Eng Ru
Отправить письмо

Солнечные батареи: описание различных видов и материалов нового поколения. Солнечные батареи фото


Как работают солнечные батареи? (4 фото)

Солнечные панели

Солнечная энергия уже покрывает более 50% энергетических затрат Германии. Очевидно, что будущее энергетики – за солнечными батареями. Каковы же основные принципы их работы?

Когда-то фотоэлементы использовались почти исключительно в космосе, например, в качестве основного источника энергии спутников. С тех пор солнечные батареи все больше входят в нашу жизнь: ими покрывают крыши домов и машин, используют в наручных часах и даже в темных очках.

Но как же функционируют солнечные батареи? Каким образом удается преобразовывать энергию солнечных лучей в электричество?

Основные принципы

Солнечные панели состоят из фотоэлектрических ячеек, запакованных в общую рамку. Каждая из них сделана из полупроводникового материала, например, кремния, который чаще всего используется в солнечных батареях.

Когда лучи падают на полупроводник, тот нагревается, частично поглощая их энергию. Приток энергии высвобождает электроны внутри полупроводника. К фотоэлементу прилагается электрическое поле, которое направляет свободные электроны, заставляя их двигаться в определенном направлении. Этот поток электронов и образует электрический ток.

Если приложить металлические контакты к верху и к низу фотоэлемента, можно направить полученный ток по проводам и использовать его для работы различных устройств. Сила тока вместе с напряжением ячейки определяют мощность электроэнергии, производимой фотоэлементом.

Панель солнечной батареи

Кремниевые полупроводники

Рассмотрим процесс высвобождения электронов на примере кремния. Атом кремния имеет 14 электронов в трех оболочках. Первые две оболочки полностью заполнены двумя и восемью электронами соответственно. Третья же оболочка наполовину пуста – в ней всего 4 электрона.

Благодаря этому кремний имеет кристаллическую форму; пытаясь заполнить пустоты в третьей оболочке, атомы кремния пытаются «делиться» электронами с соседями. Однако кристалл кремния в чистом виде – плохой проводник, поскольку практически все его электроны крепко сидят в кристаллической решетке.

Поэтому в солнечных батареях используют не чистый кремний, а кристаллы с небольшими примесями, т. е. в кремний вводятся атомы других веществ. На миллион атомов кремния приходится всего один атом, например, атом фосфора.

У фосфора пять электронов во внешней оболочке. Четыре из них образуют кристаллические связи с близлежащими атомами кремния, однако пятый электрон фактически остается «висеть» в пространстве, без всяких связей с соседними атомами.

Когда на кремний попадают солнечные лучи, его электроны получают дополнительную энергию, которой оказывается достаточно, чтобы оторвать их от соответствующих атомов. В результате на их месте остаются «дырки». Освободившиеся же электроны блуждают по кристаллической решетке как носители электрического тока. Встретив очередную «дырку», они заполняют ее.

Однако в чистом кремнии таких свободных электронов слишком мало из-за крепких связей атомов в кристаллической решетке. Совсем другое дело – кремний с примесью фосфора. Для высвобождения несвязанных электронов в атомах фосфора требуется приложить значительно меньшее количество энергии.

Большая часть таких электронов становится свободными носителями, которые можно эффективно направлять и использовать для получения электричества. Процесс добавления примесей для улучшения химических и физических свойств вещества называется легированием.

Кремний, легированный атомами фосфора, становится электронным полупроводником n-типа (от слова «negative», из-за отрицательного заряда электронов).

Кремний также легируют бором, у которого всего три электрона во внешней оболочке. В результате получается полупроводник p-типа (от «positive»), в котором возникают свободные положительно заряженные «дырки».

Крупнейшая в мире солнечная электростанция «Айванпа» в калифорнийской пустыне Мохава

Устройство солнечной батареи

Что же произойдет, если соединить полупроводник n-типа с полупроводником p-типа? В первом из них образовалось множество свободных электронов, а во втором – много дырок. Электроны стремятся как можно быстрее заполнить дырки, но если это произойдет, оба полупроводника станут электрически нейтральными.

Вместо этого при проникновении свободных электронов в полупроводник p-типа, область на стыке обоих веществ заряжается, образуя барьер, перейти который не так просто. На границе p-n перехода возникает электрическое поле.

Энергии каждого фотона солнечного света хватает обычно на высвобождение одного электрона, а значит и на образование одной лишней дырки. Если это происходит вблизи p-n перехода, электрическое поле посылает свободный электрон на n-сторону, а дырку – на p-сторону.

Таким образом, равновесие нарушается еще больше, и если приложить к системе внешнее электрическое поле, свободные электроны потекут на p-сторону, чтобы заполнить дырки, создавая электрический ток.

К сожалению, кремний довольно хорошо отражает свет, а значит, значительная часть фотонов пропадает втуне. Чтобы уменьшить потери, фотоэлементы покрывают антибликовым покрытием. Наконец, чтобы защитить солнечную батарею от дождя и ветра, ее также принято покрывать стеклом.

Самое большое в мире судно на солнечных батареях PlanetSolar

Коэффициент полезного действия современных солнечных батарей не слишком высок. Большинство из них эффективно перерабатывают от 12 до 18 процентов попадающего на них солнечного света. Лучшие образцы перешли 40-процентный барьер КПД.

Интересные материалы:

Самые крутые советские концепты транспорта (26 фото) Странные пистолеты (11 фото)

nlo-mir.ru

Солнечные батареи нового поколения - полный обзор видов. Жми!

20 лет назад электричество, добытое из солнечной энергии, казалось нам просто фантастикой. Но уже сегодня солнечными батареями уже никого не удивишь.

Жители стран Европы давно поняли все преимущества солнечной энергии, и теперь освещают улицы, обогревают дома, заряжают различные приборы и т.д. В этом обзоре речь пойдет солнечных батареях нового поколения, созданных для облегчения нашей жизни и сохранения окружающей среды.

Типы СБ

Принцип работы солнечной батареи. (Для увеличения нажмите)Сегодня насчитывается более десяти видов солнечных устройств, которые используются в той или иной отрасли. Каждый вид имеет свои характеристики и эксплуатационные особенности.

Принцип работы кремниевых солнечных батарей: на кремниевую (кремниево-водородную) панель попадает солнечный свет. В свою очередь, материал пластины изменяет направление орбит электронов, после чего преобразователи дают электрический ток.

Эти устройства можно условно поделить на четыре вида. Ниже рассмотрим их подробнее.

Монокристаллические пластины

Монокристаллическая СБОтличие этих преобразователей в том, что светочувствительные ячейки направлены только в одну сторону.

Это дает возможность получать самый высокий КПД — до 26%. Но при этом панель должна все время быть направлена на источник света (Солнце), иначе мощность отдачи существенно снижается.

Другими словами, такая панель хороша только в солнечную погоду. Вечером и в пасмурный день такой вид панелей дает немного энергии. Такая батарея станет оптимальной для южных районов нашей страны.

Поликристаллические солнечные панели

Поликристаллическая СБПластины солнечных панелей содержат кристаллы кремния, которые направлены в разные стороны, что дает относительно низкий КПД (16-18%).

Однако главным преимуществом этого вида солнечных панелей — в отличной эффективности при плохом и рассеянном свете. Такая батарея все равно будет питать аккумуляторы в пасмурную погоду.

Аморфные панели

Аморфная СБАморфные пластины получают путем напыления кремния и примесей в вакууме. Слой кремния наносится на прочный слой специальной фольги. КПД подобных устройств достаточно низкий, не более 8-9%.

Низкая «отдача» объясняется тем, что под действием солнечных лучей тонкий слой кремния выгорает.

Практика показывает, что после двух-трех месяцев активной эксплуатации аморфной солнечной панели эффективность падает на 12-16%, в зависимости от производителя. Срок службы таких панелей не более трех лет.

Преимущество их в низкой стоимости и возможности преобразовывать энергию даже в дождливую погоду и туман.

Гибридные солнечные панели

Гибридные СБОсобенность таких блоков в том, что в них объединены аморфный кремний и монокристаллы. По параметрам панели похожи на поликристаллические аналоги.

Особенность таких преобразователей в лучшем преобразовании солнечной энергии в условиях рассеянного света.

Полимерные батареи

Полимерная СБМногие пользователи считают, что это перспективная альтернатива сегодняшним панелям из кремния. Это пленка, состоящая из полимерного напыления, алюминиевых проводников и защитного слоя.

Особенность ее в том, что она легкая, удобно гнется, скручивается и не ломается. КПД такой батареи составляет всего 4-6%, однако низкая стоимость и удобное использование делает такой вид солнечной батареи очень популярной.

Совет специалистов: чтобы сэкономить время, нервы и деньги, покупайте солнечное оборудование в специализированных магазинах и на проверенных сайтах.

Новые разработки

С каждым днем технологии стремительно развиваются, и производство солнечных моделей не стоит на месте. Предлагаем ознакомиться с последними новинками на рынке солнечных систем.

Солнечная черепица

Солнечная черепицаДабы не испортить эстетику кровли дома и при этом получать бесплатную энергию солнца, можно рассмотреть вариант с покупкой солнечной черепицы. Этот отделочный материал состоит из достаточно прочного корпуса и встроенных фотоэлементов.

Кровельное покрытие вырабатывает достаточно энергии, которую можно использовать в бытовых условиях. При использовании такого материала-оборудования можно питать отдельно выделенную электросеть или сбрасывать электроэнергию в общую сеть.

В любом случае общие затраты на электроэнергию снижаются.

Лидером по производству солнечной черепицы является компания из России — «Инноватикс». Вот уже более десяти лет она продает высококачественные отделочные материалы со встроенными фотоэлементами.

Интересно, что такую черепицу тяжело отличить от обычного кровельного материала даже при близком расстоянии.

Преимущества солнечной черепицы:

  1. Полупроводниковый материал, который используется при соединении фотоэлементов, сократили в 4 раза.
  2. Инновационная система фокусировки солнечного света позволяет получать в 5 раз больше энергии.
  3. Средний срок эксплуатации солнечной черепицы составляет 20 лет.
  4. Относительно небольшой вес черепицы не имеет негативного давления на кровлю.
  5. Прочность солнечной черепицы позволяет ее использовать при любых погодных условиях. Черепица спокойно выдерживает град и другие осадки.
  6. Простота креплений позволяет надежно устанавливать черепицу в самые короткие сроки.

Солнечное окно

Солнечное окноБуквально три года назад на рынке солнечных технологий появилась новая разработка американских конструкторов из «Pythagorus Solar Windows». Суть инновации в том, чтобы использовать оконное стекло в качестве панели, добывающей солнечную энергию.

Подобные панели по полной используют в высотках европейских городов. Это позволяет существенно экономить электроэнергию.

Технология солнечных окон представляет собой использование фотоэлементов в виде кремниевых полос, встроенных между стеклами. Помимо того, что окна будут вырабатывать дополнительную электроэнергию, в дополнение окно будет защищать комнату от перегрева, задерживая солнечный свет. Внешне солнечные окна похожи на привычные жалюзи.

Другой производитель солнечных окон «Solaris Plus» предлагает использовать специальные стекла, обработанные специальным кремниевым напылением. Полосы будут преобразовывать солнечные лучи в электроэнергию, которая будет питать АКБ через полупрозрачные проводники.

Гибридные фотоэлементы

В 2015 году американскими конструкторами были разработаны гибридные фотоэлементы, позволяющие преобразовывать электроэнергию не только из солнечного света, но и тепла. Суть конструкции заключается в применении фотоэлементов из кремния и полимерной пленки «PEDOT».

Фотоэлемент фиксируется с пироэлектрической пленкой и соединяется с термоэлектрическим оборудованием, способным преобразовывать тепло в электрический ток.

Тестирование новой гибридной технологии показало, что новая термическая пленка способна вырабатывать в 10 раз больше электроэнергии, чем стандартная солнечная панель.

Системы на основе биологической энергии

Исследования, проводимые специалистами из университета Кембриджа, пока не дали конкретных результатов в области разработки солнечных систем нового поколения, преобразовывающих биологическую энергию (фотосинтез). Последние результаты показали КПД менее 0.4 %.

Но разработки не останавливаются, а ученые обещают, что в ближайшем будущем получать энергию от биологических солнечных систем.

Варианты таких батарей впечатляют:

  1. Лампа дневного света, работающая от обычного лесного мха.
  2. Электростанции в виде больших листьев.
  3. Панели из растений для домашнего пользования.
  4. Мачты из растений, из которых будут добывать электроэнергию и многое другое.

Надеемся на то, что в скором будущем гелиосистемы нового поколения будут использоваться по максимуму. Это даст возможность обеспечить электроэнергией каждый дом на планете, без вреда для окружающей среды.

Смотрите видео, в котором рассказывается о солнечных батареях нового поколения:

Оцените статью: Поделитесь с друзьями!

teplo.guru

Солнечные батареи своими руками: виды, сборка, установка, схемы

Альтернативные источники энергии, в частности солнечные батареи, привлекают экономической выгодой и неиссякаемостью ресурса. Но готовые изделия и профессиональный монтаж выльются в круглую сумму. А так как солнечные батареи чаще всего используют как дополнительный источник электроэнергии – окупаться вложение будет не один год. Значительно сократить затраты можно, выполнив сборку и установку самостоятельно. Для этого потребуется приобрести составные части конструкции и изучить немного теории.

Содержание статьи

Солнечная батарея – что это и как работает?

Солнечной батареей называют конструкцию из нескольких солнечных элементов, установленных в раму и покрытых прозрачной защитой. Отдельные части соединяются последовательно или параллельно проводниками, образуя единый источник энергии.

Чем большее количество элементов объединяет батарея, тем она мощнее.

Работа устройства осуществляется за счет фотоэлектрического эффекта. При попадании солнечных лучей на фотоэлементы, кванты света вытесняют электроны, которые и образуют электрический ток. Для бесперебойного и равномерного снабжения сети, батареи оснащают аккумуляторами, способными накапливать энергию. Поэтому даже, если солнце скроется за плотными тучами, в дом будет поступать постоянный электрический ток.

Виды солнечных батарей

Фотоэлементы чаще всего изготавливают на основе кремния, в зависимости от способа его обработки выделяют разные виды пластин. Они различаются уровнем КПД (коэффициент полезного действия) – то есть соотношением полезно использованной энергии к полученной системой суммарно. От вида кремния зависит и эффективность конструкции при временном затенении.

Солнечные элементы производят и из другого сырья: теллурида кадмия, селенида меди-индия, полимеров. Их КПД от 5 до 20%, однако стоимость батарей из этих материалов намного выше, поэтому они пока не получили большого распространения.

Монокристаллические

солнечные батареиПластины этого вида изготовлены из чистого кремния. Кристаллы однородные и однонаправленные, после затвердевания их разрезают на тонкие пластины. КПД монокристаллической батареи при солнечной погоде достигает 17 – 20%, но при облачности ее производительность резко сокращается.

Конструкции устойчивы к влаге. Требуют регулярного очищения от пыли. Имеют сравнительно небольшие размеры и высокую мощность. При этом самые дорогостоящие. Внешне пластины из монокристаллов – черные с однородной структурой.

Поликристаллические

солнечные батареиФотоэлементы поликристаллической вида также производят из кремния, но по более простой и дешевой технологии. После нагревания до жидкого состояния, сырье медленно охлаждают, при этом образуются различные по форме кристаллы разной направленности. КПД не более 12 – 18%, это ниже чем у монокристаллов. Но важное преимущество этого вида пластин в том, что при облачности эффективность снижается незначительно.

Кристаллы разной формы в структуре элементов заметны при внимательном рассмотрении. Пластины имеют насыщенный синий цвет. Эти изделия стоят немного дешевле, подходят для установки на жилых домах, в качестве дополнительного источника электрической или тепловой энергии.

Аморфные

солнечные батареиПленочные кремниевые батареи производят не из кристаллов, а из силана или кремневодорода. Такая батарея эластична и может принимать любую форму. Производные кремния наносят тонким слоем на гибкую подложку.

КПД аморфных батарей значительно ниже первых двух видов и составляет всего 5 – 6%, но при этом пленочные источники энергии отличаются хорошей производительностью при облачности.

Этот вид солнечных батарей самый дешевый, и простой в монтаже. К тому же не требователен к очистке и может производить работу даже под слоем пыли.

При выборе вида солнечных батарей, необходимо ориентироваться на показатель КПД, срок службы и стоимость конструкций. Если нужна максимальная производительность и компактность, лучше выбрать монокристаллическую. Оптимальный по цене и эффективности вариант для частного дома – поликристаллическая. Аморфная, хоть и самая дешевая, но для хорошей мощности необходимо приобрести большой по площади фрагмент.

Срок службы кристаллических батарей без потери эффективности – 25 лет, а общий период эксплуатации может достигать 50 лет, аморфные лишаются до 40% мощности уже спустя 2 – 3 года использования.

Преимущества и недостатки

Покупка и монтаж солнечных батарей – это крупное единовременное вложение средств, но оно оправдает себя через несколько лет (минимум – 2 года, максимум – 6), и дальнейшая эксплуатация будет абсолютно бесплатной. И это далеко не единственное достоинство конструкций.

Плюсы солнечных батарей, характерные для всех их видов:

  • Общедоступность – использование солнечной энергии возможно в любой точке планеты;
  • Экологичность – батареи не загрязняют окружающую среду вредными отходами;
  • Надежность – конструкции очень редко выходят из строя, так как не имеют движущихся частей, батареи не зависят от технических неполадок поставщиков энергии;
  • Бесшумность – при работе, конструкция вообще не издает шумов;
  • Вариативность мощности – за счет изменения количества модулей, объединенных в одну цепь, можно регулировать общую производительность.

Важно обратить внимание и на минусы альтернативного источника энергии, чтобы не потратить средства нерационально. Не всегда солнечные батареи могут быть эффективны, к тому же они практически не способны полностью заменить традиционную электрическую сеть.

Производительность устройства зависима от климатических условий. В южных широтах батареи более продуктивны, в средних и северных – эффективность изменяется в соответствии со временем года. На этот показатель влияет и слой пыли. Регулярно его нужно удалять с лицевой поверхности, что может быть затруднено расположением конструкций и их большими размерами.

КПД всех видов солнечных батарей снижается с течением времени, поэтому рано или поздно придется заменять конструкции. При этом до сих пор остается нерешенным вопрос утилизации, выбрасывать приборы с бытовыми отходами запрещено, так как солнечные элементы и аккумуляторы содержат токсичные вещества.

Эффективность

Производительность солнечных батарей на территории России неравномерна. Если сравнивать способность этих устройств обеспечивать частный дом горячей водой, то в южных регионах можно использовать солнечную энергию в качестве единственного источника на протяжении всего года, в средних и северных – только летом, а зимой сочетать с другими видами энергии.

Один квадратный метр кристаллической солнечной батареи способен выработать в среднем до 120 Вт мощности. Она может обеспечить работу маломощного бытового прибора или нескольких лампочек, но, например, для компьютера этого недостаточно.

Эффективность зависит от многих факторов: вида устройства и его КПД, географического положения и угла наклона модуля.

Для полноценного обогрева дома площадью 100 кв.м. в средней полосе России, потребуется разместить на крыше не менее 30 кв.м. солнечных модулей. Это вложение полностью окупится примерно через 3 года использования. При сочетании с другими источниками отопления, срок, за который покупка себя оправдает, увеличится еще на 1 – 2 года. При длительности эксплуатации от 20 и более лет, установка солнечных батарей – однозначно, выгодное вложение.

Изготовление батареи своими руками

солнечные батареиСамое сложное при сборке солнечной батареи – приобретение фотоэлементов. Новые стоят очень дорого, чтобы сократить расходы, можно купить через интернет элементы с незначительными повреждениями. Небольшие сколы не повлияют на производительность пластин. Лучше выбирать элементы с уже припаянными проводниками. Оптимальное количество фотоэлементов для одной батареи – 36 штук. Все части для одного солнечного модуля должны иметь одинаковые размеры.

Новые пластины иногда обливают воском, так как они очень хрупкие и тонкие. Перед сборкой их нужно освободить от покрытия под горячей водой.

Конструкция солнечной батареи состоит из короба, фотоэлементов, соединенных проводниками и защитного покрытия.

Подготовка короба

солнечные батареиКаркас для батареи можно собрать из деревянных реек и листа ДВП. Предварительно нужно рассчитать длину и ширину короба, чтобы вместились все солнечные элементы. На нижней части реек нужно сделать отверстия для вентиляции и выхода жидкости.

Для защиты от порчи, грибка и влаги короб нужно окрасить с двух сторон.

Установка солнечных элементов

солнечные батареиПосле снятия слоя воска и тщательной сушки фотоэлементов, можно приступить к их сборке. Для этого их нужно разложить лицевой стороной вниз и последовательно соединить проводниками, фиксируя паяльником. Между пластинами рекомендуется оставлять расстояние в несколько миллиметров.

На центр каждого элемента с обратной стороны нужно нанести каплю силиконового герметика, перевернуть цепочку и приклеить на солнечные батареиподложку. Не желательно распределять клей по периметру пластины, так как во время эксплуатации она может расширяться и сжиматься, а плотная фиксация может стать причиной поломки элемента. Подложку нужно уложить в короб и закрепить саморезами. Установить диоды для предотвращения разрядки аккумулятора в ночное время. Вывести провод через одно из вентиляционных отверстий в каркасе.

После полного высыхания герметика можно установить защитный щит из прозрачного пластика или стекла. Закрепить верхнее покрытие лучше после проверки качества работы батареи.

Монтаж батареи своими руками

Устанавливать устройства можно на крышу или землю. Для второго способа потребуется изготовить металлические каркасы, которые будут удерживать батарею под нужным углом.

Выбранное место должно быть хорошо освещено солнцем. Ориентировать устройство нужно на южную сторону. Оптимальный угол наклона конструкции должен быть равен географической широте, в которой она находится. Так батарея получит максимальное количество света.

Место установки солнечной батареи должно быть доступным для чистки лицевой поверхности от пыли и снега, корректировки угла наклона и ремонта, в случае поломки.

Фиксировать модули на крыше нужно на рейки, на земле – на металлические фермы. После установки батарея должна находиться в неподвижном состоянии.

Предлагаем Вам прочитать про самостоятельное строительство ветрогенератора, который так же является альтернативным источником энергии.

Далее устройство нужно подключить к аккумуляторам, инверторам и контроллерам. А затем и к электросети дома. Подробное описание работ по подготовке батареи, установке и подключении представлено на видео.

Установка солнечных батарей позволит снизить расходы на электроэнергию и отопление. А если произвести все работы по сборке и монтажу своими руками, можно минимизировать стоимость модулей и сократить период их окупаемости.

Похожие статьи

guru-remonta.ru

Солнечная батарея на крыше дома

Купить солнечную батарею - не главное, главное - правильная ее установка.

Купить солнечную батарею — не главное, главное — правильная ее установка.

Мало купить солнечные батареи – нужно правильно их смонтировать и учесть несколько важных моментов, чтобы даже изделия «настоящих китайских мастеров» могли выдавать свои заявленные изготовителями характеристики.

Оговоримся сразу – будем рассматривать варианты установки солнечной батареи и солнечного коллектора. Первая производит электрический ток, а второй – тепло. Однако устанавливать их можно, руководствуясь одними и теми же правилами.

Установка солнечного коллектора производится по тем же правилам, что и установка солнечной батареи.

Установка солнечного коллектора производится по тем же правилам, что и установка солнечной батареи.

Варианты установки солнечных батарей

Установка солнечных батарей возможна в нескольких местах:

1. Крыша дома любой конфигурации, кроме скатных крыш, имеющих наклон более 40 градусов.

2. Стены дома. Они по умолчания вертикальные (90 градусов к плоскости земли).

3. Поверхность земли либо невысокие хозяйственные постройки с плоской крышей.

Рассмотрим первый из этих вариантов, и сразу решим – какие плюсы, и какие минусы у него есть, и что учесть при монтаже для варианта «крыша».

Чтобы правильно установить солнечную батарею на стены дома – читайте другую статью на сайте.

Вариант с поверхностью земли и вариант с установкой на плоскую крышу невысокого строения пока не рассматриваем, так как снежный покров на значительной территории России сведет на нет все усилия по установке. А чтобы установка работала, придется нанимать отдельного дворника со снеговой лопатой и метлой.

Такая установка солнечный батарей на земле на территории Урала и Сибири "не пройдет".

Такая установка солнечный батарей на земле на территории Урала и Сибири «не пройдет».

Что говорят ученые про солнечные батареи

Лирическое отступление (цитата из учебника по солнечной энергетике):

«В последние годы, когда постоянно растет плата за отопление, актуальным становится вопрос о поиске альтернативных источниках тепла. Конечно, можно по старинке отапливать дом дровами или углем. Но можно обратиться к новейшим разработкам. Так, например, в южных странах широкое распространение получили именно солнечные батареи. В российских регионах с большим количеством солнечных дней и теплым климатом их тоже можно применять. Работают они за счет полупроводников, преобразующих энергию солнца в постоянный ток.

Чтобы солнечные батареи (выработка электроэнергии) и солнечные коллекторы (выработка тепла) служили долго и без проблем, нужно принять во внимание несколько факторов. Это особенности местного климата, количество необходимой энергии и тепла, финансовые возможности.

Солнечная батарея может обеспечить до 100 % всей потребности домохозяйства в электричестве. Солнечный коллектор может обеспечивать до 45-85% всей необходимой потребности домохозяйства в тепле. Если этот процент ниже, устанавливать солнечный коллектор не имеет смысла, так как нужной эффективности не будет, а денежные затраты не окупятся.

Установка солнечной батареи – это дело специализированной организации, монтаж осуществляют высококвалифицированные специалисты, которые точно спроектируют установку, вычислят ее мощности, настроят в соответствии с особенностями погоды».

Учебник написан в 1995 году, однако, с тех пор климатические условия совсем не изменились. Так что примем данные из книги как факт.

Правила установки солнечных батарей и коллекторов

Основные правила установки солнечной батареи на крышу следуют из правил монтажа любой конструкции на крыше здания, будь то антенна или дымоход.

Сначала нужно проверить, не создаст ли батарея дополнительную нагрузку на кровлю. Стоять там она должна обязательно под углом в 30-40 градусов под углом к плоской кровле высокого здания. Для скатной крыши, размещение оборудования на ней зависит от ее угла. Батарея также должна быть устойчивой к сильным порывам ветра.

Крепить батарею лучше на рамную конструкцию, основу которой составляют трубы замкнутого профиля (минимум 25 Х 25 миллиметров). В случае установки солнечной батареи или солнечного коллектора большой площади, естественно, нужно увеличивать сечение труб рамы.

На этом фото солнечный коллектор установлен верно, а батареи - нет.

На этом фото солнечный коллектор установлен верно, а батареи — нет.

Еще один вариант установки - без кронштейна.

Еще один вариант установки — без кронштейна.

Самый простой вариант - монтировать солнечную батарею на крыше в 40 градусов.

Самый простой вариант — монтировать солнечную батарею на крыше в 40 градусов.

Можно вот так устанавливать солнечные батареи на высокой штанге над землей.

Можно вот так устанавливать солнечные батареи на высокой штанге над землей.

При таком варианте установки солнечные батареи будут все время занесены снегом.

При таком варианте установки солнечные батареи будут все время занесены снегом.

Солнечные батареи на крыше нужно также мыть.

Солнечные батареи на крыше нужно также мыть.

Вообще, солнечный коллектор более устойчив к ветровым нагрузкам, нежели тонкопленочные солнечные батареи. Однако и тем, и другим требуется защита от сходящего со скатной кровли снега. Перед каждым кронштейном (рамой), на который крепится батарея или коллектор, следует установить трубчатый снегозадержатель. Еще лучше обеспечить кронштейн снегорассекателем, который позволит снегу с крыши сходить естественным образом, но защитит батарею или коллектор от механических повреждений.

PS. И да, конечно же вы помните, что устанавливать солнечные батареи или солнечный коллектор нужно на южном скате кровли вашего дома.

На фото ниже «китайские товарищи» монтируют солнечные батареи на кронштейнах — есть возможность подсмотреть интересные моменты.

3

1

2

dompraktika.ru

Как сделать солнечные батареи своими руками

С каждым днем выбросы углекислоты и токсичных веществ в атмосферу увеличивается, токсичные вещества вырабатываются при сгорании ископаемого топлива, вследствии чего постепенно уничтожают нашу планету. Поэтому внедрение «зеленой энергии», у которой вовсе отсутствует негативное влияние на окружающую среду, уже закрепила себя как базой основ новых электротехнологий. Одной из основ таких технологий получения экологически чистой электроэнергии это технология которая преобразует солнечнй свет в электроэнергию. Далее пойдет речь о солнечных батареях, а так же их возможности в собственном доме. В нынешнее время электроустановки в виде солнечных батарей изготовленных в промышленных условиях, используются для полного и частичного энергообеспчения и теплообеспечения дома, и стоят в районе 15-20 тысячь долларов при гарантии работы 25 лет. Гелиосистемы разделяют на теплообеспечения и энергообеспечения. В случае теплообеспечения используются технологии солнечного коллектора. В случае энергообеспечения происходит фотоэлектрический эффект, с помощью которого происходит генерация электричества в солнечных батареях. Далее я опишу технологию ручной сборки солнечной батареи. Технология ручной сборки солнечной батареи вовсе не сложна и даже очень проста и доступна всем. Почти каждый человек может собрать солнечные батареи с относительно высоким КПД при давольно низких затратах. Это экологично, выгодно, доступно и в последнее время модно.

Выбор солнечных элементов для солнечной панели

Приступив к созданию солнечной электростанции, нужно учитывать, что при ручной сборке солнечных батарей нет нужды сразу собирать полнофункциональную солнечную электростанцию, её в будущем можно будет наращивать. Если первый эксперемент ручной сборки оказался положительным, то после имеет смысл увеличить функциональность солнечнойэлектростанции.

Прежде всего нужно знать что такое солнечная батарея, солнечная батарея — это прежде всего генератор, который работает на основе фотоэлектрического эффекта и преобразует солнечную тепловую энергию в электрическую энергию. Кванты света, которые вырабатывает солнце, попадают на кремниевую пластину и выбивает электрон с последней атомной орбиты кремния. Данный эффект создает большое количество свободных электронов, которые образуют поток электрического тока.

Перед тем как приступить к сборке солнечной батареи нужно сделать выбор в типе фотоэлектрического преобразователя. Фотоэлектрические преобразователи: монокристаллические, поликристаллические и аморфные. Для ручной сборки солнечной батареи чаще всего выбирают легко доступные в продаже поликристаллические и монокристаллические солнечные модули.

Солнечные панели из поликристаллического кремния имеют достаточно низкий КПД от 7 до 9%, но этот недостаток компенсируется тем, что поликристаллические панели практически не понижают КПД при облачной и пасмурной погоде, гарантийная работоспособности поликристаллических элементов составляет примерно 10 лет. Солнечные панели на основе элекментов монокристаллического кремния имеют более высокий КПД около 13% и сроки работоспособности приблезительно 25 лет, но монокристаллические элементы сильно понижают мощность при отсутствии прямого попадения солнечного света. Величина КПД кристаллов кремния может существенно изменятся от разных производителей . На практике работы солнечных электростанций в полевых условиях можно сказать о сроке службы монокристаллических панелей более 30 лет, а для поликристаллических модулей — более чем 20 лет. Причем за весь период эксплуатации потеря мощности у кремниевых монокристалических и поликристаллических модулей составляет не более 10 процентов, а у тонкопленочных аморфных модулей только за первые два года мощность может снизится на 10-40%. Набор Solar Cells можно приобрести на аукционе Еbay для сборки солнечной батареи из 36 и 72 солнечных элементов. Эти наборы так же доступны в продаже в Украине и в России. Зачастую, для ручной сборки солнечных батарей используются солнечные модули В-типа, это те модули, которые отбраковали на промышленном производстве. Они не теряют своих эксплуатационных показателей, но зато намного дешевле.    Разработка проекта гелиевой энергосистемы

Проектирование задуманной солнечной электростанции зависит от способа её монтажа и установки. К примеру солнечные батареи должны устанавливаться под определенным наклоном, чтобы обеспечить прямое попадание солнечных лучей под перпедикулярным углом. КПД солнечной панели так же зависит от интенсивности световой энергии, а также зависит от угла попадания солнечных лучей.Смотреть сверху вниз: Монокристаллические солнечные панели (по 80 ватт) на даче установлены практически вертикально (зима). Монокристаллические солнечные панели на даче имеют меньший угол (весна)ю Механическая система управления углом наклона солнечной батареи.

Промышленные солнечные панели очень часто снабжены специальными датчиками, которые обеспечивают движение солнечных панелей по направлению движения солнечных лучей, что очень увеличивает стоимость солнечных панелей. Но так же тут может быть применено ручное механическое управление углом наклона солнечных панелей. В зимнее время солнечные панели должны быть практически вертикальными, чтобы исключить налегание снега на солнечных панелях. Схема расчета угла наклона солнечной панели в зависимости от времени года

Солнечные батареи следует устнавливать с солнечной стороны вашего дома, чтобы за световой день пребывание солнечных лучей на солнечных батареях было максимально. В зависимости от географического расположения вашего дома и времени года вычисляется оптимальный угол наклона для вашего месторасположения. Выбор оптимального статического угла наклона для кровельной солнечной системы монокристаллического типа

При сооружении солнечных панелей можно выбирать самые разные материалы по массе и другим характеристикам. Но при выборе материалов следует учитывать максимально допустимые температуры нагрева материалов, т.к. при работе солнечных модулей на полную мощность температура не должна превышать 250 градусов по цельсию. При пиковой температуре солнечные модули теряют свою функцию производства электрического тока. Готовые гелиосистемы зачастую не предпологают охлаждения солнечных модулей. Ручное изготовление может включать в себя охлаждение гелиосистемы и управление углом наклона солнечных панелей для регулировки температуры модуля, а так же выбор прозрачного материала, который будет поглощать ИК-излучение.

Как показали расчеты, в ясный солнечный день из 1 метра солнечных панелей можно получить 120 Вт мощности, но этого не хватит чтоб запустить даже компьютер. Солнечные панели размером в 10 метров производит уже более 1кВт электроэнергии, что позволит снабдить электроэнергией светильники, телевизоры и ваш компьютер. Для обычной семьи 3-4 человека необходимо около 300 кВт в месяц, поэтому солнечные панели должны быть размеров 20м, при условии что солнечные панели будут установлены с солнечной стороны вашего дома. Для уменьшения месячного электропотребления советую использовать для освещения вместо обычных лампочек, светодиодые лампочки.

Изготовление каркаса солнечной батареи

Для изготовления корпуска солнечной панел в основном используют алюминиевые уголки. В интернет магазинах можно приобрести уже готовые корпуса для солнечных батарей. А так же для изготовления корпуса солнечной панели выбирают по желанию прозрачное покрытие. Комплект рамы со стеклом для солнечной батареи, примерная стоимость от 33 долларов

При выборе прозрачного материала можно опиратся на следущие характеристики материалов: Если в качестве критерия выбора рассматривать показатель преломления солнечного света, то самый минимальный коэффициэнт у плексиглас, более дешевый вариант это обычное стекло, менее подходящий это поликарбонат. Но в продаже сейчас имеется поликарбонат с антиконденсатным покрытием, что обеспечивает качественный уровень термозащиты.

Важно про изготовлении солнечных панелей выбирать прозрачные материалы которые не пропускают ИК-спектр, что снизит нагревание кремниевых элементов. Схема поглощения УФ и ИК излучения различными стеклами. а) обычное стекло, б) стекло с ИК-поглощением, в) дуплекс с термопоглощающим и обычным стеклом.

Защитное силикатное стекло с оксидом железа обеспечивает максимальное поглощение ИК-спектра. ИК-спектр хорошо поглощает любое минеральное стекло, а так же минеральное стекло более устойчиво к повреждениям, но в тоже время является очень дорогим и недоступным.

Так же зачестую для солнечных панелей применяют специальные антибликовые сверхпрозрачные стекла, которые пропускают до 98% спектра. Солнечная панель в корпусе из оргстекла

Монтаж корпуса солнечной батареи

В данном случае будет показано изготовление солнечной панели из 36 поликристаллических солнечных модулей размером 81х150мм. Отсюда вычисляем размеры будущей солнечной панели. Важно при расчете между модулями оставлять небольшое расстояние, которое может менятся при воздействии атмосферных воздействий, т.е. оставляйте между модулями примерно 3-5мм. В итоге получим размер заготовки 835х690мм при ширине уголка 35мм.

Самодельная солнечная батарея изготовленная вручную, сделанная с использованием алюминиевого профиля, очень похожа на солнечную панель фабричного изготовления. При этом обеспечивается высокая степень герметичности и прочности конструкции. Для изготовления берем алюминиевый уголок, и выполняем заготовки рамки 835х690 мм. Чтобы можно было провести крепление метизов, в раме следует сделать отверстия. На внутреннюю часть уголка дважды наносим силиконовый герметик. Важно чтобы не было незаполненных мест. От качества нанесения герметика зависит герметичность и долговечность батареи. Далее в раму кладется прозрачный лист из выбранного материала: поликарбоната, оргстекла, плексигласа, антибликового стекла. Важно силикону дать высохнуть на открытом воздухе, иначе испарения создадут пленку на элементах. Стекло требуется тщательно прижать и зафиксировать. Для надежного крепления защитного стекла используем метизы. Нужно закрепить 4 угла рамки и по периметру разместить два метиза с длинной стороны рамки и по одному метизу с короткой стороны. Метизы фиксируются при помощи шурупов. Каркас солнечной батареи готов. Важно перед креплением солнечных элементов, нужно очистить стекло от пыли.

Подбор и пайка солнечных элементов

В данное время в интернет магазинах представлен огромный ассортимент изделий для самостоятельного изготовления солнечных батарей. Набор Solar Cells включает комплект из 36 поликристаллических кремниевых элементов, проводники для элементов и шины, диоды Шотке и карандаш с кислотой для паяния

Из-за того что солнечная батарея, сделанная своими руками, ориентировочно в 4 раза дешевле заводской готовой, собственное изготовление — это огромная экономия средств. В интернет магазинах можно приобрести солнечные модули, элементы с дефектами, при этом они не теряют своей функциональности, но придется пожертвовать внешним видом солнечной батареи. Поврежденные фотоэлементы не теряют своей функциональности

Если вы впервые занимаетесь изготовлением солнечных батарей, то лучше приобретать наборы для изготовления солнечных панелей, в продаже имеются солнечные элементы с припаянными проводниками. Так как пайка контактов — это достаточно сложный процесс, сложность заключается в хрупкости солнечных элементов.

Если вы купили кремниевые элементы без проводников, то в первую очередь необходимо провести пайку контактов.

Так выглядит поликристаллический кремниевый элемент без проводников. Проводники нарезаются с помощью картонной заготовки. Необходимо аккуратно положить проводник на фотоэлемент. На место припаивания нанести кислоту для паяния и припой. Проводник для удобства фиксируется с одной стороны тяжелым предметом. В таком положении необходимо аккуратно припаять проводник к фотоэлементу. Во время пайки нельзя нажимать на кристалл, потому что он очень хрупкий.

Пайка элементов для солнечных панелей — это весьма кропотливая работа. Если с первого раза не удастся получить нормального соединения, то нужно повторить работу. По нормативам серебряное напыление на проводнике должно выдерживать 3 цикла пайки при допустимых тепловых режимах, на практике сталкиваешься с тем, что напыление разрушается. Разрушение серебряного напыления происходит из-за использования паяльников с нерегулируемой мощностью (65Вт), этого нужно избегать, можно уменьшить мощность паяльника таким образом — для этого нужно последовательно с паяльником включить патрон с лампочкой в 100 Вт. Помните, что номинальная мощность  паяльника  нерегулируемого слишком большая для пайки кремниевых контактов.

Если вам продавцы проводников будут говорить, что припой на соединителе имеется, но вы его лучше нанесите дополнительно. Во время пайки будьте аккуратны, при минимальном усилии солнечные элементы лопаются, а так же не нужно складывать солнечные элементы пачкой, от массы нижние элементы могут треснуть.

Сборка и пайка солнечной батареи При первой ручной сборке солнечной батареи лучше воспользоваться разметочной подложкой, которая поможет расположить элементы ровно на некотором расстоянии друг от друга (5 мм). Разметочная подложка для элементов солнечной батареи

Основа выполняется из листа фанеры с маркированием уголков. После пайки на каждый элемент с обратной стороны крепится кусок монтажной ленты, достаточно прижать заднюю панель к скотчу, и все элементы переносятся. Монтажная лента, использованная для крепления, с обратной стороны солнечного элемента

При данном типе крепления сами элементы дополнительно не герметизируются, они могут свободно расширяться под действием температуры и это не приведет к повреждению солнечной батареи и разрыву контактов и элементов. Герметизации поддаются только соединительные части конструкции. Такой вид крепления больше подходит для опытных образцов, но вряд ли может гарантировать долгосрочную эксплуатацию в полевых условиях.

Последовательный план сборки батареи выглядит так:

Выкладываем элементы на стеклянную поверхность. Между элементами должно быть расстояние, что предполагает свободное изменение размеров без ущерба конструкции. Элементы нужно прижать грузами.

Пайку производим по приведенной ниже электросхеме. «Плюсовые» токоведущие дорожки размещены на лицевой стороне элементов, «минусовые» — на обратной стороне. Перед пайкой нужно нанести флюс и припой, после аккуратно припаять серебряные контакты.

По такому принципу соединяются все солнечные элементы.

Контакты крайних элементов выводятся на шину, соответственно, на «плюс» и «минус». Для шины используется более широкий серебряный проводник, который имеется в наборе Solar Cells. Рекомендуем также вывести «среднюю» точку, с ее помощью ставятся два дополнительных шунтирующих диода.

Клемма устанавливается также с внешней стороны рамы.

Так выглядит схема подключения элементов без выведенной средней точки.

Так выглядит клеммная планка с выведенной «средней» точкой. «Средняя» точка позволяет на каждую половину батареи поставить шунтирующий диод, который не даст батарее разряжаться при снижении освещения или затемнении одной половины.

На фото показан шунтирующий диод на «плюсовом» выходе, он противостоит разрядке аккумуляторов через батарею в ночное время и разрядке других батарей во время частичного затемнения. Чаще в качестве шунтирующих диодов используют диоды Шотке. Они дают меньшую потерю на общей мощности электрической цепи. В качестве токовыводящих проводов может быть использован акустический кабель в силиконовой изоляции. Для изоляции можно применить трубки из-под капельницы. Все провода должны быть прочно зафиксированы силиконом.

Элементы могут быть соединены последовательно (см. фото), а не посредством общей шины, тогда 2-й и 4-й ряд необходимо повернуть на 1800 относительно 1-го ряда.

Основные проблемы сборки солнечной панели связаны с качеством пайки контактов, поэтому специалисты предлагают перед герметизацией панели ее протестировать. Тестирование панели перед герметизацией, напряжение сети 14 вольт, пиковая мощность 65 Вт

Тестирование можно делать после пайки каждой группы элементов. Если вы обратите внимание на фотографии в мастер-классе, то часть стола под солнечными элементами вырезана. Это сделано намеренно, чтобы определить работоспособность электрической сети после пайки контактов.

Герметизация солнечной панели

Герметизация солнечных панелей при самостоятельном изготовлении — это самый спорный вопрос среди специалистов. С одной стороны, герметизация панелей необходима для повышения долговечности, она всегда применяется при промышленном изготовлении. Для герметизации зарубежные специалисты рекомендуют использовать эпоксидный компаунд «Sylgard 184», который дает прозрачную полимеризованную высокоэластичную поверхность. Стоимость «Sylgard 184»  составляет около 40 долларов. Герметик с высокой степенью эластичности «Sylgard 184»

Но с другой стороны, если вы не хотите тратить дополнительные деньги, то вполне можно задействовать силиконовый герметик. Однако в этом случае не стоит полностью заливать элементы, чтобы избежать их возможного повреждения в процессе эксплуатации. В таком случае элементы к задней панели можно прикрепить при помощи силикона и герметизировать только края конструкции.  

Перед началом герметизации необходимо подготовить смесь «Sylgard 184».

Сначала заливаются места стыков элементов. Смесь должна схватиться, чтобы закрепить элементы на стекле.

После фиксации элементов делается сплошной полимеризирующий слой эластичного герметика, распределить его можно с помощью кисточки.

Так выглядит поверхность после нанесения герметика. Герметизирующий слой должен просохнуть. После полного высыхания можно закрыть солнечную батарею задней панелью.

Так выглядит лицевая сторона самодельной солнечной панели после герметизации.

Схема электроснабжения дома

Систему электроснабжения дома с использованием солнечных батарей принято называть фотоэлектрическими системами, т.е. системами, генерирующими энергию с использованием фотоэлектрического эффекта. Для собственных жилых домов рассмотрены три фотоэлектрические системы: автономная система энергообеспечения, гибридная батарейно-сетевая фотоэлектрическая система, безаккумуляторная фотоэлектрическая система, подключенная к центральной системе энергоснабжения.

Каждая из вышеперечисленных систем имеет свое предназначение и преимущества, но наиболее часто в жилых домах применяют фотоэлектрические системы с резервными аккумуляторными батареями и подключением к централизованной энергосети. Питание электросети осуществляется при помощи солнечных батарей, в темное время суток от аккумуляторов, а при их разрядке — от центральной энергосети. В труднодоступных районах, где нет центральной сети, в качестве резервного источника энергоснабжения используются генераторы на жидком топливе.

Более экономной альтернативой гибридной батарейно-сетевой системе электроснабжения будет безаккумуляторная солнечная система, подсоединенная к центральной сети энергоснабжения. Электроснабжение осуществляется от солнечных батарей, а в темное время суток сеть питается от центральной сети. Такая сеть более применима для учреждений, потому что в жилых домах большая часть энергии потребляется в вечернее время. Схемы трех типов фотоэлектрических систем

Рассмотрим типичную установку батарейно-сетевой фотоэлектрической системы. В качестве генератора электроэнергии выступают солнечные панели, которые подсоединены через соединительную коробку. Далее в сети устанавливается контроллер солнечного заряда, чтобы избежать короткого замыкания при пиковой нагрузке. Электроэнергия накапливается в резервных батареях-аккумуляторах, а также подается через инвертор на потребители: освещение, бытовую технику, электроплиту и, возможно, используется для нагревания воды. Для установки системы отопления эффективнее применять гелиоколлекторы, которые относятся к альтернативной гелиотехнологии. Гибридная батарейно-сетевая фотоэлектрическая система с переменным током

Существует два типа электросетей, которые используются в фотоэлектрических системах: на базе постоянного и переменного тока. Использование сети переменного тока позволяет размещать электропотребители на расстоянии, превышающем 10–15 м, а также обеспечивать условно-неограниченную нагрузку сети.

Для частного жилого дома обычно используют следующие комплектующие фотоэлектрической системы: -суммарная мощность солнечных панелей должна составлять 1000 Вт, они обеспечат выработку около 5 кВт ч; -аккумуляторы с общей емкостью в 800 А/ч при напряжении 12 В; -инвертор должен иметь номинальную мощность 3кВт с пиковой нагрузкой до 6 кВт, входное напряжение 24–48 В; -контроллер солнечного разряда 40–50 А при напряжении в 24 В; -источник бесперебойного питания для обеспечения кратковременного заряда с током до 150 А.

Из этого следует, что для фотоэлектрической системы электроснабжения понадобится 15 панелей на 36 элементов, пример сборки которых описан выше. Каждая солнечная панель дает суммарную мощность в 65 Вт. Более мощными будут солнечные батареи на монокристаллах. Например, солнечная панель из 40 монокристаллов имеет пиковую мощность 160 Вт, однако такие панели чувствительны к пасмурной погоде и облачности. В этом случае солнечные панели на базе поликристаллических модулей оптимальны для использования.

Всего комментариев: 0

ukrelektrik.com

видео, фото, приколы на Триникси

Срочные уведомления в вашем браузере.

Российские футболисты Павел Мамаев и Александр Кокорин устроили шикарную вечеринку в Монте-Карло

trinixy.ru

Солнечная батарея своими руками: устройство и изготовление

Оглавление статьи: Солнечная батарея своими руками: принцип работы системы солнечного электроснабжения Устройство солнечной батареи: технология самостоятельного изготовления

Согласитесь, иметь в загородном доме бесплатную электроэнергию – это мечта практически каждого человека. Мечтают многие, но только некоторые предпринимают шаги к ее осуществлению, несмотря даже на то, что электрифицировать дом с использованием альтернативного источника энергии не так уж сложно, а главное, не дорого. Если все делать самостоятельно, то расходы на такую электрификацию не превысят 300-400 долларов. В этой статье от сайта stroisovety.org мы расскажем, как делается солнечная батарея своими руками и как устроена система электроснабжения с ее использованием.

использование солнечных батарей

Использование солнечных батарей

Солнечная батарея своими руками: принцип работы системы солнечного электроснабжения

Прежде чем приступать к решению вопроса, как сделать солнечную батарею, сначала разберемся с принципом работы альтернативной системы электроснабжения в целом. Понимание того, для чего и какой именно ее элемент предназначен, даст вам возможность наглядно представить сложность системы, и вы уже определитесь, насколько реально самостоятельно электрифицировать дом в такой способ. Итак, система солнечного электроснабжения дома состоит из трех основных частей.

  1. Солнечная батарея – это комплекс небольших по размерам элементов, в задачи которого входит преобразование солнечного света в поток положительно и отрицательно заряженных электронов (электрический ток, если кто не знает). Особенность этих солнечных элементов заключается в том, что они не в состоянии вырабатывать ток большого напряжения – нормальным считается, если один такой элемент генерирует 0,5V. Поэтому о генерировании напряжения в 220V не может быть и речи, так как такая электростанция будет занимать огромную площадь. В задачи солнечных батарей входит выработка электроэнергии напряжением в 18V – этого вполне достаточно, чтобы зарядить двенадцати вольтовую аккумуляторную батарею. Это и есть второй элемент системы солнечного электроснабжения.
  2. Аккумуляторы. В одной системе их может использоваться свыше 10шт. Дело в том, что зарядки одной батареи не хватит надолго для обеспечения дома нужным количеством электричества. Здесь все зависит от количества и мощности одновременно используемых потребителей – по крайней мере, количество этого элемента системы можно со временем увеличивать. Но следует понимать, что одновременно придется выполнять подключение дополнительных солнечных батарей.
  3. Инвертор для солнечных батарей – в задачи этого устройства входит преобразование тока с низким напряжением в электричество высокого напряжения. Такое устройство можно свободно приобрести в готовом виде за сравнительно небольшие деньги. Приобретая инвертер, нужно обратить внимание на выдаваемую им мощность – для энергоснабжения дома понадобится купить устройство с выходной мощностью не менее 4кВт.
солнечная батарея своими руками фото

Солнечная батарея своими руками фото

Именно с этими элементами системы придется поработать, чтобы сделать использование солнечных батарей эффективным. Последние два лучше приобрести (они продаются по вполне доступным ценам), а вот первые можно изготовить самостоятельно, если, конечно, не хотите платить баснословные деньги.

как сделать солнечную батарею своими руками фото

Как сделать солнечную батарею своими руками фото

Устройство солнечной батареи: технология самостоятельного изготовления

Для начала придется решить вопрос с приобретением солнечных элементов – ведь не думаете же вы, что их можно повынимать из дешевых китайских калькуляторов? Тут есть один нюанс – новые элементы обойдутся достаточно дорого (проще уже будет купить готовую батарею в сборе). Поэтому лучше приобретать поврежденные, но работоспособные элементы – купить их можно на аукционе eBay или других подобных торговых площадках. Для одной батареи таких элементов понадобится 36шт. – лучше взять с запасом, так как некоторые из них могут быть не совсем рабочими. Их нужно сразу проверить прибором и убедиться, что они справляются со своими задачами. После этого спрятать их подальше до стадии непосредственного монтажа, так как эти элементы очень хрупкие.

изготовление и подключение солнечной батареи

Изготовление и подключение солнечной батареи

А пока элементы отлеживаются и ждут своего часа, самое время заняться изготовлением корпуса солнечной батареи. Для этого понадобятся деревянные бруски, фанера, ДВП и оргстекло. Из фанеры, предварительно рассчитав размер, вырезаем днище корпуса и обрамляем его по периметру бруском толщиной 20-25мм. В брусках с шагом 15-20см нужно будет насверлить отверстий диаметром 10мм – они обеспечат вентиляцию внутреннего пространства батареи и не дадут элементам перегреваться в процессе работы.

устройство солнечной батареи

Устройство солнечной батареи

После того как с этим будет покончено, самое время заняться подложкой для солнечных элементов – ее изготавливают из ДВП и она должна четко ложиться внутрь корпуса. Подложку так же, как и бруски, нужно снабдить вентиляционными отверстиями. Они сверлятся квадратно-гнездовым способом через каждые 5см. Сразу же после этого можно позаботиться о крышке корпуса – она вырезается из оргстекла и крепится с помощью саморезов через заранее просверленные отверстия.

После того как корпус будет готов, его можно красить в два слоя и откладывать для высыхания. А пока он сохнет, достаем из укромного местечка солнечные элементы, выкладываем их на подложке из ДВП вверх тормашками и занимаемся их распайкой – все элементы соединяются между собой последовательно. Здесь нужно тщательно продумать механизм спаивания – дело в том, что впоследствии переворачивать соединенные воедино элементы будет непросто. Соединять их нужно сначала рядами, потом переворачивать, а затем уже объединять ряды в единый последовательный комплекс. Как только с этой работой будет покончено, элементы следует приклеить с помощью силикона – одной капли в центре каждого солнечного элемента будет вполне достаточно.

как изготовить солнечные батареи для частного дома фото

Как изготовить солнечные батареи для частного дома фото

Теперь проверяем, что у нас получилось – подсоединяем приборчик и измеряем выходное напряжение. Если все правильно собрано, то на выходе должно быть почти 19V. Если так и есть, то впаиваем в цепь (последовательно) небольшой диод марки Шоттки 31DQ03 или ему подобный для предотвращения разрядки аккумуляторов в солнечные батареи для частного дома, выводим выходные провода и устанавливаем крышку из оргстекла.

Все, батарея готова. После нескольких дней тестирования на ее способность заряжать аккумулятор герметизируем все стыки, кроме вентиляционных отверстий и приступаем к сборке системы индивидуального электроснабжения.

установка солнечных батарей фото

В заключение несколько слов о том, где и как выполняется установка солнечных батарей. Здесь правило одно – солнечные батареи устанавливаются в самом незатененном месте. Как правило, это крыша дома, и здесь дополнительно понадобится изготовить специальные опоры. В принципе, это несложно – если вами была изготовлена солнечная батарея своими руками, то разработать и сделать для нее опоры не составит никакого труда.

Автор статьи Александр Куликов

stroisovety.org


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта