Стабилизированный источник питания для лампового усилителя. Стабилизированный источник питанияСтабилизированный источник питания: достоинства и недостаткиС изобретением стабилитрона появилась прекрасная возможность стабилизировать переменное напряжение. Это необходимо для нормальной работы многих бытовых устройств. Современный стабилизированный источник питания обладает хорошими выходными характеристиками и используется практически во всех схемах электроники. Его можно найти в магнитофонах, телевизорах, зарядных устройствах, компьютерах и т.д. От качественного питания схемы зависит многое. Это в первую очередь стабильность работы всего устройства. Кроме бытовых приборов, стабилизированный источник питания широко используется на производстве. С его помощью осуществляется питание схем электроники, которая участвует в управлении технологическими процессами. К качеству источников постоянного напряжения предъявляются особые требования, ведь от их работы зависит нормальное функционирование всей технологической линии. Обычно стабилизаторы переменного напряжения имеют в своем составе параметрический стабилизатор, который представляет собой обыкновенный делитель напряжения, в одном плече которого включен стабилитрон. Схема эта настолько проста и надежна в эксплуатации, что ее использование в электронике стало хорошим тоном при проектировании различных устройств. Нелинейная характеристика стабилитрона позволяет формировать управляющее напряжение, которое поступает на усилительный каскад на основе транзистора. На выходе устройства обычно ставятся электролитические конденсаторы. Их задача - выпрямить стабилизированное напряжение. Такая схема имеет очень хорошие характеристики, пульсации на выходе не превышают одного процента. К достоинствам также можно отнести и низкий уровень излучаемых помех. Но такой стабилизированный источник питания имеет и свои недостатки. Это низкий КПД и большие габариты, так как в нем применяют силовой понижающий трансформатор. Далее напряжение стабилизируется и сглаживается конденсаторами. Такой стабилизированный источник питания имеет высокий КПД и малые габариты. Но обладает высоким уровнем помех на выходе. Их использование целесообразно в бытовых устройствах, где такой параметр, как габариты, имеет большое значение. Импульсные источники хорошо зарекомендовали себя и применяются в телевизорах, компьютерах, ноутбуках и т.д. Для организации домашней лаборатории полезно приобрести или изготовить самостоятельно стабилизированный блок питания. Он поможет в настройке схем и первоначальной подаче необходимого напряжения. Такие блоки широко применяются в лабораториях на производстве, с их помощью можно ремонтировать старые или создавать новые электронные устройства. fb.ru Стабилизированные источники питанияЧувствительность выходного напряжения источника питания к изменению тока нагрузки можно уменьшить, используя стабилизацию (автоматическое регулирование) напряжения. Этот метод позволяет поддерживать выходное напряжение источника питания на постоянном уровне при изменении тока нагрузки. Существуют два способа стабилизации: параллельная стабилизация и последовательная стабилизация. Параллельные стабилизаторы Блок-схема параллельного стабилизатора (или, более точно, стабилизатора с параллельным включением регулирующего элемента) представлена на рис. 29.13. На рис. 29.14 приведена схема источника питания с параллельной стабилизацией, где в качестве регулирующего элемента используется стабилитрон. Схема рассчитывается так, чтобы стабилитрон работал на участке пробоя. При этом падение напряжения на нем практически не изменяется даже при очень больших изменениях тока, поэтому неизменным остается и выходное напряжение источника питания. Параллельная стабилизация основана на принципе разделения тока, в соответствии с которым сумма тока нагрузки ILи тока стабилитрона IZ поддерживается постоянной. Если, например, ток нагрузки возрастает на 2 мА, то на те же 2 мА уменьшается ток регулирующего элемента, и наоборот. Через гасящий резистор R1, включенный последовательно с нагрузкой, протекает полный ток, и падение напряжения V1 на этом резисторе разности между нестабилизированным напряжением выпрямителя VAB и напряжением пробоя стабилитрона VZ: V1= VAB– VZ Рис. 29.13. Блок-схема параллельного стабилизатора напряжения.
Рис. 29.14. Источник питания с параллельной стабилизацией. При указанных на рис. 29.13 параметрах стабилизатора напряжение на нагрузке VL= VL = 9 В. V1 = VAB – VZ = 30 – 9 = 21 В. 21 В Общий ток IT= ———— = 21 мА. 1 к0м Напряжение на нагрузке 9 В Ток нагрузки IL= ———————————— = ———— = 7,5 мА. Сопротивление нагрузки 1, 2 к0м Ток стабилитрона IZ = IT— IL= 21 — 7, 5 = 13, 5 мА. Если ток нагрузки уменьшить теперь на 2,5 мА (до 5 мА), то ток стабилитрона возрастет на 2,5 мА и станет равным 13,5+2,5 = 16 мА. На холостом ходу, когда IL= 0, весь полный ток ITбудет протекать через стабилитрон: IZ = IT.Таким образом, независимо от того, есть нагрузка или она отключена, источник питания постоянно потребляет максимальный ток IT.Это один из недостатков параллельного стабилизатора. На рис. 29.15 показана типичная нагрузочная характеристика источника питания с параллельной стабилизацией, схема которого представлена на рис. 29.14. Напряжение на нагрузке начинает быстро падать, когда ток нагрузки превысит номинальное значение (близкое к 21 мА). При этих значениях тока нагрузки почти весь общий ток ITответвляется в нагрузку. Ток стабилитрона становится слишком мал и не может удержать стабилитрон в области пробоя, в результате происходит резкое падение сходного напряжения стабилизатора. Для обеспечения эффективной стабилизации значение нестабилизированного напряжения обычно выбирается таким, чтобы оно приблизительно втрое превышало напряжение стабилизации стабилитрона.
Рис. 29.15. Нагрузочная характеристика стабилизированного источника питания. Рис. 29.16. Блок-схема последовательного стабилизатора напряжения. Лучшими параметрами и более высокой эффективностью характеризуются последовательные стабилизаторы (или, более точно, стабилизаторы с последовательным включением регулирующего элемента), в которых применяется транзистор или тиристор, включаемый последовательно с нагрузкой. Простая блок-схема последовательного стабилизатора представлена на рис. 29.16. Стабилизатор состоит из «последовательного» регулирующего элемента и стабилизирующего нагрузочного резистора, обеспечивающего некоторый минимальный нагрузочный ток. Последовательный транзисторный стабилизатор Базовая схема последовательного стабилизатора с использованием транзистора показана на рис. 29.17. Выходное напряжение снимается с эмиттера транзистора T1, и, как хорошо видно из рис. 29.18, где та же схема изображена по-иному, этот транзистор включен по схеме эмиттерного повторителя. Стабилитрон поддерживает на постоянном уровне потенциал базы. Поскольку при прямом смещении потенциал эмиттера отслеживает потенциал базы, оставаясь всегда ниже последнего на 0,6 В (для кремниевого транзистора), то выходное напряжение стабилизатора также сохраняет свой постоянный уровень. Эмиттерный повторитель работает как усилитель тока и обеспечивает работу источника питания на нагрузку, потребляющую большой ток. Стабилитрон является регулирующим элементом и источником опорного напряжения и потребляет меньший ток по сравнению со стабилитроном, работающим в параллельном стабилизаторе. Для эффективной стабилизации ток через стабилитрон должен быть приблизительно в 5 раз больше базового тока транзистора. Рассмотренный выше простой последовательный стабилизатор имеет Два главных недостатка.
Рис. 29.17. Источник питания с последовательной стабилизацией напряжения.
Рис. 29.18. Нарисованная по-другому схема рис. 29.17. Здесь явно видно, что транзистор T1 включен по схеме эмиттерного повторителя. 1. При больших токах нагрузки необходимо использовать мощные стабилитроны и транзисторы с большим коэффициентом усиления тока. 2. Стабильность выходного напряжения такого стабилизатора недостаточна для некоторых применений. Первый недостаток можно преодолеть, если увеличить коэффициент усиления тока с помощью дополнительного транзистора T2, образующего второй каскад эмиттерного повторителя (рис. 29.19). При этом ток нагрузки может быть очень велик (амперы), тогда как ток стабилитрона по-прежнему остается очень малым. Стабильность выходного напряжения можно улучшить, если усилить изменение напряжения еще до сравнения его с опорным напряжением стабилитрона, как показано на рис. 29.20. Здесь T1 — обычный последовательный транзистор, а транзистор T2 работает как усилитель изменения напряжения. Стабилитрон выполняет только функцию источника опорного напряжения и, следовательно, может быть маломощным. Транзистор T2 сравнивает выходное напряжение с опорным напряжением стабилитрона. Любое изменение выходного напряжения усиливается и подается на базу транзистора T1, который поддерживает выходное напряжение на постоянном уровне.
Рис. 29.19. Последовательный стабилизатор с двухкаскадным эмиттерным повторителем (приведены два варианта изображения одной и той же схемы).
Рис. 29.20. Последовательный стабилизатор с усилителем изменения напряжения, который обеспечивает улучшение стабильности выходного напряжения. Предположим, например, что некоторое внешнее возмущение вызвало увеличение выходного напряжения Vвых. Тогда потенциал базы транзистора T2 возрастет относительно потенциала эмиттера, который зафиксирован опорным напряжением стабилитрона. и ток через этот транзистор увеличится, а напряжение на его коллекторе уменьшится. В результате уменьшится разность потенциалов между базой и эмиттером транзистора T1 и, как следствие, уменьшится ток через транзистор T1 и напряжение на нагрузке Vвых. Таким образом, компенсируется изменение Vвых. Различными модификациями базовой схемы последовательного стабилизатора можно добиться улучшения его параметров.
Цепь защиты от перегрузки Одна из проблем, с которой приходится сталкиваться при использовании последовательного стабилизатора, обеспечение защиты последовательного регулирующего транзистора от перегрузки. Резкое возрастание тока через этот транзистор при перегрузке или коротком замыкании в цепи нагрузки может привести к необратимому повреждению транзистора. Один из возможных способов защиты от перегрузки представлен на рис. 29.21. Здесь T2 — транзистор защиты or перегрузки. Ток нагрузки IL протекает через измерительный резистор R1 и создает на нем падение напряжения, обеспечивающее прямое смещение эмиттерного перехода этого транзистора. Когда ток нагрузки находится в пределах нормы, падение напряжения на R1 мало и транзистор T2 закрыт. При увеличении тока нагрузки выше допустимого уровня падение напряжения на резисторе R1 возрастает и открывает транзистор T2, он начинает проводить ток. В проводящем состоянии транзистор T2 «отбирает» часть тока у транзистораT1, обеспечивая его защиту. В схему защиты можно также включить устройство автоматического отключения источника питания от сети, если ток нагрузки превышает допустимый уровень.
Рис. 29.21. Последовательный стабилизатор с цепью защиты от перегрузки на транзисторе T2. Инверторы Инверторы преобразуют входное напряжение постоянного тока в выходной синусоидальный сигнал. Они часто содержат схемы стабилизации выходного напряжения. Инверторы применяются главным образом в качестве резервных генераторов при аварийных сбоях питания. Инверторы, вырабатывающие гармоническое напряжение, могут быть реализованы как генераторы класса А или В. Однако линейный режим работы таких генераторов связан с высокими потерями, поэтому обычно используются переключающие элементы, вырабатывающие прямоугольный периодический сигнал, который затем фильтруется для получения на выходе гармонического напряжения (рис. 29.22).
Рис. 29.22. Конверторы Конверторы преобразуют постоянное напряжение одной величины в постоянное напряжение другой величины. Конвертор состоит из инвертора, за которым следует выпрямитель. На рис. 29.23 показана простая схема конвертора на основе блокинг-генератора. Выходной сигнал блокинг-генератора представляет собой последовательность прямоугольных импульсов с периодом, определяемым постоянной времени R1C1. К вторичной обмотке трансформатора подключен диод D1 для выпрямления импульсного сигнала. Усовершенствованная схема конвертора показана на рис. 29.24. Два блокинг-генератора на транзисторах T1 и T2 по очереди передают ток в трансформатор. Импульсные источники питания Более эффективными являются импульсные источники питания. В источниках этого типа последовательный регулирующий элемент (однооперационный триодный тиристор или транзистор) работает в режиме переключения. Он открывается или закрывается под управлением прямоугольных импульсов, обеспечивающих подстройку и стабилизацию выходного напряжения. Рис. 29.23. Рис. 29.24. Импульсный источник питания по существу ничем не отличается от конвертора. Он преобразует нестабилизированное входное напряжение постоянного тока в пульсирующее напряжение и затем в стабилизированное постоянное напряжение (рис. 29.25). Частота переключения регулирующего элемента определяет частоту пульсаций на выходе, которые в значительной степени сглаживаются фильтром нижних частот.
Рис. 29.25. Как видно из рис. 29.25, переменное сетевое напряжение сначала поступает на выпрямитель. После выпрямителя полученное нестабилизированное напряжение постоянного тока подается на анод переключающего элемента. Этот элемент, который может быть транзистором или тиристором, открывается и закрывается в определенные моменты времени под действием импульсов, поступающих от блока управления. Через открытый переключающий элемент заряжается накопительный конденсатор Заряд, запасаемый конденсатором (и, следовательно, выходное напряжение источника питания), определяется временем проводящего состояния этого элемента. Стабилизация выходного напряжения осуществляется путем изменения соотношения длительностей открытого или закрытого состояния переключающего элемента (т. е. изменения коэффициентазаполнения последовательности управляющих импульсов) в зависимости от величины выходного напряжения, регистрируемой специальным датчиком. Уменьшение выходного напряжения относительно установленного уровня компенсируется подачей более широких управляющих импульсов удерживающих переключающий элемент в открытом состоянии в течение более длительных промежутков времени, и наоборот. В этом видео рассказывается о стабилизированном блоке питания:
Добавить комментарийradiolubitel.net СТАБИЛИЗИРОВАННЫЙ БЛОК ПИТАНИЯВашему вниманию предлагается проверенная конструкция универсального блока питания. Данный простой источник питания, выполнен на мощных составных транзисторах. Основное преимущество схемы в том, что БП пригоден не только для питания различных электронных схем, но и для зарядки различных, в том числе и мощных свинцовых аккумуляторов.Схема стабилизированного блока питания: Напряжение на выходе БП, с данными значениями деталей, регулируется от нуля до 15В. Если поставить трансформатор и стабилитрон на большее напряжение, то и макимальный вольтаж выхода тоже возрастёт. Диоды любые выпрямительные, на соответствующий нагрузке ток с двухкратным запасом. Конденсатор С1 на напряжение не менее 25В. Старайтесь не использовать советские алюминиевые электролиты - они часто выходят из строя. Транзисторы заменимы на аналогичные по мощности и структуре. Обратите внимание, что катоды диодов и коллекторы обеих транзисторов соединены между собой - значит их можно разместить на одном большом радиаторе без всяких изолирующих прокладок. Если поставить конденсаторы, показанные на схеме пунктиром, можно использовать устройство в качестве блока питания. В этом случае после диодов тоже не помешает конденсатор 1000-2000мкФ 25В. А если требуется только режим зарядного устройства (как это сделано в авторском варианте на фотографии), то можно их исключить. Готовый стабилизированный источник питания размещается в любом подходящем корпусе. Наружу для удобства контроля выводится зелёный светодиод - сеть 220В, и красный - выход. Причём чем больше напряжение на выходе - тем ярче он будет светиться. Естественно подключают светодиод не напрямую между плюсом и минусом, а через резистор 1-2кОм.Форум по блокам питания Обсудить статью СТАБИЛИЗИРОВАННЫЙ БЛОК ПИТАНИЯ radioskot.ru Простой регулируемый стабилизированный блок питанияЭтот блок питания на микросхеме LM317, не требует каких – то особых знаний для сборки, и после правильного монтажа из исправных деталей, не нуждается в наладке. Несмотря на свою кажущуюся простоту, этот блок является надёжным источником питания цифровых устройств и имеет встроенную защиту от перегрева и перегрузки по току. Микросхема внутри себя имеет свыше двадцати транзисторов и является высокотехнологичным устройством, хотя снаружи выглядит как обычный транзистор.Питание схемы рассчитано на напряжение до 40 вольт переменного тока, а на выходе можно получить от 1.2 до 30 вольт постоянного, стабилизированного напряжения. Регулировка от минимума до максимума потенциометром происходит очень плавно, без скачков и провалов. Ток на выходе до 1.5 ампер. Если потребляемый ток не планируется выше 250 миллиампер, то радиатор не нужен. При потреблении большей нагрузки, микросхему поместить на теплопроводную пасту к радиатору общей площадью рассеивания 350 – 400 или больше, миллиметров квадратных. Подбор трансформатора питания нужно рассчитывать исходя из того, что напряжение на входе в блок питания должно быть на 10 – 15 % больше, чем планируете получать на выходе. Мощность питающего трансформатора лучше взять с хорошим запасом, во избежание излишнего перегрева и на вход его обязательно поставить плавкий предохранитель, подобранный по мощности, для защиты от возможных неприятностей.Нам, для изготовления этого нужного устройства, потребуются детали:
Сборка регулируемого стабилизированного блока питанияСборку я произвел на обычной макетной платы без всякого травления. Мне этот способ нравится из-за своей простоты. Благодаря ему схему можно собрать за считанные минуты.Проверка блока питанияВращением переменного резистора можно установить желаемое напряжение на выходе, что очень удобно.Видео испытаний блока питания прилагаетсяsdelaysam-svoimirukami.ru Стабилизированный источник питания — МегаобучалкаСтабилизированный источник питания вырабатывают два равных выходных напряжения противоположной полярности с малым уровнем пульсаций. Точное равенство положительного и отрицательного выходных напряжений обеспечивается общим источником опорного напряжения и цепью следящей обратной связи. Два операционных усилителя, входящие в состав стабилизатора, питаются его же выходными напряжениями. Выходной ток стабилизатора ограничен максимально допустимыми токами коллекторов транзисторов VT4, VT5. Верхняя часть схемы представляет собой обычный последовательный стабилизатор, формирующий выходное напряжение +15 В. Источником опорного напряжения, поданного на неинвертирующий вход операционного усилителя DА2, является стабилитрон, питающийся выходным стабилизированным напряжением. На инвертирующий вход ОУ DА2 через делитель R6— R8 поступает выходное напряжение стабилизатора. Разностный сигнал ошибки на выходе DА2 управляет составным транзистором VT2, VT4 таким образом, чтобы минимизировать величину ошибки. Резистор R1 обеспечивает начальное смещение регулирующего составного транзистора VT1, VT4, а конденсатор С1 предотвращает возникновение паразитной генерации. Для обеспечения заданного выходного тока P составного транзистора VT1, VT4 должно быть не менее 400 Вт. Защитный резистор R3 ограничивает выходной ток ОУ в случае короткого замыкания на выходе. Снижение уровня пульсаций выходного напряжения обеспечивается конденсатором С3. В другой части стабилизатора, вырабатывающей выходное напряжение -15 В, операционный усилитель DА3 работает как инвертирующий усилитель с единичным коэффициентом усиления: резистор R15 является входным, а резистор R16 включен в цепь обратной связи. Поскольку на вход такого усилителя поступает стабилизированное напряжение +15 В, то опорное напряжение, формируемое стабилитроном VD6, используется для обеих частей стабилизатора. Благодаря единственному источнику опорного напряжения обеспечивается хорошее слежение за равенством положительного и отрицательного выходных напряжений стабилизатора. Назначение остальных схемных элементов то же, что и в стабилизаторе положительного напряжения. Выходные напряжения стабилизатора устанавливают при помощи потенциометра (резистор R12). Точность установки выходного напряжения -15В относительно выходного напряжения +15 В определяется соотношением номиналов сопротивлений резисторов R15, R16 и напряжением смещения операционного усилителя DА3. Для уменьшения разности между абсолютными значениями выходных напряжений стабилизатора можно подобрать сопротивления резистора R15 или R16 или же включить между резисторами R15, R16 потенциометр, движок которого должен быть соединен с инвертирующим входом операционного усилителя DА3. Этим же потенциометром при необходимости можно установить нужную асимметрию выходных напряжений. Сохранение равенства выходных напряжений при изменении температуры окружающей среды достигается установкой резисторов R15, R16 с низким или равным температурными коэффициентами (ТКС), например сопротивления типа ВС. Для обеспечения нормального теплового режима транзисторов VT4, VT5 при максимальных токах нагрузки их необходимо устанавливать на радиаторы. Стабилизированный источник питания обеспечивает выходные напряжения от ± 12В до ± 15В при выходном токе до 500 мА с уровнем пульсаций выходного напряжения не более 10 мВ. Маломощный блок питания предназначен для питания от сети портативных транзисторных устройств, измерительных приборов и других маломощных устройств. Трансформатор Т1 имеет коэффициент трансформации равный 1 и служит только как разделительный для создания безопасности пользования блоком питания. Ограничителем сетевого напряжения служит цепочка R1С1. В табл. 3 приведены данные для варианта исполнения блока питания. В первом из них на выходе блока при напряжении 9 В можно питать нагрузку, потребляющую 50 мА; во втором варианте при том же напряжении на выходе можно получить ток до 20 мА. В первом варианте блока сердечник трансформатора стержневой, его набирают из Г-образных пластин. Обмотки - размещают на противоположных стержнях. Если при приеме мощных станций будет прослушиваться фон переменного тока, следует перевернуть вилку XI в сетевой розетке либо заземлить общий плюсовой провод блока.
Таблица 3. Основные параметры
Стабилизатор выпрямителя защищен от перегрузок вовремя короткого замыкания на выходе или в нагрузке. Для уменьшения габаритов трансформатор Т1 выполнен на сердечнике из пластин Ш6 при толщине набора 40 мм. Обмотка/ содержит 3200 витков провода ПЭВ-1 — 0,1 с прокладками из конденсаторной бумаги через каждые 500 витков, обмотка // имеет 150 витков ПЭВ-1 - 0,2. Между обмотками / и // намотан один слой провода ПЭВ-1 - 0,1, служащий экраном. Максимальный ток нагрузки (до 120 мА) можно увеличить, если вместо транзистора МП16 (VT6) установить П213, резисторы R1, R2 и R3 заменить соответственно на резисторы сопротивлением 220 0м, 2,2 кОм Маломощный блок питания предназначен для питания от сети портативных транзисторных приемников, измерительных приборов и других маломощных устройств. Трансформатор имеет коэффициент трансформации равный ) и служит только как разделительный для создания безопасности пользования блоком питания. Ограничителем сетевого напряжения служит щепочка R1С1. В табл. 4 приведены данные для блока питания. На выходе блока при напряжении 9 В можно питать нагрузку, потребляющую 50 мА; Блок сердечник трансформатора стержневой, его набирают из Г-образных пластин. Обмотки размещают на противоположных стержнях. Если при приеме мощных станций будет прослушиваться фон переменного тока, следует перевернуть вилку X1 в сетевой розетке либо заземлить общий плюсовой провод блока. Выбор элементной базы Для обеспечения заданной частоты квазирезонанса (¦=2 кГц) (согласно формуле для частоты квазирезонанса RC-генератора
- R1=R2, C1=C2)
выбираем, резистор R1=820 Ом (из ряда Е24) типа МЛТ-0.25. Исходя из формулы (1)
типа К53-30. megaobuchalka.ru Стабилизированный источник питания 12В / 30А — Поделки для автоПредставляем мощный стабилизированный блок питания на 12 В. Он построен на микросхеме стабилизатора LM7812 и транзисторах TIP2955, что обеспечивает ток до 30 А. Каждый транзистор может давать ток до 5 А, соответственно 6 транзисторов обеспечат ток до 30 А. Можно изменением количества транзисторов и получить желаемое значение тока. Микросхема выдает ток около 800 мА. На его выходе установлен предохранитель в 1 А для защиты от больших переходных токов. Нужно обеспечить хороший теплоотвод от транзисторов и микросхемы. Когда ток через нагрузку большой, мощность рассеиваемая каждым транзистором также увеличивается, так что избыточное тепло может привести к пробою транзистора. В этом случае для охлаждения потребуется очень большой радиатор или вентилятор. Резисторы 100 Ом используются для стабильности и предотвращения насыщения, т.к. коэффициенты усиления имеют некоторый разброс у одного и того же типа транзисторов. Диоды моста рассчитаны не менее, чем на 100 А. Примечания Наиболее затратным элементом всей конструкции, пожалуй, является входной трансформатор, Вместо него возможно использование двух последовательно соединенных батарей автомобиля. Напряжение на входе стабилизатора должно быть на несколько вольт выше требуемого на выходе (12В), чтобы он мог поддерживать стабильный выход. Если используется трансформатор, то диоды должны выдерживать достаточно большой пиковый прямой ток, обычно, 100А или более. Через LM 7812 будет проходить не более 1 А, остальная часть обеспечивается транзисторами.Так как схема рассчитана на нагрузку до 30А, то шесть транзисторов соединены параллельно. Рассеиваемая каждым из них мощность — это 1/6 часть общей нагрузки, но все же необходимо обеспечить достаточный теплоотвод. Максимальный ток нагрузки приведет к максимальному рассеиванию, при этом потребуется крупногабаритный радиатор. Для эффективного отвода тепла от радиатора, может быть хорошей идеей применение вентилятора или радиатора с водяным охлаждением. Если блок питания нагружен на максимальную нагрузку, а силовые транзисторы вышли из строя, то весь ток пройдет через микросхему, что приведет к катастрофическому результату. Для предотвращения пробоя микросхемы на ее выходе стоит предохранитель в 1 А. Нагрузка 400 МОм только для тестирования и не входит в окончательную схему. Вычисления Данная схема отличная демонстрация законов Кирхгофа. Входящая в узел сумма токов, должна быть равна сумме токов выходящих из этого узла, а сумма падений напряжений на всех ветвях, любого замкнутого контура цепи должна быть равна нулю. В нашей схеме, входное напряжение 24 вольт, из них 4В падения на R7 и 20 В на входе LM 7812, т.е 24 -4 -20 = 0. На выходе суммарный ток нагрузки 30А, регулятор поставляет 0.866А и 4.855А каждый из 6 транзисторов: 30 = 6 * 4.855 + 0.866. Ток базы составляет около 138 мА на транзистор, чтобы получить ток коллектора около 4.86А коэффициент усиления по постоянному току для каждого транзистора должен быть не менее 35. TIP2955 удовлетворяет этим требованиям. Падение напряжения на R7 = 100 Ом при максимальной нагрузке будет 4В. Рассеиваемая на нем мощность, вычисляется по формуле P= (4 * 4) / 100, т.е 0.16 Вт. Желательно, чтобы этот резистор был мощностью 0.5 Вт. Входной ток микросхемы поступает через резистор в цепи эмиттера и переход Б-Э транзисторов. Еще раз применим законы Кирхгофа. Входной ток регулятора состоит из тока 871 мА, протекающего по цепи базы, и 40.3мА через R = 100 Ом.871,18 = 40,3 + 830. 88. Входной ток стабилизатора всегда должен быть больше выходного. Мы видим, что он потребляет только около 5 мА и практически не должен греться. Тестирование и ошибки Во время первого испытании, не надо подключать нагрузку. Вначале измеряем вольтметром напряжение на выходе, оно должно быть 12 вольт, или не сильно отличающаяся величина. Затем подключаем сопротивление около100 Ом, 3 Вт в качестве нагрузки.Показания вольтметра не должны измениться. Если вы не видите 12 В, то, предварительно выключив питание, следует проверить корректность монтажа и качество пайки. Один из читателей, получил на выходе 35 В, вместо стабилизированных 12 В. Это было вызвано коротким замыканием силового транзистора. Если есть КЗ любого из транзисторов, придется отпаять все 6 для проверки мультиметром переходов коллектор-эмиттер. Похожие статьи:xn----7sbgjfsnhxbk7a.xn--p1ai Стабилизированный источник питания для лампового усилителяПосле публикации статьи Владимира Стародубцева «Линия Прибоя» (июль 2002) редакция получила много писем с просьбой рассказать о стабилизированном источнике питания, который применяется в последних версиях усилителей «Мустанг» и «Обертон». Описываемая ниже конструкция выполнена в виде самостоятельного блока и может обеспечить питанием любую схему, потребляющую по анодной цепи до 250 — 265 Вт. Источник питания (ИП) является обязательной частью любой радиоэлектронной аппаратуры. Его качество, т.е. надёжность, экономичность, эксплуатационные свойства — в значительной мере определяет технические показатели всего аппарата. Постоянное повышение требований к техническим характеристикам усилительных устройств приводит к тому, что и к вторичным ИП предъявляются всё более жёсткие требования. Анализ большинства серийных ламповых усилителей показывает, что ИП в них построен по традиционной схеме: сетевой трансформатор, выпрямитель (на диодах или кенотронах) и сглаживающий фильтр с конденсаторами, резисторами и дросселями). Напряжение такого ИП обычно нестабильно, из-за чего меняются режимы работы усилителя. При этом выходная мощность падает, а нелинейные искажения, наоборот, растут. Сейчас очень популярны однотактники на прямонакальных триодах — 6С4С, 2А3, 300В и ГМ-70. Как правило, их выходная мощность невелика — от 3,5 до 25 Вт, и многие разработчики поддаются соблазну построить ИП по упрощенной схеме с П-фильтром. А между тем, звучание этих усилителей, как никаких других, зависит от качества питающего их источника. Более того, некоторые недостатки, считающиеся неотъемлемым атрибутом однотактных выходных каскадов и ограничивающие их распространение, — слабая динамика в нижнем диапазоне и плохо артикулированный бас — в 90 случаях из 100 являются следствием неправильной организации питания. Многие пытаются решить проблему, наращивая ёмкость конденсаторов фильтра и увеличивая габариты выходного трансформатора. Это дает некоторый выигрыш в звучании, но главные проблемы остаются. И потом, до какой степени стоит наращивать ёмкости в блоке питания? Раньше в ходу был параметр «энергоёмкость ИП», выраженный в джоулях на ватт выходной мощности. Энергия, запасенная в конденсаторах фильтра, рассчитывается по формуле: А = 1/2 * U2 * C, где А — в джоулях; U — в вольтах; С — в фарадах. Если же А поделить на Pвых., то получим величину, характеризующую энергетические показатели усилителя. У серийных зарубежных усилителей эта величина находится в пределах 1,5 — 2,5 Дж/Вт. Много это или мало? Сказать трудно, хотя и позволяет в какой-то мере судить об энерговооруженности аппарата. Нашему КБ тоже пришлось столкнуться с такой проблемой. Несколько лет назад мы получили заказ на разработку однотактного лампового усилителя с выходной мощностью не менее 30 — 35 Вт. Требования были сформулированы так: аппарат должен иметь динамику двухтактного, бас — как у транзисторного, а эмоциональность и музыкальность — как у однотактника. Ничего себе задачка? Не стану подробно описывать все муки творчества, скажу только, что в конце концов был выбран однотактный выходной каскад на двух 6С33С-В, запараллеленных через магнитный поток выходного трансформатора, причем с нагрузкой в цепи катода. Когда мы сделали макет, выяснилось, что на номинальной мощности при изменении частоты сигнала от 400 до 40 Гц анодное напряжение падало с 200 до 160 В. Источник, несмотря на солидный запас мощности, не держал. Прослушивание музыки, богатой НЧ-составляющими, подтвердило результаты стендовых измерений: бас прорабатывался вяло. Пришлось взяться за стабилизированный ИП, и чтобы не нарушать чистоту ламповой концепции, в качестве проходной выбрали лампу 6С33С-В. Которая, кстати, изначально и разрабатывалась для этих целей, поэтому наряду с большой токоотдачей имеет очень низкое внутреннее сопротивление. Но прежде чем перейти к описанию конструкции, рассмотрим общие принципы построения стабилизаторов напряжения. Чаще всего применяются параметрические и компенсационные, причем последние бывают последовательные и параллельные (об этом уже успел рассказать Андрей Маркитанов, поэтому опустим подробности. — Прим. ред.). Параметрические — наиболее простые, они строятся на газоразрядных или кремниевых стабилитронах. Номенклатура последних довольно широка, что позволяет строить стабилизаторы с выходным напряжением от единиц до сотен вольт. Но любая простая схема далека от совершенства. В параметрическом стабилизаторе ток через нагрузку всегда должен быть меньше, чем через сам стабилитрон, поэтому к.п.д. таких стабилизаторов низок, и они уместны лишь при малой мощности потребителя. Компенсационные стабилизаторы последовательного типа обладают хорошим к.п.д., высоким коэффициентом стабилизации и малым выходным сопротивлением. Поэтому они и получили столь широкое распространение. Однако и у них есть недостатки — низкая надёжность при перегрузках и коротком замыкании в нагрузке. Это особенно опасно в транзисторных схемах, поэтому приходится вводить в них сложные системы защиты с токовыми датчиками. Неоспоримое достоинство параллельных стабилизаторов — нечувствительность к форс-мажорным ситуациям. При к.з. в нагрузке напряжение на регулирующем элементе и ток, протекающий через него, резко уменьшаются, и никаких фатальных последствий не бывает. Но у параллельных стабилизаторов такие важные параметры, как к.п.д. и выходное сопротивление, оставляют желать лучшего. Стабилизирующие же качества обоих типов примерно одинаковы. Поэтому наш выбор пал на последовательный стабилизатор, ведь лампы менее чувствительны к перегрузкам и к.з. Да и схема получается простой и надежной. Упрощенно принцип ее работы показан на рис. 1.
По сути, это управляемый делитель напряжения, в верхнем плече которого включён регулирующий элемент РЭ, а в нижнем — нагрузка Rн. У такого стабилизатора входной ток Iвх примерно равен току нагрузки Iн, и как следствие — высокий к.п.д. и малое потребление в режиме х.х. (при Iн = 0). Работает он следующим образом. При увеличении Uвх или уменьшении Iн, напряжение Uвых повышается, в результате чего напряжение на выходе измерительного элемента И превысит опорное Uо. В этом случае на выходе элемента сравнения ЭС будет напряжение Uc = UнКд-Uо (где Кд — коэффициент деления выходного напряжения измерительным элементом). Это напряжение повышается усилителем постоянного тока УПТ и поступает на регулирующий элемент РЭ. Под действием управляющего напряжения Uу падение напряжения на РЭ будет увеличиваться, а на выходе стабилизатора — уменьшаться. Этим обеспечивается обратное слежение (тот самый случай, когда без ООС не обойтись). В установившемся режиме выходное напряжение стабилизатора сохраняется практически постоянным. Его нестабильность при воздействии дестабилизирующих факторов будет тем меньше, чем больше коэффициент усиления УПТ. Итак, конкретный пример (рис. 2). Как видите, нам пришлось стабилизировать не только анодное напряжение выходных ламп, но также драйвера и сеточных цепей. Это из-за того, что «просадка» источника сказывалась и на питании каскадов предварительного усиления, правда, в меньшей степени — отклонения от номинального значения были примерно 20 — 25%. Поскольку потребляемый ток здесь невелик, мы применили параметрический стабилизатор. Описываемым ИП комплектуются усилители с выходной мощностью до 16 Вт в каждом канале. При необходимости напряжения на выходе можно изменить, устанавливая газовые стабилитроны с большим или меньшим напряжением стабилизации. Детали и конструкцияМы старались использовать по возможности широко распространённые и недорогие радиоэлементы — резисторы типа МЛТ, пленочные конденсаторы К73-17 и т.д. А вот электролитические конденсаторы желательно приобрести импортные, поскольку применение отечественных значительно увеличит габариты блока. Хотя на качестве и надежности источника это не скажется. Лампы тоже не дефицитны — 6С33С-В, 6С19П, 6Н2П, СГ1П, СГ2П (СГ15-2). Можно применить стабилитроны и октальной серии, они красиво горят, но занимают больше места. Выпрямители построены на высокочастотных диодах 2Д213А, хотя можно использовать и «быстрые» импортные на соответствующие токи и напряжения. От кенотронов мы отказались из-за того, что они в данной конструкции усилителя ухудшали динамику. Трансформаторы — основа любого ИП, и на них хочу остановиться более подробно. Дело в том, что при питании выходных каскадов, работающих в классе А, потребление энергии происходит постоянно и ток почти не зависит от амплитуды выходного сигнала. При этом сетевые трансформаторы всегда работают с полной нагрузкой. А так как к.п.д. усилителя класса А довольно низок, в лучшем случае это где-то 25%, а то и меньше, то потери в ИП довольно велики. Как правило, все они превращаются в тепло, и его необходимо отводить, иначе блок станет перегреваться, со всеми вытекающими неприятностями. Практика конструирования усилителей подобного рода в нашем КБ показала, что для надёжной работы без перегрева и гудения необходим 3 — 4-кратный запас габаритной мощности сетевого трансформатора по отношению к потребляемой. То есть, если ваш усилитель потребляет 100 Вт, выбирайте 300 — 400-ваттное железо, не ошибётесь. В нашем же случае речь идёт о потреблении порядка 250 — 265 Вт, так что мощность сетевого трансформатора желательно иметь порядка 800 — 900 Вт. Из конструктивных соображений мы изготовили два трансформатора по 440 Вт и распределили нагрузку на них по возможности равномерно. В соответствии с вышеизложенными рекомендациями потребление от каждого из них составляет 120 — 130 Вт. Обратите внимание, что напряжения на выводах трансформаторов указаны в режиме холостого хода. КонструкцияИсточник питания собран на каркасе размером 260 х 150 х 370 мм (Ш х В х Г), выполненном из алюминиевых уголков 15 х 15. На нем установлены трансформаторы и дроссели, а также плата стабилизатора. Снизу к каркасу прикреплены четыре опорные ножки и поддон. Лицевая панель выполнена из алюминия толщиной 5 — 8 мм, на ней находятся сетевой переключатель и индикатор включения. На задней стенке (алюминий толщиной 2 мм) установлен сетевой ввод, предохранитель, а также разъём, соединяющий источник питания с усилителем. Последний может быть любым, но учтите, что по цепям накала лампа 6С33С (а у нас их в усилителе две) потребляет 6,6 А, так что хотя бы пара контактов должна быть рассчитана на большой ток. Соединение с усилителем выполнено гибким жгутом длинной 0,5 — 0,75 м из провода типа МГТФ-0,35. В накальные линии необходимо заложить провод сечением не менее 5 мм2. Сверху каркас закрыт перфорированным кожухом.
Регулировка блока питанияСначала невредно убедиться, что все обмотки двухкатушечных трансформаторов скоммутированы правильно и на их выводах присутствуют именно те напряжения, на которые вы рассчитывали. Затем подключаем стабилизаторы и вольтметром проверяем поочерёдно режимы каждого звена. В отличие от параллельных стабилизаторов последовательные можно включать без нагрузки, что мы и делаем. После 5 — 10-минутного прогрева устанавливаем подстроечными резисторами RT1 и RT2 выходные напряжения +210 и +350 В соответственно. Запас по регулированию должен быть примерно 20% в обе стороны. Затем подключаем эквивалент нагрузки. Для мощного каскада это может быть обычная лампа накаливания 100 Вт на 220 В, а для драйверного звена — резистор типа ПЭВ-50 сопротивлением 3500 Ом. Под нагрузкой напряжение не должно просаживаться более чем на 0,5 — 1 В. Погоняйте блок в таком режиме несколько часов, и если в схеме ничего не дымит и не перегревается, работу можно считать законченной. Теперь посмотрим, стоило ли вообще затевать весь этот проект. Первое, что мы отметили после подключения усилителя, — стабильность его режимов при изменении напряжения питающей сети. При скачках на линии от +5% и -10% (а у нас в Таганроге бывает и больше) анодные, и что особенно важно, сеточные потенциалы не менялись. Сравнительное прослушивание двух аналогичных усилителей с разными ИП — традиционным и стабилизированным — показало, что последний явно обладает лучшей энергетикой. Звучание становится более плотным и насыщенным во всём спектре частот, улучшается микро- и макродинамика. Эмоциональный эффект примерно тот же, что при сравнении усилителей с ООС и без неё. Слушать аппарат с нестабилизированным источником питания уже не хочется. Январь 2003, г. Таганрог Литература: [1]. Назаров С.В. «Транзисторные стабилизаторы напряжения». М., Энергия 1980 г. [2]. Белопольский И.И., Тихонов В.И. «Транзисторные стабилизаторы на повышенные и высокие напряжения». М., Энергия 1971 г. [3]. Ложников А.П., Сонин Е.К. «Каскодные усилители». М., Энергия 1969 г. Практика AV #6/2003 www.salonav.com |