Eng Ru
Отправить письмо

Основы релейной защиты. Рза для чайников


Основы релейной защиты

20

В сетях промышленных предприятий для защиты линий, трансформаторов, двигателей и преобразовательных агрегатов применяют релейную защиту (основной вид электрической автоматики), которая призвана ограничить или полностью устранить в системе электроснабжения возможные нарушения нормального режима работы.

Требования к релейной защите, основные понятия и определения

Аварийные режимы, в системах электроснабжения промышленных предприятий, могут вызывать повреждения оборудования и нарушения синхронизма работы генераторов электростанций. Для предотвращения последствий и развития нештатных (аварийных) ситуаций используют совокупность автоматических устройств, которые объединяют под общим названием релейная защита (РЗ).

Устройства РЗ состоят из отдельных функциональных элементов, связанных между собой общей схемой (рис. 1) и предназначенных для решения стоящих перед ними задач.

Рис. 1. Структура РЗ.

Входной (воздействующей) величиной для РЗ является электрический параметр, определяемый типом релейной защиты. Так, например, для максимально токовых защит, таким параметром является ток (), проходящий через защищаемый элемент электроэнергетической системы (ЭЭС). Если величинапревысит установленное значение (), то происходит срабатывание пускового органа РЗ. Выходной сигнал с этого блока () поступает на логическую часть защиты (например, реле времени). При срабатывании логической части защиты вырабатывается сигнал, поступающий на исполнительную часть защиты, выполняющую функцию усилительного органа (например, промежуточное реле).

При реализации более сложных видов защит, в качестве входных параметров могут использоваться несколько воздействующих величин.

Релейная защита должна удовлетворять следующим требованиям:

  1. Селективность (избирательность) – способность РЗ отключать только защищаемый элемент ЭЭС, несмотря на то, что ток КЗ протекает и по другим неповреждённым элементам.

  2. Быстродействие – способность с минимально допустимым временем производить отключение повреждённого участка.

  3. Надёжность – способность защиты безотказно действовать в пределах установленной для неё зоны и не должна срабатывать ложно в режимах, при которых действие данной РЗ не предусмотрено.

  4. Чувствительность – способность РЗ реагировать на те отклонения от нормального режима, которые возникают в результате повреждения. Например. На рис. 2 изображён участок ЭЭС с установленными токовыми защитами РЗ1 и РЗ2, которые отличают нормальный режим от режима КЗ по возрастанию тока.

Рис.2. Схема участка ЭЭС и размещение токовых защит.

РЗ1 служит для защиты линии АВ, а РЗ2 – ВС. Однако в случае возникновения на шине С (в точке К2) КЗ и отказе защиты РЗ2 ликвидация повреждения должна осуществлять РЗ1, т.е. РЗ1 должна «чувствовать» КЗ в конце смежной линии, чтобы она смогла выполнить функции резервирования РЗ2.

Для токовой защиты ток срабатывания защиты - наименьший первичный ток, при котором приходит в действие пусковой орган защиты.должен быть меньше. Для защит от междуфазных КЗ чувствительность проверяется по наименьшему току для двухфазного КЗ:

, (1)

где .

Коэффициент чувствительности () защиты характеризует отношение величины контролируемого параметра в режиме КЗ к величине порога срабатывания защиты, т.е.определяет, во сколько раз минимальный ток КЗ больше:

. (2)

для основных защит (для К1 РЗ1 является основной, см. рис. 2).для резервной защиты (для К2 РЗ1 является резервной).

В качестве измерительных преобразователей (датчиков) для РЗ используют трансформаторы тока и напряжения. В устройствах релейной защиты обмотки трансформаторов тока (ТА) и реле соединяются по определённым схемам. Поведение реле, при этом, зависит от характера распределения тока по обмоткам реле при различных видах КЗ. При выполнении максимальных токовых защит (МТЗ) и токовых отсечек (ТО) используют следующие схемы:

  1. Трёхфазная трёхлинейная схема полной звезды для защит сетей с глухозаземлённой нейтралью от всех видов КЗ (рис. 3а).

  2. Двухфазная двухрелейная (трёхлинейная) в схемах в качестве защиты от междуфазных замыканий в сетях с изолированной нейтралью (рис. 3б).

  3. Двухфазная однорелейная схема в качестве защиты от междуфазных КЗ для неответственных потребителей (рис. 3в).

  4. Фильтр токов нулевой последовательности для выполнения защит от замыканий на землю в сети с глухозаземлённой нейтралью (рис. 3г).

Рис. 3. Схемы соединения ТА и обмоток реле:

а – трёхфазная трёхлинейная схема полной звезды; б – двухфазная двухрелейная; в - двухфазная однорелейная; г – фильтр токов нулевой последовательности.

Для питания цепей релейной защиты, автоматики и измерения обмотки трансформаторов напряжения (TU) соединяют по определённым схемам. Выбор схемы зависит от того, какое напряжение необходимо получить – фазное, линейное или напряжение нулевой последовательности (рис. 4).

Рис. 4. Схемы соединения TU.

studfiles.net

Релейная защита и автоматика систем электроснабжения

Содержание:
  1. Принципы построения релейной защиты
  2. Автоматическое включение резерва в электросетях
  3. Автоматика повторного включения
  4. Видео: релейная защита для начинающих

В энергетической отрасли вся произведенная электроэнергия в дальнейшем передается по линиям электропередачи на значительные расстояния. На определенных участках воздушных и кабельных линий расположены трансформаторные подстанции, от которых электричество поступает непосредственно к потребителям.

Производство, передача и распределение электроэнергии осуществляется в несколько этапов, и на каждом из них существует вероятность возникновения аварийных ситуаций, способных привести к гибели персонала и выходу из строя технического оборудования. Для этого достаточно всего лишь нескольких долей секунды, в течение которых человеческий организм просто не успевает отреагировать на столь короткое событие. В связи с этим была создана релейная защита и автоматика систем электроснабжения для контроля за номинальными параметрами электроустановок и возможными отклонениями..

Принципы построения релейной защиты

Качество электрической энергии должно строго соответствовать определенным нормативам, регламентируемым техническими документами. Сюда входят такие параметры, как амплитуда тока и напряжения, частота сети, конфигурация синусоиды и присутствие в ней посторонних шумов. Большое значение имеет величина, направление и качество мощности, фаза сигнала и другие характеристики.

Под каждую характеристику или параметр создается определенный вид релейной защиты. Эти системы после ввода в действие, с помощью специального реле, занимаются отслеживанием одного или нескольких сетевых параметров. В ходе отслеживания выполняется непрерывное сравнение этих величин с заранее установленными диапазонами, известными как уставки.

Если контролируемая величина выходит за нормативные пределы, происходит срабатывание реле, которое осуществляет коммутацию цепи путем переключения контактов. Данные действия затрагивают прежде всего подключенную логическую часть цепи. В соответствии с выполняемыми задачами эта логика настраивается на определенный алгоритм действий, оказывающих влияние на коммутационную аппаратуру. Возникшая неисправность окончательно ликвидируется силовым выключателем, прерывающим питание аварийной схемы.

Релейная защита контролирует определенные параметры, поэтому реле могут быть токовыми, напряжения, сопротивления линии, мощности, частоты, фазы и т.д. В любой релейной защите и автоматике настройка измерительного органа выполняется с учетом определенной уставки, разграничивающей зону охвата и срабатывания защитных устройств. Сюда может входить только один участков или сразу несколько, состоящих из основного и резервных.

Реакция защиты может проявляться на все повреждения, которые могут возникнуть в защищаемой зоне или только на отдельно взятые проявления. В связи с этим, защищаемый участок не одной защитой, а сразу несколькими, дополняющими и резервирующими общее действие. Основные защиты должны воздействовать на все неисправности, возникающие в рабочей зоне или охватывать их значительную часть. Они обеспечивают полную защиту всего участка, находящегося под контролем и должны очень быстро срабатывать при возникновении неисправностей.

Все остальные защиты, не подходящие под основные условия, считаются резервными, выполняющими ближнее и дальнее резервирование. В первом случае резервируются основные защиты, работающие в закрепленной зоне. Второй вариант дополняет первый и резервирует смежные рабочие зоны на случай отказа их собственных защит.

Автоматическое включение резерва в электросетях

Совсем не редкость, когда электроэнергия внезапно пропадает по тем или иным причинам, а затем ее может не быть в течение неопределенного времени. Данная ситуация может привести к серьезным негативным последствиям, особенно, если прервано электроснабжение важных энергоемких объектов производственного и другого назначения.

Поэтому для таких случаев предусмотрены источники резервного питания, куда входит дублирующая линия электропередачи, протянутая от другой подстанции. На некоторых объектах используются собственные генераторные установки высокой мощности. Переход на резервное питание должен быть быстрым и надежным, что вполне возможно, благодаря устройствам автоматического включения резерва или АВР.

АВР является одним из видов автоматики, защищающий систему электроснабжения и обеспечивающий быстрое подключение резервного питания. АВР отличаются максимально быстрым срабатыванием при отключении электроэнергии в центральной сети. Срабатывание происходит автоматически, без предварительного анализа причин, если заранее не установлена блокировка пуска от какой-либо конкретной защиты. Например, при включении дуговой защиты шин происходит блокировка запуска АВР, чтобы предотвратить дальнейшее развитие аварии. Задержка включения бывает необходима для завершения определенных производственных операций.

Включение АВР осуществляется всегда однократно, поскольку в случае короткого замыкания, не поддающегося быстрому устранению, многократное включение может привести к полному разрушению сбалансированной системы.

Ранее создавались схемы параллельного подключения наиболее важных объектов к отдельным источниками питания. При аварии на одной из линий и разрыве цепочки, другая должна была оставаться в работе и обеспечивать бесперебойное питание. На практике такие схемы не стали применяться в массовом порядке, поскольку по сравнению с АВР, они обладают многими недостатками.

Например, при коротком замыкании на одной из линий, существенно увеличиваются токи, поскольку идет подпитка энергией сразу с двух генераторов. Происходит рост потерь мощности на трансформаторных подстанциях, откуда поступает питание. Кроме того, очень сложно организовать взаимосвязанную защиту сразу в трех точках – в двух источниках питания и у одного потребителя. Все эти проблемы успешно преодолеваются путем использования АВР, при котором перерыв электроснабжения составляет меньше одной секунды.

Анализ напряжения на основной питающей линии осуществляется специальным измерительным органом. В его состав входит реле контроля напряжения (РКН) вместе с измерительным трансформатором и всеми его цепями. Значение высоковольтного напряжения преобразуется во вторичную величину от 0 до 100В, после чего оно поступает в обмотку контрольного реле, выполняющего функцию пускового органа. Очень важно правильно настроить уставки РКН с учетом низкого уровня срабатывания контрольного реле.

При нормальной работе схемы электропитания оборудования, РКН занимается отслеживанием этого режима. Однако, как только напряжение исчезает, происходит переключение контактов РКН и подача сигнала на электромагнит, запускающий резервный выключатель. Все действия происходят в определенной последовательности, при которой срабатывают силовые элементы. Данный алгоритм закладывается в логику управления АВР в процессе ее создания и настройки.

Автоматика повторного включения

На каждой ЛЭП имеется защита, отслеживающая параметры электроэнергии в режиме реального времени. В случае какой-либо неисправности питание линии быстро отключается силовым выключателем. Своевременно принятые меры предотвращают дальнейшее распространение аварии, однако электроснабжение потребителей будет прервано. Обратное включение напряжения происходит в несколько этапов автоматикой повторного включения, работающей автоматически или ручным способом с участием оперативного персонала и соблюдение заданного алгоритма.

АПВ начинает работать сразу же после того как защита отключит линию электропередачи. Подача напряжения на линию будет выполнена не сразу же после отключения, а в течение определенного времени, в течение которого кратковременные причины аварии самоликвидируются, например, птица, пораженная током, упадет на землю.

Отрезок времени для ликвидации кратковременной аварии составляет в среднем от 2 до 4 секунд. По завершении этого временного промежутка, происходит автоматическая подача напряжения на катушку включения и последующий ввод линии в действие. Существует два варианта включения, которое в данной ситуации может быть успешным или неуспешным. В первом случае неисправность благополучно самоликвидировалась, и потребители могут даже не заметить кратковременного отключения.

При неудачном включении неисправность продолжает иметь место и защита вновь отключает ЛЭП. Следующая попытка автоматического повторного включения происходит через 15-20 секунд с целью повышения достоверности информации.

Если же и вторая попытка не принесла желаемого результата и защита вновь отключила линию, следовательно, неисправность является устойчивой требующей визуальной оценки и ремонта с привлечением специалистов. Такая линия не должна включаться под нагрузку, пока все повреждения не будут устранены выездной бригадой. После этого напряжение подается вручную, после многократных проверок, гарантирующих отсутствие неисправности.

electric-220.ru

РЗиА для чайников (Страница 1) — Спрашивайте

Ильшат пишет:

Помогите выбрать устройство релейной защиты для РУ6кВ. Реле SIPROTEC, REF, SEPAM - в чем преимущества и недостатки? Какие есть новинки?

Сейчас заклюют, но ничего личного.

Ну тоже отметиться - в России я бы Механотронику поставил бы, я о них слышал стабильно хорошие отзывы. Из минусов - компания явно игнорирует существование интернета (к данной теме не относится).

SIPROTEC - хорошие и надёжные ящики. Из минусов - если хочется не совсем стандартной логики (за пределами матрицы) то надо пользоваться сименсовской CFC логикой, то ещё удовольствие. Также отсутствует "живая" отлада логики. В сухом остатке - реле очень даже неплохие, но функционально 4-я серия бедновата. Хотят денег за ПО.

REFы - очень даже фееричненько так, много функций и наворотов. Наверное даже слишком. Не работая с этими реле постоянно, понять, что происходит внутри их практически невозможно. Также всеобщей любовью и популярностью пользуются те, кто не возвращает на место компьютерный кабель от этих реле, потому что он совсем специальный и ужасно дорогой. В общем, ящики хорошие, но слишком европейские. Достаточно недавно ненавороченное ПО стало бесплатным.

SEPAM - неплохие, но какие-то они сами по себе, свои собственные. Очень напоминают конструктор ЛЕГО, так как обычно надо устанавливать дополнительные внешние модули. По слухам, иногда достают с проблемами. ЕМНИМС, ПО поставляется на диске вместе с реле.

Micom'ы - P122, 123, 124. Простые реле, функционал заточен под простые применения. Первые версии имели привычку массово сыпаться после семи лет.С положительный стороны - реле очень легко заменить, так как само реле имеет выдвижную конструкцию. Если производитель улучшил надежность, то я бы ставил. Простое и бюджетное решение за свои деньги. ПО бесплатное.

GE 750/760 - очень хороший кандидат. Функционально существенно богаче MiCom'ов и также имеет выдвижную легкозаменяемую конструкцию. ПО бесплатное. Рекомендую.

SEL-351S. Тут всё очень просто - десятилетняя беспроблемная гарантия плюс очень хороший функционал, живая отладка логики.  Лучшее предложение в данном ценовом диапазоне. Но не все ячейки КРУ позволяют разместить реле шириной 19 дюймов. Ненавороченное ПО бесплатное - но нужна регистрация как пользователя.

SEL-751A. Помещается в любую ячейку, богато функционально, но статистики у меня по нему нет.

Contre le passé y'a rien à faire, il faudrait changer les héros, dans un monde où le plus beau reste à faire... (DB)

www.rzia.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта