротора регулируется продолжительностью периода Т. Его сокращение приводит к ускорению вращения. Величина амплитуды тока в фазе зависит от внутреннего сопротивления обмотки и значения приложенного к ней напряжения. Она определяет величину крутящего момента и мощности электрического двигателя.

Эти конструкции двигателей имеют такой же статорный магнитопровод с обмотками, как и в ранее рассмотренных однофазных и трехфазных моделях. Они получили свое название из-за несинхронного вращения электромагнитных полей якоря и статора. Сделано это за счет усовершенствования конфигурации ротора.

Принцип работы электродвигателя

Его сердечник набран из пластин электротехнических марок стали с пазами. В них вмонтированы алюминиевые либо медные тоководы, которые по концам якоря замкнуты токопроводящими кольцами.

Когда к обмоткам статора подводится напряжение, то в обмотке ротора электродвижущей силой наводится электрический ток и создается магнитное поле якоря. При взаимодействии этих электромагнитных полей начинается вращение вала двигателя.

У этой конструкции движение ротора возможно только после того, как возникло вращающееся электромагнитное поле в статоре и оно продолжается в несинхронном режиме работы с ним.

Асинхронные двигатели проще в конструктивном исполнении. Поэтому они дешевле и массово применяются в промышленных установках и бытовой домашней технике.

Принцип работы электродвигателя

Взрывозащищенный электродвигатель ABB

Многие рабочие органы промышленных механизмов выполняют возвратно-поступательное или поступательное движение в одной плоскости, необходимое для работы металлообрабатывающих станков, транспортных средств, ударов молота при забивании свай …

Перемещение такого рабочего органа с помощью редукторов, шариковинтовых, ременных передач и подобных механических устройств от вращательного электродвигателя усложняет конструкцию. Современное техническое решение этой проблемы — работа линейного электрического двигателя.

Принцип работы электродвигателя

У него статор и ротор вытянуты в виде полос, а не свернуты кольцами, как у вращательных электродвигателей.

Принцип работы заключается в придании возвратно-поступательного линейного перемещения бегуну-ротору за счет передачи электромагнитной энергии от неподвижного статора с незамкнутым магнитопроводом определенной длины. Внутри него поочередным включением тока создается бегущее магнитное поле.

Оно воздействует на обмотку якоря с коллектором. Возникающие в таком двигателе силы перемещают ротор только в линейном направлении по направляющим элементам.

Линейные двигатели конструируются для работы на постоянном или переменном токе, могут работать в синхронном либо асинхронном режиме.

Недостатками линейных двигателей являются:

низкие энергетические показатели.

Основные понятия

Наиболее характерное магнитное явление — притяжение магнитом кусков железа — известно со времен глубокой древности. Ещё одной очень важной особенностью магнитов является наличие у них полюсов: северного (отрицательного) и южного (положительного). Противоположные полюса притягиваются, а одинаковые — отталкиваются друг от друга.

Принцип работы электродвигателя

Магнитное поле можно условно изобразить линиями в виде магнитного потока, движущегося от северного полюса к южному. В некоторых случаях определить, где северный, а где южный полюс, достаточно сложно.

Вокруг проводника, при пропускании по нему электрического тока, создаётся магнитное поле. Это явление называется электромагнетизмом. Физические законы одинаковы для магнетизма и электромагнетизма.

Принцип работы электродвигателя

Магнитное поле вокруг проводников можно усилить, если намотать их на катушку со стальным сердечником. Когда проводник намотан на катушку, все линии магнитного потока, образуемого каждым витком, сливаются и создают единое магнитное поле вокруг катушки.

Принцип работы электродвигателя

Чем больше витков на катушке, тем сильнее магнитное поле. Это поле имеет такие же характеристики, что и естественное магнитное поле, а, следовательно, у него тоже есть северный и южный полюса.

Вращение вала электродвигателя обусловлено действием магнитного поля. Основные части электродвигателя: статор и ротор.

Подвижная часть электродвигателя, которая вращается с валом электродвигателя, двигаясь вместе с магнитным полем статора.

Неподвижный компонент электродвигателя. Он включает в себя несколько обмоток, полярность которых меняется при прохождении через них переменного тока (AC). Таким образом, создаётся комбинированное магнитное поле статора.

Принцип работы электродвигателя

Вращение под действием магнитного поля

Преимуществом магнитных полей, которые создаются токопроводящими катушками, является возможность менять местами полюса магнита посредством изменения направления тока. Именно эта возможность смены полюсов и используется для преобразования электрической энергии в механическую.

Одинаковые полюса магнитов отталкиваются друг от друга, противоположные полюса — притягиваются. Можно сказать, что это свойство используется для создания непрерывного движения ротора с помощью постоянной смены полярности статора. Ротором здесь, является магнит, который может вращаться.

Принцип работы электродвигателя

Чередование полюсов с помощью переменного тока

Полярность постоянно меняется с помощью переменного тока (AC). Далее мы увидим, как ротор заменяется магнитом, который вращается под действием индукции. Здесь важную роль играет переменный ток, поэтому будет полезно привести здесь краткую информацию о нём:

Под переменным током понимается электрический ток, периодически изменяющий свое направление в цепи так, что среднее значение силы тока за период равно нулю. Вращающееся магнитное поле можно создать с помощью трёхфазного питания. Это означает, что статор подсоединяется к источнику переменного тока с тремя фазами. Полный цикл определяется как цикл в 360 градусов. Это значит, что каждая фаза расположена по отношению к другой под углом в 120 градусов. Фазы изображаются в виде синусоидальных кривых, как представлено на рисунке.

Принцип работы электродвигателя

Трёхфазный переменный ток

Трёхфазное питание — это непрерывный ряд перекрывающихся напряжений переменного тока (AC).

На следующих страницах объясняется, как взаимодействуют ротор и статор, заставляя электродвигатель вращаться.

Принцип работы электродвигателя

Для наглядности мы заменили ротор вращающимся магнитом, а статор — катушками. В правой части страницы приведено изображение двухполюсного трёхфазного электродвигателя. Фазы соединены парами: 1-й фазе соответствуют катушки A1 и A2, 2-й фазе — B1 и B2. а 3-й соответствуют C1 и C2. При подаче тока на катушки статора одна из них становится северным полюсом, другая — южным. Таким образом, если A1 — северный полюс, то A2 — южный.

Питание в сети переменного тока

Обмотки фаз A, B и C расположены по отношению друг к другу под углом в 120 градусов.

Принцип работы электродвигателя

Количество полюсов электродвигателя определяется количеством пересечений поля обмотки полем ротора. В данном случае каждая обмотка пересекается дважды, что означает, что перед нами двухполюсный статор. Таким образом, если бы каждая обмотка появлялась четыре раза, это был бы четырехполюсный статор и т.д.

Принцип работы электродвигателя

Когда на обмотки фаз подаётся электрический ток, вал электродвигателя начинает вращаться со скоростью, обусловленной числом полюсов (чем меньше полюсов, тем ниже скорость)

Ниже рассказывается о физическом принципе работы электродвигателя (как ротор вращается внутри статора). Для наглядности, заменим ротор магнитом. Все изменения в магнитном поле происходят очень быстро, поэтому нам необходимо разбить весь процесс на этапы. При прохождении трёхфазного переменного тока по обмоткам статора в нем создается магнитное поле, в результате чего возникают механические усилия, заставляющие ротор вращаться в сторону вращения магнитного поля.

Начав вращение, магнит будет следовать за меняющимся магнитным полем статора. Поле статора меняется таким образом, чтобы поддерживалось вращение в одном направлении.

Принцип работы электродвигателя

Ранее мы установили, как обыкновенный магнит вращается в статоре. В электродвигателях переменного тока AC установлены роторы, а не магниты. Наша модель очень схожа с настоящим ротором, за исключением того, что под действием магнитного поля ротор поляризуется. Это вызвано магнитной индукцией, благодаря которой в проводниках ротора наводится электрический ток.

Принцип работы электродвигателя

В основном ротор работает так же, как магнит. Когда электродвигатель включен, ток проходит по обмотке статора и создаёт электромагнитное поле, которое вращается в направлении, перпендикулярном обмоткам ротора. Таким образом, в обмотках ротора индуцируется ток, который затем создаёт вокруг ротора электромагнитное поле и поляризацию ротора.

В предыдущем разделе, чтобы было проще объяснить принцип действия ротора, заменив его для наглядности магнитом. Теперь заменим магнитом статор. Индукция — это явление, которое наблюдается при перемещении проводника в магнитном поле. Относительное движение проводника в магнитном поле приводит к появлению в проводнике так называемого индуцированного электрического тока. Этот индуцированный ток создаёт магнитное поле вокруг каждой обмотки проводника ротора. Так как трёхфазное AC питание заставляет магнитное поле статора вращаться, индуцированное магнитное поле ротора будет следовать за этим вращением. Таким образом вал электродвигателя будет вращаться. Электродвигатели переменного тока часто называют индукционными электродвигателями переменного тока, или ИЭ (индукционными электродвигателями).

Принцип работы электродвигателя

Принцип действия

Индукционные электродвигатели состоят из ротора и статора.

Токи в обмотках статора создаются фазовым напряжением, которое приводит в движение индукционный электродвигатель. Эти токи создают вращающееся магнитное поле, которое также называется полем статора. Вращающееся магнитное поле статора определяется токами в обмотках и количеством фазных обмоток.

Вращающееся магнитное поле формирует магнитный поток. Вращающееся магнитное поле пропорционально электрическому напряжению, а магнитный поток пропорционален электрическому току.

Вращающееся магнитное поле статора движется быстрее ротора, что способствует индукции токов в обмотках проводников роторов, в результате чего образуется магнитное поле ротора. Магнитные поля статора и ротора формируют свои потоки, эти потоки будут притягиваться друг к другу и создавать вращающий момент, который заставляет ротор вращаться. Принципы действия индукционного электродвигателя представлены на иллюстрациях справа.

Таким образом, ротор и статор являются наиболее важными составляющими индукционного электродвигателя переменного тока. Они проектируются с помощью САПР (системы автоматизированного проектирования). Далее мы подробнее поговорим о конструкции ротора и статора.

Принцип работы электродвигателя

Принцип работы электродвигателя

Принцип работы электродвигателя

Статор электродвигателя

Статор — это неподвижный электрический компонент электродвигателя. Он включает в себя несколько обмоток, полярность которых всё время меняется при прохождении через них переменного тока (AC). Таким образом, создаётся комбинированное магнитное поле статора.

Принцип работы электродвигателя

Все статоры устанавливаются в раму или корпус. Корпус статора электродвигателей Grundfos для электродвигателей мощностью до 22 кВт чаще всего изготавливается из алюминия, а для электродвигателей с большей мощностью — из чугуна. Сам статор устанавливается в кожухе статора. Он состоит из тонких пластин электротехнической стали, обмотанных изолированным проводом. Сердечник состоит из сотен таких пластин. При подаче питания переменный ток проходит по обмоткам, создавая электромагнитное поле, перпендикулярное проводникам ротора. Переменный ток (AC) вызывает вращение магнитного поля.

Принцип работы электродвигателя

Изоляция статора должна соответствовать требованиям IEC 62114, где приведены различные классы защиты (по уровням температуры) и изменения температуры (AT). Электродвигатели Grundfos имеют класс защиты F, а при увеличении температуры — класс B. Grundfos производит 2-полюсные электродвигатели мощностью до 11 кВт и 4-полюсные электродвигатели мощностью до 5,5 кВт. Более мощные электродвигатели Grundfos закупает у других компаний, уровень качества продукции которых соответствует принятым в Grundfos стандартам. Для насосов, в основном, используются статоры с двумя, четырьмя и шестью полюсами, так как частота вращения вала электродвигателя определяет давление и расход насоса. Можно изготовить статор для работы с различными напряжениями, частотами и мощностями на выходе, а также для переменного количества полюсов.

Ротор электродвигателя

В электродвигателях используются так называемые «беличьи колеса» (короткозамкнутые роторы), конструкция которых напоминает барабаны для белок.

Принцип работы электродвигателя

При вращении статора магнитное поле движется перпендикулярно обмоткам проводников ротора; появляется ток. Этот ток циркулирует по обмоткам проводников и создаёт магнитные поля вокруг каждого проводника ротора. Так как магнитное поле в статоре постоянно меняется, меняется и поле в роторе. Это взаимодействие и вызывает движение ротора. Как и статор, ротор изготовлен из пластин электротехнической стали. Но, в отличие от статора, с обмотками из медной проволоки, обмотки ротора выполнены из литого алюминия или силумина, которые выполняют роль проводников.

Принцип работы электродвигателя

Асинхронные электродвигатели

В предыдущих разделах мы разобрали, почему электродвигатели переменного тока называют также индукционными электродвигателями, или электродвигателями типа «беличье колесо». Далее объясним, почему их ещё называют асинхронными электродвигателями. В данном случае во внимание принимается соотношение между количеством полюсов и числом оборотов, сделанных ротором электродвигателя.

Частоту вращения магнитного поля принято считать синхронной частотой вращения (Ns). Синхронную частоту вращения можно рассчитать следующим образом: частота сети (F), умноженная на 120 и разделенная на число полюсов (P).

Принцип работы электродвигателя

Если, например, частота сети 50 Гц, то синхронная частота вращения для 2-полюсного электродвигателя равна 3000 мин-1.

Принцип работы электродвигателя

Синхронная частота вращения уменьшается с увеличением числа полюсов. В таблице, приведенной ниже, показана синхронная частота вращения для различного количества полюсов.

Синхронная частота вращения для различного количества полюсов

Принцип действия электродвигателя

Электродвигателем называется устройство, принцип действия которого преобразование электрической энергии в механическую. Такое преобразование используется для запуска в работу всевозможных видов техники, начиная от самого простого рабочего оборудования и заканчивая автомобилями. Однако при всей полезности и продуктивности такого преобразования энергий, в данном свойстве есть небольшой побочный эффект, который проявляется в повышенном выделении тепла. Именно поэтому электрические двигатели оснащаются дополнительным оборудованием, которое способно охладить его и позволить работать в бесперебойном режиме.

Основные функциональные элементы

Любой электрический двигатель состоит из двух основных элементов, один из которых является неподвижным, такой элемент называется статором. Второй элемент является подвижным, эта часть двигателя называется ротором. Ротор электрического двигателя может быть выполнен в двух вариантах, а именно может быть короткозамкнутым и с обмоткой. Хотя последний тип на сегодняшний день является достаточно большой редкостью, поскольку сейчас повсеместно используются такие устройства, как частотные преобразователи .

Принцип действия электродвигателя основана на выполнении следующих этапов работы. Во время включения в сеть, в статоре начинает осуществлять вращение возникшее поле магнитного типа. Оно действует на обмотку статора, в которой при этом возникает ток индукционного типа. Согласно закону Ампера, ток начинает действовать на ротор, который под этим действием начинает свое вращение. Непосредственно частота вращения ротора напрямую зависит от того, какой силы действия возникает ток, а так же от того, какое количество полюсов при этом возникает.

Разновидности и типы

На сегодняшний день наиболее распространенными считаются двигатели, которые имеют магнитоэлектрический тип. Есть еще тип электродвигателей, которые называют гистерезисные, однако они не являются распространенными. Первый тип электродвигателей, магнитоэлектрического вида, могут подразделяться еще на два подтипа, а именно электродвигатели постоянного тока и двигатели переменного тока.

Первый вид двигателей осуществляет свою работу от постоянного тока, эти типы электродвигателей используются тогда, когда возникает необходимость регулировки скоростей. Данные регулировки осуществляются посредством изменений напряжения в якоре. Однако сейчас существует большой выбор всевозможных преобразователей частот, поэтому такие двигатели стали применяться все реже и реже.

Принцип работы электродвигателя

Двигатели переменного тока соответственно работают посредством действия тока переменного типа. Здесь так же имеется своя классификация, и двигатели делятся на синхронные и асинхронные. Их основным различием становится разница во вращении необходимых элементов, в синхронном движущая гармоника магнитов движется с той же скоростью, что и ротор. В асинхронных двигателях наоборот, ток возникает за счет разницы в скоростях движения магнитных элементов и ротора.

Благодаря своим уникальным характеристикам и принципам действия электродвигатели на сегодняшний день распространенны гораздо больше, чем скажем двигатели внутреннего сгорания, поскольку они обладают рядом преимуществ перед ними. Так коэффициент полезного действия электродвигателей является очень высоким, и может достигать почти 98%. Так же электродвигатели отличаются высоким качеством и очень долгим рабочим ресурсом, они не издают много шума, и во время работы практически не вибрируют. Большим преимуществом такого типа двигателей является то, что они не нуждаются в топливе, и как результат не выделяют в атмосферу никаких загрязняющих веществ. К тому их использование является намного более экономичным, по сравнению с двигателями внутреннего сгорания.

pkdemo.ru

5. Определение, назначение, принцип работы и устройство му.

Принцип действия. Магнитный усилитель (МУ) — это электрический аппарат, в котором для усиления сигнала используется управляемое индуктивное сопро­тивление. Схема простейшего дроссельного МУ представлена на рис.1.

Замкнутый магнитопровод имеет две обмотки — рабочую обмотку (переменно­го тока), включенную в цепь нагрузкиRН и обмот­ку управления, на которую подается управляю­щий токIy. Кривая намагничивания материала сердеч­ника дана на рис.2. При прохождении переменного тока по обмоткена обмоткеРис.1. Схема МУ на одном сердечнике. будет наводиться э.д.с. Эта э.д.с. будет создавать переменный ток в цепи управления. Для ограничения этого тока в цепи управления включается балластный дроссельХб.

Рассмотрим вначале соотношения в дросселе при отсутствии тока управления (цепь управления разомкнута). Индуктивное сопротивление обмоткиравно:

где S-активное сечение магнитопровода; - число витков рабочей обмотки; l-длина средней магнитной линии магнитопровода.

При неизменных конструктивных параметрах S, и l индуктивность определяется магнитной проницае­мостью. Если ток управления отсутствует, то сердеч­ник работает в ненасыщенной зоне 1 (рис.2). В этой зоне магнитная проницаемость велика и индуктивное сопротивление дросселя

велико. Сопротивление нагрузки RH обычно очень мало по сравнению с ХP1, поэтому ток в рабочей обмотке оп­ределяется только индуктивным сопротивлением дрос­селя и мал по величине.

Подадим в обмотку управления такой постоянный ток управления Iу, чтобы перенести рабочую зону пол­ностью в область 2. В этой области из-за насыщения ма­териал имеет малую магнитную проницаемость . Индуктивное сопротивление рабочей обмотки дросселя резко уменьшается, что ведет к уменьшению полного сопротивления цепи и возрастанию тока в на­грузке. ВеличиныXP2 и RH выбираются таким образом, чтобы . Тогда ток в цепи определяется сопротив­лением самой нагрузки. При этом все напряжение ис­точника питания приложено к сопротивлению нагрузки. Мы рассмотрели два крайних режима усилителя — режим холостого хода, когда Iу=0 и ток в нагрузке име­ет минимальное значение Iно, и режим максимальной отдачи, когда ток в нагрузке достигает наибольшего значения.

При плавном увеличении тока управления Iу ток в нагрузке плавно увеличивается от Iно до максимального значения Iн.макс за счет уменьшения магнитной проницаемости .

Характеристика управления МУ приведена на рис.3. По оси абсцисс отложен ток управления, при­веденный к рабочей обмотке . В линейной зоне характеристики соблю­дается равенство средних значений м.д.с. обмоток: или.

Вследствие низких значений коэффициентов усиле­ния, большой массы дроссельные МУ в настоящее вре­мя применяются редко, в основном как измерительные трансформаторы постоянного тока и напряжения. В первом случае измеряемый токI=Iу пропускается по шине, которая является одновитковой обмоткой управле­ния. Магнитоэлектрический амперметр через выпрямительный мост включен в цепь рабочей обмотки и измеряет ток Iр пропорциональный постоянному току:

Рис.3. Характеристика управления.

Характеристики МУ, коэффициенты усиления МУС .

Статические параметры.

Крутизна характеристики управления. Для МУС характерной является зависимость выходного напряжения Up только от :

.

Напряжение на нагрузке Uн равно:

.

Изменение индукции определяется током управ­ленияIy. Выходное напряжение Up не зависит от сопротивления рабочей цепи, и при данном токе управления МУС является источником напряжения. Если сопротивление RН>>RB+rP, то напряжение на на­грузке Uн мало зависит от ее сопротивления.

Характеристикой управления МУС называется зави­симость выходного напряжения от тока управления Uр=(Iy) или зависимость напряжения на нагрузке от тока управления Uн=(Iy).

Крутизна характеристики управления kR:

.

В результате преобразований получим:

Производная характеризует наклон кри­вой размагничивания и условно может определяться эк­вивалентной магнитной проницаемостью размагничива­ния

.

Введем понятие индуктивного сопротивления размаг­ничивания:

.

Тогда получим:

.

Таким образом, крутизна характеристики управления пропорциональна индуктивному сопротивлению размагничивания Хр и отношению чисел витков обмоток управления и рабочей обмотки.

Коэффициенты усиления МУС.

Коэффициент усиления тока:

.

Коэффициент усиления напряжения:

.

Коэффициент усиления мощности:

.

Динамические параметры.

Запаздывание в МУС. Простейший однополупериодный МУС с большим сопротивлением цепи управления Ry имеет малую посто­янную времени, так как последняя обратно пропорциональна Ry. Однако даже если постоянная времени очень мала, МУС име­ет запаздывание.

Пусть напряжению управления Uу1 соответствует напряжение на нагрузке Uн1 , а при увеличении напряжения управления до Uу2 на нагрузке должно установиться напряжение Uн2. Значение напря­жения на нагрузке определяется значением Ву в начале рабочего полупериода (РП). В течение РП МУС неуправляем. Поэто­му если мы подадим новое значение напряжения управления в на­чале РП (рис.4,а), то новое значениеВу2, соответствующее но­вой величине Uy2, установится только во втором полупериоде. В тре­тьем полупериоде установится новое напряжение на нагрузке Uн2 , соответствующее Uу2.

Если напряжение Uу2 появится в начале полупериода управле­ния (ПУ), рис.4,б, то новое значение напряжения на нагрузке установится во втором полупериоде. Таким образом, даже в идеаль­ном случае, когда Ry равно бесконечности, МУС имеет запаздывание, которое может достигать 1—1,5 периода частоты питания. В двухполупериодном МУС запаздывание уменьшается до 0,5—1 периода. Такие усилители называются быстродействующими.

Рис.4. Запаздывание в МУС. а) – напряжение управления изменилось в начале РП;

б) – напряжение управления изменилось в начале ПУ.

Магнитный усилитель с самоподмагничиванием (МУС).

Процессы в усилителе с самонасыщением. Если в цепь рабочей обмотки включить вентиль, то под дейст­вием постоянной составляющей выпрямленного тока происходит подмагничивание сердечника. Такие усили­тели называются усилителями с самоподмагничиванием или с самонасыщением (МУС).

При рассмотрении про­цессов в таком усилителе (рис.5) мы считаем, что обратное сопротивление вен­тиля равно бесконечности. Прямое сопротивление учи­тывается сопротивлением RВ. В цепи управления вклю­чено балластное сопротивле­ние Хб, которое препятствует возникновению переменного тока в этой цепи. Направление напряжения источ­ника, при котором вентиль проводит ток, примем за по­ложительное, полупериод, при котором ток проходит че­рез нагрузку, назовем рабочим.

Петля гистерезиса материала, применяемого для усилителей, изображена на рис.6, а. На рис.6,б да­ны зависимости от времени индукции В, напряжения питания e, выходного напряжения и=е—uД и напряже­ния на дросселе .

Рис.5. Схема однополупериодного МУС.

studfiles.net

устройство и характеристики :: SYL.ru

Если у вас есть загородный дом или вы только планируете его приобрести, то стоит задуматься о том, как подвести магистрали водоснабжения и электричества. Однако коттедж может быть расположен довольно далеко от инженерных коммуникаций. При этом стоит задуматься об альтернативных источниках водоснабжения и электроэнергии.

Самыми распространенными источниками воды сегодня являются скважины и водоемы. Если вы планируете использовать один из них, то никак не обойтись без насосного оборудования, а оптимальным вариантом станут центробежные устройства. Однако перед приобретением той или иной модели необходимо ознакомиться с устройством, характеристиками и принципом работы подобного оборудования.

Назначение насосов

Прежде чем посетить магазин, вы должны ознакомиться с назначением и принципом работы центробежного насоса. Такие агрегаты предназначаются для подачи воды под давлением из источника к потребителю. Подобные установки являются одним из основных элементов автономной системы водоснабжения.

Конструкции такого типа уникальны, они эффективно работают и нашли свое широкое распространение во многих областях деятельности человека. Во-первых, с помощью них можно организовать водоснабжение в условиях предприятия. Во-вторых, агрегаты используются для транспортировки растворов и жидкостей между объектами производства. В-третьих, центробежные насосы распространены в сельском хозяйстве. Их используют для подачи воды на животноводческие фермы и при организации полива растений.

Описываемые установки применяются в условиях коммунального водоснабжения городов. В частном секторе оборудование незаменимо при организации водоснабжения участка. По той причине, что подобные агрегаты довольно широко используются сегодня, любопытно будет узнать о принципе их функционирования. Но для начала следует поинтересоваться, как устроены эти установки.

Устройство центробежных насосов

Устройство, принцип работы и назначение центробежного насоса будет интересно узнать каждому потребителю, кто планирует приобрести подобное оборудование. Описываемые конструкции состоят из следующих узлов:

  • корпуса;
  • электрического двигателя;
  • рабочего колеса;
  • сальников;
  • вала агрегата;
  • подшипников;
  • уплотняющих колец.

Корпус обычно изготовлен в форме улитки. Что касается двигателя, то он выступает в качестве привода и соединяется с корпусом с помощью муфты. Рабочее колесо – это крыльчатка, которая является диском с лопастями. Знакомясь с устройством и принципом работы центробежного насоса, вы сможете понять, что подобные установки могут быть дополнительно укомплектованы узлами, среди которых:

  • напорный шланг;
  • обратный клапан;
  • вакуумметр;
  • манометр;
  • запорная арматура.

Нельзя не упомянуть еще и всасывающий шланг, которым могут быть дополнены некоторые модели. Что касается клапана, то в нём располагается сетка для фильтрации потока воды. Для контроля разреженности воздуха в насосе используется вакуумметр. А вот мощность подаваемого потока контролируется манометром. Регулирует поступление и вывод воды из оборудования запорная арматура. Теперь, когда вам известны основные узлы насоса, можно ознакомиться с тем, как работает подобное оборудование.

Принцип работы

Принцип работы насоса центробежного типа можно понять из названия устройства. Оно состоит из двух слов: «центр» и «бег». Принцип функционирования агрегата заключается в нескольких важных моментах. Корпус наполняется водой с помощью всасывающего шланга. Рабочая крыльчатка начинает движение от поступления потока воды. При вращении рабочего колеса создается центробежная сила, отталкивающая поток от центра и распределяющая его по бокам.

Всё это способствует возникновению высокого давления, которое выталкивает поток из корпуса оборудования и направляет в напорный трубопровод. При создании напора в подающем шланге в центре рабочего колеса давление снижается, что способствует подаче новой порции воды. Принцип работы центробежного насоса представляет собой циклические действия.

Принцип функционирования многоступенчатой модели насоса

Принцип работы многоступенчатого оборудования заключается в следующих моментах: первоначально вода поступает в одну из секций с рабочим колесом. При этом она перенаправляется через всасывающий патрубок. Жидкость создает определенный напор и поступает во вторую секцию через нагнетательный патрубок. Там она подвергается действию центробежной силы, которая образуется рабочим колесом.

Под создавшимся давлением вода переходит на следующую ступень. Она проходит все ступени секционного насоса и подается через нагнетательный патрубок. Принцип работы многоступенчатого центробежного насоса заключается в том, что поток проходит по каждой ступени и увеличивает напор, который создается рабочими колесами. Из этого следует сделать вывод, что давление насоса равно сумме напоров, создаваемых на каждой ступени. Принцип работы центробежного насоса для воды выражен еще и в том, что диаметр рабочего колеса и сила его вращения на каждом этапе влияют на напор воды, которая выходит из насоса.

Как работает поршневой насос

Поршневой насос еще называется плунжерным и представляет собой один из видов объемных гидромашин. В них в качестве вытеснителя выступает один или несколько поршней, которые совершает возвратно-поступательные движения. Если проводить сравнение этого устройства с другими объемными насосами, первые не являются обратимыми. Это говорит о том, что они не способны функционировать в качестве гидродвигателей, ведь в них нет клапанной системы распределения. Не следует путать эти агрегаты с роторно-поршневыми, к которым следует отнести радиально-поршневые и аксиально-поршневые установки.

Принцип работы центробежных и поршневых насосов – это вопрос, который наиболее часто интересует современного потребителя, желающего купить описываемое оборудование. Что касается последней разновидности агрегатов, то они функционируют за счёт поступательного движения поршня. Он создает разряжение в полости, куда поступает жидкость из подводящего трубопровода. Последний является всасывающим.

При обратном движении поршня закрывается клапан на всасывающем трубопроводе. Это исключает протечку воды обратно и способствует открыванию клапана на нагнетательном трубопроводе. Он остаётся закрытым при всасывании. Туда вытесняется вода, которая находилась под поршнем. Процесс после этого повторяется.

Минусом подобных установок является то, что жидкость курсирует по трубопроводу с разной скоростью, создавая скачки. Этот момент обходят созданием насосов с несколькими поршнями. Главное преимущество состоит в том, что оборудование способно закачивать жидкость в момент пуска, поэтому установки используются там, где этим плюсом необходимо воспользоваться.

Разновидности центробежных насосов

Центробежные насосные установки можно классифицировать по нескольким признакам. Они отличаются количеством колес, а также видом перекачиваемой жидкости, которая определяет назначение. Принцип работы центробежного насоса воды важно знать, как и то, что подобные установки можно подразделить по числу потоков. Они бывают одно-, двух, а также многопоточными.

К рабочему колесу может быть разное количество подводов. В связи с этим можно выделить насосы с односторонним и двусторонним входом. По способу отвода жидкости от рабочего колеса установки могут быть:

  • со спиральным отводом;
  • с кольцевым отводом;
  • с направляющим аппаратом.

Классификация по конструкции рабочего колеса

Рабочие колёса могут иметь разные конструкции. Насосы по этому признаку можно подразделить на установки с закрытыми или открытыми колёсами. Вал разных моделей располагается вертикально или горизонтально. Принцип работы центробежного насоса – это ещё не всё, что следует знать потребителю. Ему необходимо ознакомиться еще и с устройством привода. Он может быть проведён через соединительную муфту или редуктор. Описываемые агрегаты можно классифицировать еще и по месту установки. Они бывают погружными и поверхностными.

Классификация по способу охлаждения

Еще одной довольно важной особенностью является способ охлаждения двигателя. В зависимости от этого, насосы могут быть с мокрым или сухим ротором. В первом случае ротор погружается в перекачиваемую среду, которая и выполняет роль охлаждения, а также выступает смазкой для подшипников. Вал располагается горизонтально, а статор, находящийся под напряжением, отделяется специальной гильзой.

Принцип работы центробежного насоса с сухим ротором предусматривает водяное охлаждение. Ротор не соприкасается с жидкостью, а охлаждение обеспечивается вентилятором, установленным на валу. Такие агрегаты отличаются высоким коэффициентом полезного действия и подачей жидкости в большом объёме. Оборудование с сухим ротором издаёт шум при работе, тогда как при наличии водяного охлаждения звука во время функционирования устройства вы почти не заметите.

В заключение

Схема и принцип работы центробежного насоса указывают на то, что в основе функционирования лежит соответствующий закон, который предусматривает отталкивание воды от центра. Жидкость распределяется по бокам, что и обеспечивает возникновение высокого давления.

Описываемые установки выступают в качестве основного элемента автономных систем водоснабжения. Они широко распространены сегодня и используются во многих сферах жизнедеятельности человека.

www.syl.ru

Устройство и принцип работы коробки передач

Коробка передач, или по-другому трансмиссия, передает силу вращения — так называемый вращательный момент — от двигателя автомобиля на колеса. При этом в зависимости от условий движения автомобиля она может передавать вращательный момент полностью либо частично.

Машина, идущая в гору, должна пользоваться более низкой передачей по сравнению с машиной, мчащейся по ровному скоростному шоссе. При более низкой передаче на колеса передается больший крутящий момент. А это требуется тогда, когда машина двигается медленно, потому что ей тяжело. Более высокие передачи подходят для более быстрого движения автомобиля.

Бывают коробки передач с ручным управлением, но бывают и автоматические. Чтобы сменить передачу в ручной трансмиссии, водитель вначале нажимает педаль сцепления (рисунок слева). При этом двигатель отсоединяется от коробки передач. Потом водитель переводит рычаг управления на другую передачу и отпускает педаль сцепления. Двигатель снова соединяется с коробкой передач и может вновь передавать свою энергию колесам. В автоматической коробке передач положение педали газа (акселератора) соотносится со скоростью движения автомобиля, и автоматически меняется передача, если это необходимо.

Ручное управление передачей

Приводимые рядом диаграммы показывают, как с помощью рычага управления можно перейти с одной передачи на другую. В зависимости от установленной передачи разные доли крутящего момента, проходя через коробку передач (красные линии со стрелками), попадают на колеса.Нейтральная передача. Энергия двигателя не передается колесам.

Нейтральная передача. Энергия двигателя не передается колесам.

Первая передача. Самая большая шестеренка ведущего вала соединяется со своей парой на ведомом валу. Машина движется медленно, но может преодолевать тяжелые участки пути.

Вторая передача. Вторая пара шестеренок работает вместе с механизмом сцепления. При этом скорость движения автомобиля обычно от 15 до 25 миль в час.

Третья передача. Работает третья пара шестеренок вместе с механизмом сцепления. Скорость автомобиля еще больше, а крутящий момент на колесах меньше.

Четвертая передача. Входной и выходной валы соединяются напрямую (прямая передача) — скорость движения автомобиля максимальная, а крутящий момент самый низкий.

Реверс.(5-я передача на картинке) При включении передачи заднего хода его ведущая шестерня'вращает выходной (ведущий) вал в противоположную сторону.

Работа акселератора

Число оборотов двигателя в минуту зависит от того, сколько топлива поступает из карбюратора в цилиндры. Движение топлива регулируется дроссельной заслонкой карбюратора, а работой заслонки управляют с помощью педали акселератора, которая находится на полу перед водителем.

Когда водитель нажимает ногой на педаль акселератора, дроссельная заслонка открывается и в двигатель поступает больше топлива. Если водитель отпускает педаль акселератора, заслонка прикрывается и количество поступающего топлива уменьшается. При этом уменьшаются и обороты двигателя и скорость автомобиля.

Автоматическая коробка передач

Когда применяется автоматическая трансмиссия, у водителя нет под ногой педали сцепления. Вместо нее преобразователь крутящего момента в паре с планетарной передачей (рисунок справа и снизу) автоматически отключают двигатель от ведущего вала, когда по условиям движения следует перейти на другую передачу.

А после того как передача сменилась, снова подключают ведущий вал. Стоит водителю поставить рычаг управления в рабочее положение, и механизм автоматической коробки передач сам выберет нужную передачу в соответствии с условиями движения автомобиля в данный момент.

information-technology.ru

Устройство и принцип работы электродвигателя переменного тока

Двигатели электрические выпускают синхронные, асинхронные, коллекторные, каждому присущи особенности работы. Минус большой: сеть интернет дает скудные представления о различиях в работе, принципе действия. Можем читать обзоры про синхронные электродвигатели, не понять в итоге главного: нюансов! Почему на ГЭС используются такие генераторы, в быту моторов-зеркал не видно (двигатель переменного тока обратим)?

Электрические двигатели: разновидности

Сразу скажем, не ставили целью довести вниманию читателей исчерпывающую информацию по указанной теме. Невозможно объять необъятное. Будут рассматриваться случаи, опущенные литературой. Информация вроде выложен, систематизировать издателям недосуг. Поможем понять, как функционируют виды электродвигателей. Начнем простым перечислением.

Двигатель коллекторного типа

Двигатель коллекторного типа

Коллекторные двигатели

Часто путают с синхронными. Обнаруживаются угольные щетки. Этим сходство ограничивается, частота вращения коллекторных двигателей меняется в широких пределах, каждый может лицезреть на примере стиральной машины. Управление скоростью осуществляется путем коммутации обмоток, подстройкой значения действующего напряжения (изменяется угол отсечки вольтажа промышленной частоты).

Главным отличием устройств является наличие коллектора. Своеобразная секционная конструкция, насаженная на вал. Составлена множеством катушек, равномерно идущих кругом. Коллектор обеспечивает последовательную коммутацию, чтобы поле постепенно двигалось вкруг вала. Цепляясь за статор, ротор начинает движение.

К недостаткам коллекторных двигателей причисляют хрупкость (для промышленности). В быту тип устройств доминирующие. Простым путем осуществляется регулировка скорости (отсечкой части периода синусоиды). Коллекторных двигателей видим другие минусы/плюсы, упоминали ранее, сейчас изучим особенности. Наличие на валу секционированного барабана.

Можно поставить вместо него магнит, вращать поле статора? Да, получим синхронный двигатель (типичный пример — помпы стиральных машин). Можно питать обмотку постоянным током, вращать поле статора? Да, будет синхронный двигатель. Видите, коллектор однозначно дает понять тип устройства.

Асинхронные двигатели

Чаще применяются промышленностью. Получаем простоту конструкции, кучу плюшек. Ударопрочность, вибропрочность: отсутствие угольных щеток. Взамен получается кипа конструкций. Семейство самое многочисленное.

Асинхронный двигатель

Асинхронный двигатель

Во-первых, ротор. Может быть короткозамкнутым, фазным. Первое означает: на вал насажена конструкция (для уменьшения веса силуминовая), где вставлены прожилки меди. Закорочено периметром двумя кольцами. Получается барабан, иногда называемый беличьей клеткой.

Возникает поле под действием вращающейся ЭДС статора, в отличие от коллекторных запуск асинхронных двигателей постоянным током не производят. Вторичное отличие. Первичное назвали: к ротору не подходят контакты (исключая пусковой реостат), вал увенчан беличьей клеткой, вывод о принадлежности однозначный. Что касается фазных асинхронных машин, питание катушек ротора производится через токосъемные кольца. Вал подхватывается, постепенно набирает обороты.

Синхронные двигатели

Тип устройств, составить понятие о котором, согласно заметкам сети попросту невозможно. Отличие простое: поле настолько сильное, что захватывается без проблем, не проскальзывает, как в случае с асинхронными или (в меньшей степени) коллекторными двигателями. Обеспечивается постоянным магнитом чаще, либо обмотка возбуждения находится на роторе. Статор снабжается переменным напряжением нужной частоты.

Скорость вращения зависит от частоты сети питания. Полюсов только два, поэтому составляет 25 Гц (1500 об/мин). Черта, по которой можно предположить: видим синхронный двигатель — кратное, целое число. Ключевым является совпадение скорости вращения вала и частоты напряжения питания. Многое зависит от количества полюсов. Например, на ГЭС генераторы работают на частоте вала 1-2 Гц, промышленные 50 Гц получаются путем намотки многочисленных катушек статора, соединенных параллельно.

Как работают электрические двигатели

Асинхронные двигатели

Кратенько описали внешние отличия электрических двигателей, теперь пара слов по поводу устройства и функционирования. Асинхронные двигатели при помощи статора создают по оси вращающееся магнитное поле. Барабан беличьей клетки редко изготавливается из ферромагнитных материалов (если вообще имеет место быть). В противном случае нагрев вышел бы значительным. Фактически получается индукционная печь.

Силуминовый барабан вдоль линий магнитного поля содержит медные проводники. Разница в проводимости такова, что не проводится изоляции: ток несут красно-коричневые жилы. Поле, индуцированное статором ЭДС, слабое. Применяются специальные меры, помогающие разогнать вал. Магнитное поле ротора плохо цепляется, асинхронный двигатель стоит столбом. Действенная мера противодействия проблеме ограничивается созданием двойной беличьей клетки: вдоль барабана проходит на некоторой глубине второй ряд медных жил. Объединены торцами единой сетью.

На запуске частота тока, глубина проникновения поля велики. Включаются в работу оба слоя беличьей клетки. По мере разгона разница нивелируется, падает до нуля. Амплитуда поля снижается, рабочим остается внешний слой беличьей клетки. Обратите внимание, догнать поле ротор бессилен, проскальзывает, запаздывает. Поэтому двигатели получили название асинхронных. Англичане делают проще — зовут индукционными.

Если поле вращать со скоростью ротора, ЭДС перестает наводиться. Последует замедление, цикл повторится, начавшись разгоном. Ротор по-прежнему будет отставать от поля. Так работает устройство короткозамкнутого типа. Фазный ротор (спасибо Википедия), содержащий трехфазную обмотку, выполняет несколько функций, согласно назначению устройства:

  • Подпитывается электричеством через кольцо токосъемника. Теперь ротор получает фазу и наводит на статоре ЭДС. Постепенно вал подхватывается полем, дальнейший процесс описан выше.
  • Подпитывается постоянным током. Образуется синхронный двигатель.
  • Снабжается реостатами, дросселями, регулирующими скорость.
  • Реализует управление инвертором (усложненный первый случай).

Принцип действия асинхронных двигателей: используется наведенная ЭДС, скорость вращения неспособна догнать поле (пропадают токи). Иначе тип мотора меняется (синхронный). Для регуляции скорости часто используется амплитуда питающего напряжения. Способ годится двигателям асинхронного типа с короткозамкнутым, фазным ротором. Перечислим методики:

Работа двигателя переменного тока

Работа двигателя переменного тока

  • Для машин с короткозамкнутым ротором годятся:
    1. Регулирование частоты напряжения питания.
    2. Изменение числа пар полюсов статора. В результате меняется скорость вращения поля, давая нужный эффект.
  • Для машин с фазным ротором допускается:
    1. Вводить реостат в цепь питания. Растут потери на скольжение, закономерно изменяя скорость.
    2. Применять специальные вентили. Энергия скольжения выпрямляется схемой Ларионова, подается в виде постоянного напряжения вспомогательному электрическому двигателю, нарезающему импульсы через управляемые извне тиристоры. Мощность, которая обычно терялась бы, возвращается. Через вал вспомогательного двигателя, трансформатор, обмотки которого частично включены в сеть питания. Управление скоростью выполняют внедрением дополнительной ЭДС. Делается либо напрямую (через источник питания), либо сдвигом угла включения тиристоров относительно питания. Частота отклоняется от номинала.
    3. Двигатель двойного питания является вариантом реализации регулировки скорости в оборудовании с фазным ротором. Тип чаще применяется для реализации схем генераторов. Ротор уплывает частотой вращения – двигатель все-таки асинхронный. Статор, ротор питаются отдельно. Позволяет для каждой обмотки задавать частоту, закономерно приводит к нужным изменениям скорости.

Асинхронным двигателям годится изменение амплитуды питания. Наибольшим КПД обладают вентильные схемы, самые дорогие.

Двигатель синхронного типа

Двигатель асинхронного типа

Работа синхронных двигателей

Проходились по коллекторным двигателям – рассказывали, как конструировать – поэтому пропускаем сегодня семейство. Бессильны иначе рассказать вещи гораздо интереснее: ведется много споров на форумах. Собираемся рассмотреть не совсем синхронные двигатели — генератор. Наподобие украшающих ГЭС.

Вы никогда не задумывались, как регулируется скорость вращения турбины, когда на лопасть падает поток воды? Створками направляющего аппарата? Нет. Генератор требует подпитки не только постоянным током, но и переменным. Первое подаётся на ротор, а второе – на статор. В результате вал не мог бы даже стронуться с места, но ему помогает вода. А вот энергия торможения потока уже преобразуется в ЭДС рабочих катушек статора, намотанных рядом со вспомогательными.

Фактически имеем на руках устройство электродвигателя переменного тока, среди обмоток большая часть генерирующих, снимается частота 50 Гц. Синхронность обеспечивается питающими напряжениями. Если вода слишком напирает, ток возбуждения растет, срыв оборотов предотвращается. Параллельно увеличивается выходная мощность электростанции. Частота определяет характеристики снимаемого напряжения, касательно номинала 50 Гц не допускаются отклонения более долей процента (0,1%).

Вал вращается со скоростью 1-2 оборота в секунду. Многочисленными генераторными обмотками, соединенными параллельно образует нужную форму синусоиды. Подчеркиваем, частота поддерживается напряжением возбуждения, следовательно, именно к нему и предъявляются повышенные требования. Требуется получить больше мощности электростанции, просто заслонки направляющего аппарата приоткрываются, масса воды начинает падать вниз. Лопасть быстрее не двигается, увеличивается ток возбуждения, закономерно вызывает возникновение более сильных полей.

Принцип действия электродвигателя переменного тока копирует сказанное, отсутствуют генераторные обмотки. Требуется получить больше мощности — увеличьте напряжение возбуждения, амплитуду по цепи питания. Усиливается сцепление полей, исключая проскальзывание. Понятно, большая масса вала неспособна набрать за мгновение 50 Гц (и не набирает), оборудование, изготовленное правильно, за короткий период достигает режима. Скорость зависит от количества полюсов.

Не успели сегодня рассмотреть технические характеристики электродвигателей переменного тока, многократно делали прежде, применительно к различного рода устройствам. Полагаем,  в будущем обзоры могут вновь повернуться к теме бушпритом.

vashtehnik.ru

Принцип работы электродвигателя - устройство и отличия разных видов

Электродвигатели – это устройства, в которых электрическая энергия превращается в механическую. В основе принципа их действия лежит явление электромагнитной индукции.

Однако способы взаимодействия магнитных полей, заставляющих вращаться ротор двигателя, существенно различаются в зависимости от типа питающего напряжения – переменного или постоянного.

Устройство и принцип действия электродвигателя постоянного тока

В основе принципа работы электродвигателя постоянного тока лежит эффект отталкивания одноименных полюсов постоянных магнитов и притягивания разноименных. Приоритет ее изобретения принадлежит русскому инженеру Б. С. Якоби. Первая промышленная модель двигателя постоянного тока была создана в 1838 году. С тех пор его конструкция не претерпела кардинальных изменений.

В двигателях постоянного тока небольшой мощности один из магнитов является физически существующим. Он закреплен непосредственно на корпусе машины. Второй создается в обмотке якоря после подключения к ней источника постоянного тока. Для этого используется специальное устройство – коллекторно-щеточный узел. Сам коллектор – это токопроводящее кольцо, закрепленное на валу двигателя. К нему подключены концы обмотки якоря.принцип работы электродвигателя постоянного токаЧтобы возник вращающий момент, необходимо непрерывно менять местами полюса постоянного магнита якоря. Происходить это должно в момент пересечения полюсом так называемой магнитной нейтрали. Конструктивно такая задача решается разделением кольца коллектора на секторы, разделенные диэлектрическими пластинами. Концы обмоток якоря присоединяются к ним поочередно.

Чтобы соединить коллектор с питающей сетью используются так называемые щетки – графитовые стержни, имеющие высокую электрическую проводимость и малый коэффициент трения скольжения.

В двигателях большой мощности физически существующих магнитов не используют из-за их большого веса. Для создания постоянного магнитного поля статора используется несколько металлических стержней, каждый из которых имеет собственную обмотку из проводника, подключенного к плюсовой или минусовой питающей шине. Одноименные полюса включаются последовательно друг другу.

Количество пар полюсов на корпусе двигателя может быть равно одной или четырем. Число токосъемных щеток на коллекторе якоря должно ему соответствовать.

синхронный электродвигатель принцип работыЭлектродвигатели большой мощности имеют ряд конструктивных хитростей. Например, после запуска двигателя и с изменением нагрузки на него, узел токосъемных щеток сдвигается на определенный угол против вращения вала. Так компенсируется эффект «реакции якоря», ведущий к торможению вала и снижению эффективности электрической машины.

Также существует три схемы подключения двигателя постоянного тока:

  • с параллельным возбуждением;
  • последовательным;
  • смешанным.

Параллельное возбуждение – это когда параллельно обмотке якоря включается еще одна независимая, обычно регулируемая (реостат).

Такой способ подключения позволяет очень плавно регулировать скорость вращения и достигать ее максимальной стабильности. Его используют для питания электродвигателей станков и кранового оборудования.

Последовательная – в цепь питания якоря дополнительная обмотка включена последовательно. Такой тип подключения используется для того, чтобы в нужный момент резко нарастить вращающее усилие двигателя. Например, при трогании с места железнодорожных составов.

Двигатели постоянного тока имеют возможность плавной регулировки частоты вращения, поэтому их применяют в качестве тяговых на электротранспорте и грузоподъемном оборудовании.

Двигатели переменного тока — в чем отличие?

принцип действия электродвигателя переменного токаУстройство и принцип работы электродвигателя переменного тока для создания крутящего момента предусматривают использование вращающегося магнитного поля. Их изобретателем считается русский инженер М. О. Доливо-Добровольский, создавший в 1890 году первый промышленный образец двигателя и являющийся основоположником теории и техники трехфазного переменного тока.

Вращающееся магнитное поле возникает в трех обмотках статора двигателя сразу, как только они подключаются к цепи питающего напряжения. Ротор такого электромотора в традиционном исполнении не имеет никаких обмоток и представляет собой, грубо говоря, кусок железа, чем-то напоминающий беличье колесо.

Магнитное поле статора провоцирует возникновение в роторе тока, причем очень большого, ведь это короткозамкнутая конструкция. Этот ток вызывает возникновение собственного поля якоря, которое «сцепляется» с вихревым магнитным потом статора и заставляет вращаться вал двигателя в том же направлении.

Магнитное поле якоря имеет ту же скорость, что и статора, но отстает от него по фазе примерно на 8–100. Именно поэтому двигатели переменного тока называются асинхронными.

Принцип действия электродвигателя переменного тока с традиционным, короткозамкнутым ротором, имеет очень большие пусковые токи. Вероятно, многие из вас это замечали – при пуске двигателей лампы накаливания меняют яркость свечения. Поэтому в электрических машинах большой мощности применяется фазный ротор – на нем уложены три обмотки, соединенные «звездой».

Обмотки якоря не подключены к питающей сети, а посредством коллекторно-щеточного узла соединены с пусковым реостатом. Процесс включения такого двигателя состоит из соединения с питающей сетью и постепенного уменьшения до нуля активного сопротивления в цепи якоря. Электромотор включается плавно и без перегрузок.

Особенности использования асинхронных двигателей в однофазной цепи

принцип работы асинхронного электродвигателяНесмотря на то, что вращающееся магнитное поле статора проще всего получить от трехфазного напряжения, принцип действия асинхронного электродвигателя позволяет ему работать и от однофазной, бытовой сети, если в их конструкцию будут внесены некоторые изменения.

Для этого на статоре должно быть две обмотки, одна из которой является «пусковой». Ток в ней сдвигается по фазе на 90° за счет включения в цепь реактивной нагрузки. Чаще всего для этого используется конденсатор.

Запитать от бытовой розетки можно и промышленный трехфазный двигатель. Для этого в его клеммной коробке две обмотки соединяются в одну, и в эту цепь включается конденсатор. Исходя из принципа работы асинхронных электродвигателей, запитанных от однофазной цепи, следует указать, что они имеют меньший КПД и очень чувствительны к перегрузкам.

Электродвигатели этого типа легко запускаются, но частоту их вращения практически невозможно регулировать.

Они чувствительны к перепадам напряжения, а при «недогрузе» снижают коэффициент полезного действия, становясь источником непропорционально больших затрат электроэнергии. При этом существуют методы использования асинхронного двигателя как генератор.

Универсальные коллекторные двигатели — принцип работы и характеристики

коллекторный электродвигатель принцип работыВ бытовых электроинструментах малой мощности, от которых требуются малые пусковые токи, большой вращающий момент, высокая частота вращения и возможность ее плавной регулировки, используются так называемые универсальные коллекторные двигатели. По своей конструкции они аналогичны двигателям постоянного тока с последовательным возбуждением.

В таких двигателях магнитное поле статора создается за счет питающего напряжения. Только немного изменена конструкция магнитопроводов – она не литая, а наборная, что позволяет уменьшать перемагничивание и нагрев токами Фуко. Последовательно включенная в цепь якоря индуктивность дает возможность менять направление магнитного поля статора и якоря в одном направлении и в той же фазе.

Практически полная синхронность магнитных полей позволяет двигателю набирать обороты даже при значительных нагрузках на валу, что и требуется для работы дрелей, перфораторов, пылесосов, «болгарок» или полотерных машин.

Если в питающую цепь такого двигателя включен регулируемый трансформатор, то частоту его вращения можно плавно менять. А вот направление, при питании от цепи переменного тока, изменить не удастся никогда.

Такие электромоторы способны развивать очень высокие обороты, компактны и имеют больший вращающий момент. Однако наличие коллекторно-щеточного узла снижает их моторесурс – графитовые щетки достаточно быстро истираются на высоких оборотах, особенно если коллектор имеет механические повреждения.

Электродвигатели имеют самый большой КПД (более 80 %) из всех устройств, созданных человеком. Их изобретение в конце XIX века вполне можно считать качественным цивилизационным скачком, ведь без них невозможно представить жизнь современного общества, основанного на высоких технологиях, а чего-либо более эффективного пока еще не придумано.

Синхронный принцип работы электродвигателя на видео

elektrik24.net


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта