Eng Ru
Отправить письмо

Типовые релейные схемы. Релейные схемы


Типовые релейные схемы

Наиболее широкое применение получили следующие типовые релейные схемы:

1. Самоблокировки.

2. Взаимной блокировки.

3. Экономичного включения.

4. Искробезопасного включения.

5. Замедления (реле времени).

В схеме самоблокировки реле при кратковременном замыкании кнопки SB1 Пуск реле срабатывает (рис. 7.6) и своим замыкающим контактом блокирует цепь питания этой кнопки, благодаря чему последующее отпускание кнопки SB1 не приведет к отключению реле. Для отключения реле необходимо разорвать общую цепь питания нажатием кнопки SB2.

Схема взаимной блокировки, показанная на рис.7.7, не допускает одновременного включения реле, так как в цепь обмотки каждого реле введен размыкающий контакт другого реле.

Рис. 7.6. Релейная схема самоблокировки

Необходимость взаимной блокировки встречается в схемах, предохраняющих от возможной аварии. Например, одно реле служит для включения двигателя в прямом направлении вращения, а другое — на реверс.

Рис. 7.7. Релейная схема взаимной блокировки

Рис. 7.8. Схема и график экономичного включения реле

На рис.7.8 показаны схема и график экономичного включения реле. Если в обычных схемах реле срабатывает при напряжении срабатывания Uср и остается в этом состоянии при таком напряжении за счет цепи самоблокировки, то в рассматриваемой схеме реле, срабатывающее также при напряжении Uср, при отпускании кнопки SB1 остается в рабочем состоянии через цепь резистора R при напряжении Uр. На графике видно, что Uср> Uр, поэтому и потребление энергии в рабочем состоянии реле намного меньше, чем в ранее рассмотренных схемах. Необходимым условием работы схемы является Uр> Uот, в противном случае при отпускании кнопки SB1 реле будет отключаться.

Отличительная особенность схемы искробезопасного включения реле, широко применяющейся в различной рудничной и шахтной аппаратуре автоматизации (рис. 7.9), заключается в том, что цепь питания реле осуществляется искробезопасным напряжением Uиск.

Искробезопасные параметры цепи питания достигаются выполнением обмотки II проводом высокого удельного сопротивления или включением в цепь питания ограничительного резистора R2. В исходном положении при поданном питании реле К не работает, так как Uср> Uр. При нажатии кнопки SB1 реле срабатывает и остается во включенном состоянии. При этом выполняется соотношение Uср> Uр > Uот. Через обмотку реле протекает однополупериодный постоянный ток, второй полупериод закорачивается в цепи искробезопасного напряжения через диод VD1. Сопротивление обмотки реле однополупериодному току мало и реле работает устойчиво.

Рис. 7.9. Схема искробезопасного включения реле

При нажатии кнопки SB2 сопротивление обмотки реле для переменного тока возрастает, реле отключается и схема возвращается в исходное положение. Следует отметить, что когда работает реле К, диод VD1 переводит его в режим замедления — реле времени (за счет ЭДС самоиндукции, которая действует от однополупериодного тока в обмотке), что предотвращает вибрацию якоря реле.

На рис.7.10 показана схема замедления срабатывания реле с помощью шунтирования его обмотки конденсатором. В этом случае при замыкании ключа заряд конденсатора происходит за определенный промежуток времени.

Рис. 7.10. Схема замедления срабатывания реле

В схеме на рис.7.11 время отпускания реле увеличивается за счет того, что при размыкании ключа в цепи, состоящей из параллельного соединения обмотки реле, конденсатора и резистора, некоторое время сохраняется ток разряда конденсатора.

Рис. 7.11. Схема увеличения времени отпускания реле

Чтобы переходный процесс в этой цепи имел апериодический характер, применяют достаточно большую емкость конденсатора и большое значение сопротивления резистора.

studfiles.net

Типовые релейные схемы

Наиболее широкое применение получили следующие типовые релейные схемы:

1. Самоблокировки.

2. Взаимной блокировки.

3. Экономичного включения.

4. Искробезопасного включения.

5. Замедления (реле времени).

В схеме самоблокировки реле при кратковременном замыкании кнопки SB1 Пуск реле срабатывает (рис. 7.6) и своим замыкающим контактом блокирует цепь питания этой кнопки, благодаря чему последующее отпускание кнопки SB1 не приведет к отключению реле. Для отключения реле необходимо разорвать общую цепь питания нажатием кнопки SB2.

Схема взаимной блокировки, показанная на рис.7.7, не допускает одновременного включения реле, так как в цепь обмотки каждого реле введен размыкающий контакт другого реле.

Рис. 7.6. Релейная схема самоблокировки

Необходимость взаимной блокировки встречается в схемах, предохраняющих от возможной аварии. Например, одно реле служит для включения двигателя в прямом направлении вращения, а другое — на реверс.

Рис. 7.7. Релейная схема взаимной блокировки

Рис. 7.8. Схема и график экономичного включения реле

На рис.7.8 показаны схема и график экономичного включения реле. Если в обычных схемах реле срабатывает при напряжении срабатывания Uср и остается в этом состоянии при таком напряжении за счет цепи самоблокировки, то в рассматриваемой схеме реле, срабатывающее также при напряжении Uср, при отпускании кнопки SB1 остается в рабочем состоянии через цепь резистора R при напряжении Uр. На графике видно, что Uср> Uр, поэтому и потребление энергии в рабочем состоянии реле намного меньше, чем в ранее рассмотренных схемах. Необходимым условием работы схемы является Uр> Uот, в противном случае при отпускании кнопки SB1 реле будет отключаться.

Отличительная особенность схемы искробезопасного включения реле, широко применяющейся в различной рудничной и шахтной аппаратуре автоматизации (рис. 7.9), заключается в том, что цепь питания реле осуществляется искробезопасным напряжением Uиск.

Искробезопасные параметры цепи питания достигаются выполнением обмотки II проводом высокого удельного сопротивления или включением в цепь питания ограничительного резистора R2. В исходном положении при поданном питании реле К не работает, так как Uср> Uр. При нажатии кнопки SB1 реле срабатывает и остается во включенном состоянии. При этом выполняется соотношение Uср> Uр > Uот. Через обмотку реле протекает однополупериодный постоянный ток, второй полупериод закорачивается в цепи искробезопасного напряжения через диод VD1. Сопротивление обмотки реле однополупериодному току мало и реле работает устойчиво.

Рис. 7.9. Схема искробезопасного включения реле

При нажатии кнопки SB2 сопротивление обмотки реле для переменного тока возрастает, реле отключается и схема возвращается в исходное положение. Следует отметить, что когда работает реле К, диод VD1 переводит его в режим замедления — реле времени (за счет ЭДС самоиндукции, которая действует от однополупериодного тока в обмотке), что предотвращает вибрацию якоря реле.

На рис.7.10 показана схема замедления срабатывания реле с помощью шунтирования его обмотки конденсатором. В этом случае при замыкании ключа заряд конденсатора происходит за определенный промежуток времени.

Рис. 7.10. Схема замедления срабатывания реле

В схеме на рис.7.11 время отпускания реле увеличивается за счет того, что при размыкании ключа в цепи, состоящей из параллельного соединения обмотки реле, конденсатора и резистора, некоторое время сохраняется ток разряда конденсатора.

Рис. 7.11. Схема увеличения времени отпускания реле

Чтобы переходный процесс в этой цепи имел апериодический характер, применяют достаточно большую емкость конденсатора и большое значение сопротивления резистора.

studfiles.net

Типовые релейные схемы

Наиболее широкое применение получили следующие типовые релейные схемы:

1. Самоблокировки.

2. Взаимной блокировки.

3. Экономичного включения.

4. Искробезопасного включения.

5. Замедления (реле времени).

В схеме самоблокировки реле при кратковременном замыкании кнопки SB1 Пуск реле срабатывает (рис. 7.6) и своим замыкающим контактом блокирует цепь питания этой кнопки, благодаря чему последующее отпускание кнопки SB1 не приведет к отключению реле. Для отключения реле необходимо разорвать общую цепь питания нажатием кнопки SB2.

Схема взаимной блокировки, показанная на рис.7.7, не допускает одновременного включения реле, так как в цепь обмотки каждого реле введен размыкающий контакт другого реле.

Рис. 7.6. Релейная схема самоблокировки

Необходимость взаимной блокировки встречается в схемах, предохраняющих от возможной аварии. Например, одно реле служит для включения двигателя в прямом направлении вращения, а другое — на реверс.

Рис. 7.7. Релейная схема взаимной блокировки

Рис. 7.8. Схема и график экономичного включения реле

На рис.7.8 показаны схема и график экономичного включения реле. Если в обычных схемах реле срабатывает при напряжении срабатывания Uср и остается в этом состоянии при таком напряжении за счет цепи самоблокировки, то в рассматриваемой схеме реле, срабатывающее также при напряжении Uср, при отпускании кнопки SB1 остается в рабочем состоянии через цепь резистора R при напряжении Uр. На графике видно, что Uср> Uр, поэтому и потребление энергии в рабочем состоянии реле намного меньше, чем в ранее рассмотренных схемах. Необходимым условием работы схемы является Uр> Uот, в противном случае при отпускании кнопки SB1 реле будет отключаться.

Отличительная особенность схемы искробезопасного включения реле, широко применяющейся в различной рудничной и шахтной аппаратуре автоматизации (рис. 7.9), заключается в том, что цепь питания реле осуществляется искробезопасным напряжением Uиск.

Искробезопасные параметры цепи питания достигаются выполнением обмотки II проводом высокого удельного сопротивления или включением в цепь питания ограничительного резистора R2. В исходном положении при поданном питании реле К не работает, так как Uср> Uр. При нажатии кнопки SB1 реле срабатывает и остается во включенном состоянии. При этом выполняется соотношение Uср> Uр > Uот. Через обмотку реле протекает однополупериодный постоянный ток, второй полупериод закорачивается в цепи искробезопасного напряжения через диод VD1. Сопротивление обмотки реле однополупериодному току мало и реле работает устойчиво.

Рис. 7.9. Схема искробезопасного включения реле

При нажатии кнопки SB2 сопротивление обмотки реле для переменного тока возрастает, реле отключается и схема возвращается в исходное положение. Следует отметить, что когда работает реле К, диод VD1 переводит его в режим замедления — реле времени (за счет ЭДС самоиндукции, которая действует от однополупериодного тока в обмотке), что предотвращает вибрацию якоря реле.

На рис.7.10 показана схема замедления срабатывания реле с помощью шунтирования его обмотки конденсатором. В этом случае при замыкании ключа заряд конденсатора происходит за определенный промежуток времени.

Рис. 7.10. Схема замедления срабатывания реле

В схеме на рис.7.11 время отпускания реле увеличивается за счет того, что при размыкании ключа в цепи, состоящей из параллельного соединения обмотки реле, конденсатора и резистора, некоторое время сохраняется ток разряда конденсатора.

Рис. 7.11. Схема увеличения времени отпускания реле

Чтобы переходный процесс в этой цепи имел апериодический характер, применяют достаточно большую емкость конденсатора и большое значение сопротивления резистора.

studfiles.net

Логические схемы РЗА | Проект "РЗА"

Логическая схемаС появлением микропроцессорных терминалов и контроллеров в жизнь энергетиков прочно вошли логические схемы. Это наиболее точный способ описать принципы работы современной релейной защиты, когда на принципиальной схеме множество элементов заменены одним “черным ящиком”.

Если вы хотите работать релейщиком, то вам необходимо уметь читать логические схемы также хорошо, как и принципиальные. Скажу больше – если вы имеете дело с микропроцессорной защитой и автоматикой, то принципиальная схема не имеет никакого смысла без логической. Одна является обязательным продолжением другой.

К счастью, научиться читать логические схемы достаточно просто, особенно если вы раньше работали с “электромеханикой”. Это так потому, что логические элементы можно заменить на небольшие релейно-контактные схемы, которые может прочесть любой релейщик.

Сегодня мы поговорим как раз о том, как это сделать.

Итак, рассматриваем пять наиболее распространенных логических элементов, создаем их схемы замещения на привычных контактах и катушках реле, а после рассматриваем пример перевода большой логической схемы в электромеханическую.

Статья будет полезна как начинающим релейщикам, так и тем, кто переходит с “электромеханики” на микропроцессорную релейную защиту. Поехали!

Наличие сигнала на определенном участке логической схемы обозначается как “1”, а отсутствие – как “0”. Для релейно-контактной схемы аналогия будет следующая: “1” – наличие оперативного напряжения на участке цепи (например, на катушке реле), а “0” – отсутствие напряжения.

В обычных схемах оперативное напряжение подается на участок цепи при помощи контакта (реле, ключа, блок-контакта и т.д.) Это означает, что логические элементы можно заменить контактами, соединенными определенным образом. Сделаем это.

Самые распространенные элементы, которые вы найдете в любой логической схеме – это “ИЛИ”, “И”, “НЕ”, “ТРИГГЕР” и “ТАЙМЕР”. Пороговые элементы (сравнение с уставкой) пока трогать не будем, для упрощения.

Логическое сложение «ИЛИ»

Правило работы «ИЛИ»: если на каком-либо одном или на обоих входах есть логическая «1», то на выходе тоже появится «1».

Для пояснения приведем Табл.1, где в первом и втором столбцах указаны значения входных сигналов, а в третьем — значение выходного. Как видно, при наличии хотя бы одного входного сигнала, мы получаем сигнал на выходе.

Логическое сложение ИЛИ

Какой релейно-контактной схеме это соответствует? Конечно параллельному соединению контактов (см. Рис.1) При этом контакты имитируют наличие/отсутствие входного сигнала, а катушка реле — выходной сигнал.

Вместо катушки может быть подключен следующий элемент, если наш элемент «ИЛИ» не является последним.

Стоит отметить, что входных сигналов у элемента «ИЛИ» может быть 2 и более (неограниченно).

Логическое умножение «И»

Правило работы «И»: на выходе появится «1», только если на обоих входах будут логические «1», в противном случае на выходе всегда будет «0».

Логическое умножение "И"

Таблица 2 показывает зависимость между входными и выходными сигналами.

Элемент «И» соответствует последовательному соединению контактов — см. Рис.2

Логическая инверсия «НЕ»

Правило работы «НЕ»: если на входе присутствует «1», то на выходе будет «0», и наоборот. Инверсия меняет сигнал на противоположный.

Зависимости входного и выходного сигнала указаны в Табл. 3

Логическая инверсия НЕ

Построить релейно-контактную схему для элемента «НЕ» сложнее, чем для первых двух. Здесь требуется применить промежуточное реле Х, с нормальнозамкнутым контактом — см. схему на Рис. 3.

Когда контакт А замыкается, контакт Х размыкается и обесточивает катушку С. И наоборот. Таким образом, мы получили релейно-контактную схему замещения инверсии.

RS-триггер

Триггер является элементарной ячейкой памяти, т.е. этот элемент запоминает значение выходного сигнала даже при исчезновении входного.

Правила работы «RS-триггера»:

При появлении на входе S логической «1», на выходе Т появится «1», но только если на входе R будет логический «0» (нет сигнала). При исчезновении сигнала на входе S, сигнал на выходе Т останется равным «1», т.е. триггер запомнит свое состояние. Сигнал на выходе Т сбросится только тогда, когда мы подадим «1» на вход R.

Вход R обнуляет состояние триггера, т.е. когда на нем «1», то на выходе Т всегда «0», независимо от сигнала на входе S.

Можно еще сказать, что триггер «взводится» по S, а «сбрасывается» по R, причем приоритетным является именно вход R.

Триггер

Таблица 4 показывает зависимости сигналов на входах и выходе триггера. Обратите внимание, на то, что если на обоих входах триггера «0», то состояние на выходе мы знать не будем. Для этого нужно провести анализ предыдущих воздействий.

Схема замещения триггера приведена на Рис. 4. Эффект запоминания достигается применением схемы самоподхвата промежуточного реле. Когда контакт А замыкается, промежуточное реле Y одним своим контактом воздействует на выходное реле С, а другим подхватывает свое срабатывание. При этом реле Y остается сработавшим даже при размыкании контакта А.

Приоритетный сброс триггера организуется при помощи размыкающего контакта В (R),который включается последовательно с катушкой реле Y.

Таймер

Таймер соответствует схеме с реле времени на Рис. 5. Думаю, здесь подробные пояснения не нужны.

Таймер (схема логики)

Укрупненные схемы замещения

Если логическая схема состоит из нескольких элементов, то можно набирать релейно-контактную схему последовательно включая схемы замещения.

На Рис.6 показана схема замещения для последовательно включенных элементов «ИЛИ» и «НЕ»

Участок логической схемы

Построение комплексной схемы замещения

Ниже приведен видеоролик, в котором показан пример построения схемы замещения относительно большой логической схемы.

Заключение

Если вы имели дело только с электромеханическими реле, а теперь переходите на микропроцессорные терминалы, то вам необходимо уметь читать схемы логики. Любую логическую схему релейной защиты и автоматики можно преобразовать в релейно-контактную принципиальную схему. Для этого нужно последовательно соединить все схемы замещения логических элементов.

После преобразования вы сможете быстро прочитать логику терминала или контроллера и разобраться в их работе. Через несколько примеров вы научитесь читать логические схемы без дополнительных преобразований, что позволит эффективно работать с современной релейной защитой.

Такой метод достаточно трудоемкий для повседневной работы, но полезен на период обучения работе с МП РЗА.

pro-rza.ru

5.5. Релейные схемы

Учитывая, что tдв = 0,4...1,0tтрог , можно найти время срабатывания реле

tсраб =tдв +tтрог = (1,4...2,0)tтрог .

В момент снятия входного напряжения Е через базу транзисто-

ра протекает обратный ток Iбзап ≈ Eсм −Uбэ , способствующий

R2

быстрому запиранию транзистора. При уменьшении коллекторного тока до значения Iотп реле возвращается в исходное состояние.

При выборе транзистора следует учитывать, что напряжение на коллекторе закрытого транзистора может существенно превышать напряжение источника питания из-заЭДС обратного выброса, возникающей при запирании транзистора и направленной согласно напряжениюЕк . Для устранения обратного выброса коллекторного напряжения или колебательного процесса в коллекторной цепи параллельно обмотке реле включают диод, который отпирается, если напряжение наколлекторепревыситнапряжениеЕк, ишунтируетобмоткуреле.

Электронное контактное реле позволяет существенно уменьшить мощность управления, однако, быстродействие его ограничивается временем срабатывания и временем отпускания электромеханического реле, являющегося его составной частью. Поэтому в быстродействующих системах автоматического управления, как правило, применяются бесконтактные электронные реле, например триггер Шмитта, принципиальная схема которого и временнûе диаграммы, иллюстрирующие принцип работы, приведены на рис. 5.25, а,б.

В исходном состоянии при Еr = 0 транзистор VT1 закрыт, а VT2 открыт и находится в режиме насыщения. Условие насыщения

транзистора VT2 определяется соотношением Iб2 h31эmin ≥Iкн2. При рассмотрении триггера Шмитта индекс 2 относится к параметру

транзистора VT2, а индекс 1 — к параметру транзистора VT1 . Предполагая, что Rк1 +R1 >>Rк2,R2 >>Rэ, и пренебрегая об-

ратным током транзистора VT1, а также падением напряжения на переходах транзистора VT2, условие насыщения приближенно можно записать следующим образом:

 

 

 

 

 

U э2

 

 

Eк−U э2

 

Eк− U э2

 

 

 

 

h31эmin

 

 

 

 

 

 

 

 

,

R

к1

+ R

R

2

R

к2

 

 

1

 

 

 

 

 

 

studfiles.net

Релейные схемы (температура, звук, свет, влажность)

   Релейные схемы используются в системах авторегулирования: для поддержания заданной температуры, освещенности, влажности и т.д. Подобные схемы, как правило, похожи и в качестве обязательных узлов содержат датчик, пороговую схему и исполнительное или индикаторное устройство (см. список литературы). Релейные схемы реагируют на превышение контролируемого параметра над заданным (установленным) уровнем и включают исполнительное устройство (реле, электродвигатель, тот или иной прибор). Также возможно оповещение звуковым или световым сигналом о факте выхода контролируемого параметра за пределы допустимого уровня.

   Термореле (рис. 16.1) выполнено на основе триггера Шмитта. В качестве датчика температуры используется терморезистор (резистор, сопротивление которого зависит от температуры). Потенциометр R1 устанавливает начальное смещение на терморезисторе R2 и потенциометре R3. Его регулировкой добиваются срабатывания исполнительного устройства (реле К1) при изменении сопротивления терморезистора.

   

   Рис. 16.1

   В качестве нагрузки в этой и других схемах этой главы может быть использовано не только реле, но и слаботочная лампа накаливания. Можно включить светодиод с последовательным токоограничивающим резистором величиной 330…620 Ом, генератор звуковых колебаний, электронную сирену и т.д. При использовании реле контакты последнего могут включать любую электрически изолированную от цепи датчика нагрузку: нагревательный элемент либо, напротив, вентилятор.

   Для защиты выходного транзистора от импульсов напряжения, возникающих при коммутации обмотки реле (индуктивной нагрузки), необходимо включать параллельно обмотке реле полупроводниковый диод.

   Так, на рис. 16.1 анод диода должен быть соединен с нижним по схеме выводом обмотки реле, катод — с шиной питания. Вместо диода с тем же результатом может быть подключен стабилитрон или конденсатор.

   Термореле [МК 6/82-3] (рис. 16.4) имеет выходной каскад с самоблокировкой на тиристоре. Это приводит к тому, что после срабатывания схемы выключить сигнализацию можно только после кратковременного отключения питания устройства. Термореле (рис. 16.6), или, говоря точнее, термоиндикатор, выполнен по мостовой схеме [ВРЛ 83-24]. Когда мост сбалансирован, ни один из светодиодов не светится. Стоит температуре повыситься, включится один из светодиодов. Если температура, напротив, понизится, загорится другой светодиод. Чтобы различать, в какую сторону изменяется температура, для индикации ее повышения можно использовать светодиод красного свечения; для индикации понижения — светодиод желтого (или зеленого) свечения. Для балансировки схемы вместо резистора R2 лучше включить потенциометр.

   

   Рис. 16.2

   Фотореле (рис. 16.2) отличается от термореле (рис. 16.1) тем, что вместо терморезистора использован фоточувствительный прибор (фотодиод или фотосопротивление). Схема фотореле, показанная на рис. 16.5, содержит двухкаскадный усилитель постоянного тока, выполненный на транзисторах разного типа проводимости. При изменении электрического сопротивления фотодиода и, соответственно, смещения на базе транзистора VT1, увеличится коллекторный ток выходного транзистора усилителя VT2, и напряжение на резисторе R2 возрастет. Как только это напряжение превысит напряжение пробоя порогового элемента — полупроводникового стабилитрона VD2, включится оконечный каскад на транзисторе VT3, управляющий работой исполнительного механизма (реле). Использование в схеме порогового элемента (полупроводникового стабилитрона) повышает четкость срабатывания фотореле.

   Фотореле (рис. 16.7) является таковым не в полной мере, поскольку реагирует на изменение освещенности плавным изменением частоты генерируемых колебаний [B.C. Иванов]. В то же время это устройство может работать совместно с измеряющими частоту приборами, частотно-избирательными реле, сигнализировать высотой звукового сигнала об изменении освещенности, что может быть весьма актуально для слабовидящих (см. также рис. 6.9).

   

   Рис. 16.3

   Реле влажности или реле уровня жидкости (рис. 16.3) так же, как и некоторые из вышеприведенных схем (см., например, рис. 16.1, 16.2) выполнено на основе триггера Шмитта [МК 2/86-22]. Порог срабатывания устройства устанавливают регулировкой потенциометра R3. Контакты датчика влажности выполнены в виде медного (Си) и железного (Fe) стержней, погруженных в землю. При изменении содержания влаги в земле электропроводность среды и сопротивление между электродами меняются. С увеличением смещения на базе транзистора VT1 он открывается. Коллекторный и эмиттерный токи транзистора возрастают, что приводит к росту напряжения на потенциометре R3 и, соответственно, к переключению триггера. Реле срабатывает. Устройство может быть настроено на уменьшение электропроводности земли ниже заданной нормы. Тогда, при срабатывании исполнительного устройства, включается система автоматического полива земли (растений).

   

   Рис. 16.4

   

   Рис. 16.5

   

   Рис. 16.6

   

   Рис. 16.7

   

   Рис. 16.8

   Реле времени (рис. 16.8) описано в книге П. Величкова и В. Христова (Болгария). Кратковременное нажатие на кнопку SA1 разряжает времязадающий конденсатор С1 и устройство начинает «отсчет времени». В процессе заряда конденсатора напряжение на его обкладках плавно увеличивается. В итоге, через некоторое время реле сработает, и включится исполнительное устройство. Скорость заряда конденсатора, а, следовательно, и время выдержки (время экспозиции) можно изменять потенциометром R1. Реле обеспечивает максимальное время экспозиции до 10 сек при указанных на схеме параметрах элементов. Это время может быть увеличено за счет увеличения емкости конденсатора С1, либо сопротивления потенциометра R1.

   Стоит отметить, что для столь простых схем «аналоговых» таймеров стабильность временного интервала невелика. Кроме того, нельзя до бесконечности наращивать емкость времязадаю-щего конденсатора, поскольку заметно возрастает его ток утечки. Такой конденсатор неприемлем в схемах «аналоговых» таймеров. Существенно увеличить время экспозиции за счет сопротивления потенциометра R1 также нельзя, поскольку входное сопротивление последующих каскадов, если только они не выполнены на полевых транзисторах, невелико.

   Аналоговые таймеры (реле времени) широко используют при фотопечати, для задания времени выполнения каких-либо процедур. Несколько схем таймеров рассмотрено в главах 18 и 25. Эти устройства используются, например, для получения воды, ионизированной серебром.

   Реле напряжения (рис. 16.9, 16.10) используются для контроля заряда или разряда элементов питания, аккумуляторов, контроля напряжения питания, поддержания напряжения на заданном уровне. Схемы, описанные в книге П. Величкова и В. Христова, предназначены для контроля разряда (рис. 16.9) или перезаряда (рис. 16.10) аккумулятора.

   

   Рис. 16.9

   

   Рис. 16.10

   При необходимости напряжение срабатывания этих устройств может быть изменено. Порог срабатывания задается типом стабилитрона. Для изменения в небольших пределах порога срабатывания подобных реле последовательно со стабилитроном можно включать 1 — 3 германиевых Щ9) или кремниевых (КД503, КД102) диодов в прямом направлении.

   Катоды диодов должны «смотреть» в сторону базы входного транзистора. Германиевый диод смещает порог срабатывания примерно на 0,3 В, а кремниевый — на 0,5 В. Для цепочки из двух, трех диодов эти значения удваиваются (утраиваются). Промежуточные значения напряжений можно получить при последовательном включении германиевого и кремниевого диодов (0,8 В).

   

   Рис. 16.11

   

   Рис. 16.12

   Акустическое реле (рис. 16.11, 16.12) используют для контроля уровня шума, а также в составе систем охранной сигнализации [Б.С. Иванов, М 2/96-13]. Помимо прочего, такие схемы часто используют в системах связи — в устройствах голосового управления каналом связи. Так, при разговоре автоматически и без вмешательства оператора происходит переключение радиостанции или линии связи с приема на передачу. Устройство содержит датчик звукового сигнала — микрофон, в качестве которого можно использовать обычный микротелефонный капсюль, усилитель низкой частоты, детектирующее и исполняющее (релейное) устройство.

   Коэффициент усиления УНЧ определяет чувствительность акустического реле. На микрофон может быть установлен звукоулавливающий рупор для повышения направленных свойств акустического реле. Резонансный фильтр, включенный после УНЧ, позволяет акустическому реле реагировать только на звук определенной частоты и игнорировать остальные звуки.

   

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

nauchebe.net

logicheskie_elementy

1.1. Логические элементы

Различают комбинационные схемы и цифровые автоматы. В комбинационных схемах состояние на выходе в данный момент времени однозначно определяется состояниями на входах в тот же момент времени. Комбинационными схемами, например, являются логические элементы И, ИЛИ, НЕ и их комбинации. В цифровом автомате состояние на выходе определяется не только состояниями на входах в данный момент времени, но и предыдущим состоянием системы. К цифровым автоматам относятся триггеры.

Логическими элементами называются элементы, выполняющие логические операции И, ИЛИ, НЕ и комбинации этих операций. Указанные логические операции можно реализовать с помощью контактно-релейных схем и с помощью электронных схем. В настоящее время в подавляющем большинстве применяется электронные логические элементы, причем электронные логические элементы входят в состав микросхем. Имея в распоряжении логические элементы И, ИЛИ, НЕ, можно сконструировать цифровое электронное устройство любой сложности. Электронная часть любого компьютера состоит из логических элементов.

Система простых логических функций, на основе которой можно получить любую логическую функцию, называется функционально полной.

Отсюда следует, что для построения логического устройства любой сложности достаточно иметь однотипные логические элементы, например, И-НЕили ИЛИ-НЕ.

Логические элементы могут работать в режимах положительной и отрицательной логики. Для электронных логических элементов в режиме положительной логики логической единице соответствует высокий уровень напряжения, а логическому нулю - низкий уровень напряжения. В режиме отрицательной логики логической единице соответствует низкий уровень напряжения, а логическому нулю - высокий.

Для контактно-релейных схем в режиме положительной логики логической единице соответствует замкнутый контакт ключа или реле, а логическому нулю - разомкнутый. Светящийся индикатор (лампочка, светодиод) соответствует логической единице, а несветящийся - логическому нулю.

Логические элементы, реализующие для режима положительной логики операцию И, для режима отрицательной логики выполняют операцию ИЛИ, и наоборот. Так, например, микросхема, реализующая для положительной логики функции элемента 2И-НЕ, будет выполнять для отрицательной логики функции элемента 2ИЛИ-НЕ.

Как правило, паспортное обозначение логического элемента соответствует функции, реализуемой "положительной логикой". Логические элементы И, ИЛИ, НЕ имеют один выход, число входов логических элементов И, ИЛИ может быть любым начиная с двух. Логические элементы И и ИЛИ, выпускаемые в составе микросхем, обычно имеют 2, 3, 4, 8 входов. В названии элемента первая цифра указывает число входов.

Прежде всего, рассмотрим реализацию логических элементов с помощью контактно-релейных схем. Рассмотрим логический элемент 2И. Он выполняет операцию логического умножения. На рисунке 1.1,а приведена контактно-релейная схема логического элемента 2И для режима положительной логики.

Обозначение логического элемента 2И на принципиальных схемах показано на рисунке 1.1,б. Знак & (амперсант) в левом верхнем углу прямоугольника указывает, что это логический элемент И.Первые две буквы обозначенияDD1.2указывают на то, что это цифровая микросхема, цифра слева от точки указывает номер микросхемы на принципиальной схеме, а цифра справа от точки – номер логического элемента в составе данной микросхемы.

Функционирование логического элемента обычно задают таблицей истинности. Контактно-релейная схема логического элемента 2И (режим положительной логики) позволяет легко составить таблицу истинности этого элемента. Так как микросхема имеет для подачи входных сигналов два входа, то возможны 22=4 различных комбинации входных сигналов.Необходимо проанализировать состояние лампочки при различных положениях тумблеров Sa1, Sa2, т.е. рассмотреть 4 различных комбинации состояний тумблеров (рис. 1.1,в).

Введение понятия активного логического уровня существенно облегчает анализ функционирования сложных цифровых устройств. Активным логическим уровнем на входе элемента (логический нуль, логическая единица) называется такой уровень, который однозначно задает состояние на выходе элемента независимо от логических уровней на остальных входах элемента. Активный логический уровень на одном из входов элемента определяет уровень на его выходе. Уровни, обратные активным, называются пассивными логическими уровнями.

Активным логическим уровнем для элементов И является логический нуль. Пусть, например, имеем логический элемент 8И. Необходимо проанализировать 28=256 различных состояний для составления таблицы истинности этого элемента. Воспользуемся понятием активного логического уровня. Если хотя бы на одном из входов этого элемента будет активный логический уровень, то состояние на выходе элемента определено однозначно и нет необходимости анализировать состояния на остальных входах элемента.

Таким образом, таблицу истинности логического элемента 8И можно свести к двум строчкам: на выходе этого элемента будет логическая единица, если на всех входах будут сигналы логической единицы и на выходе будет логический нуль, если хотя бы на одном из входов элемента будет сигнал логического нуля.

Логический элемент 2ИЛИ выполняет логическую операцию логического сложения у=х1+х2. Контактно-релейная схема элемента приведена на рисунке 1.2,а, а его условное обозначение – на рисунке 1.2,б. Знание контактно-релейной схемы элемента позволяет составить таблицу истинности (рис.1.2,в). Лампочка будет гореть, если замкнуты контакты хотя бы одного тумблера, т.е. активным логическим уровнем для элементов ИЛИ является уровень логической единицы.

Логический элемент НЕ выполняет операцию отрицания, и для этого элемента проще составить сразу таблицу истинности, а не вычерчивать сначала контактно-релейную схему, а затем по ней составлять таблицу истинности. Для логических элементов И и ИЛИ проще сначала вычертить контактно-релейную схему, а уже потом составлять таблицу истинности.

Напомним алгоритм работы электромагнитного реле с нормально замкнутыми контактами: при отсутствии электрического тока через обмотку реле контакты реле замкнуты, а при протекании достаточного тока через обмотку реле контакты реле разомкнуты. Контактно релейная схема элемента НЕ приведена на рисунке 1.3а, а его условное обозначение – на рисунке 1.3б.

Проанализируем работу контактно-релейной схемы логического элемента НЕ (рис. 1.3а). Если контакты ключа Sa1 разомкнуты, то через обмотку К электромагнитного реле ток протекать не будет. Контакты К1.1 (цифра слева от точки указывает номер реле на принципиальной схеме, а цифра справа – номер контактной группы данного реле) будут замкнуты (электромагнитное реле с нормально замкнутыми контактами). Электрическая лампочкаHL1 в этом случае будет гореть, что для режима положительной логики будет означать логическую единицу. При замкнутых контактах ключаSa1 (на входе элемента логическая единица) через обмотку реле протекает ток, достаточный для размыкания контактов К1.1, поэтому лампочка перестает гореть (логический нуль). В результате анализа мы получили, что сигнал на выходе элемента противоположен сигналу на входе, т.е. если на входе элемента сигнал логической единицы, то на выходе элемента сигнал логического нуля и наоборот (рис. 1.3,в).

При анализе работы логических элементов следует помнить о режиме их работы (режим положительной или отрицательной логики). Логические элементы, реализующие для режима положительной логики операцию И, для

режимаотрицательной логики выполняют операцию ИЛИ и наоборот. Решим следующую задачу.

Задача.Какую логическую операцию выполняет контактно-релейная схема, приведенная на рисунке 1.4.

Правильным ответом в этой задаче будет следующий. Указанная контактно-релейная схема выполняет операцию 3И для режима положительной логики и 3ИЛИ для режима отрицательной логики (решение обосновать самостоятельно).

В практической работе широко используются комбинации логических элементов и особенно элементы И-НЕ и ИЛИ-НЕ. Рассмотрим подробнее контактно-релейную схему элемента 2ИЛИ-НЕ, приведенную на рисунке 1.5,а. Условное обозначение элемента на принципиальных схемах показано на рисунке 1.5,б. Заполним таблицу истинности, приведенную на рисунке 1.5в. Если оба ключа разомкнуты (Х1=0, Х2=0), то лампочка HL1 горит, что соответствует логической единице на выходе элемента (Y=1). Замкнем контакты ключаSa1 (Х1=1), оставляя ключSa2 разомкнутым (Х2=0). ЛампочкаHL1 в этом случае не горит (Y=0). Если замкнут хотя бы один ключ, то лампочка не горит. Следовательно, активным логическим уровнем на входе элемента ИЛИ-НЕ является уровень логической единицы.

Для двух аргументов логического элемента возможны 16 логических функций. В данном пособии рассматриваются логические функции: логическое И, логическое ИЛИ, логическое НЕ, логическое И-НЕ, логическое ИЛИ-НЕ, сумма по модулю 2.

В таблице 1.1 приведены условные обозначения элементов 2И, 2ИЛИ, НЕ, 2И-НЕ, 2ИЛИ-НЕ, исключающее ИЛИ (сумма по модулю 2), условные обозначения выполняемых этими элементами логических операций, таблицы их истинности и контактно-релейные схемы. При анализе контактно-релейной схемы элемента исключающее ИЛИ необходимо учитывать, что положения переключателейSA1 иSA2 в таблице 1.1 соответствуют логическим единицам (верхнее положение подвижного контакта переключателя соответствует логической единице), т.е. Х1=1 и Х2=1. ЛампочкаHL1 горит лишь в том случае, когда подвижный контакт одного из переключателей находится в верхнем положении, а подвижный контакт второго переключателя в нижнем положении. Из анализа работы данной контактно-релейной схемы получаем таблицу истинности элемента исключающее ИЛИ.

Рассмотрим решение следующей задачи: имея в распоряжении логические элементы 2И-НЕ, сконструировать устройство, реализующее операцию 3ИЛИ-НЕ для режима положительной логики. Эту задачу решим в два этапа. Сначала сконструируем устройство, выполняющее операцию 3И-НЕ для режима положительной логики (рис. 1.6,а), а потом на входах и выходе элемента 3И-НЕ установим логические элементы НЕ (рис. 1.6,б).

По мере развития вычислительной техники электронные логические элементы совершенствовались. Рассмотрим принципиальную схему логического элемента 2И (рис. 1.7,а), построенного на диодах и резисторах. Для простоты рассмотрения будем считать, что напряжение логического «0» на входе элемента равно 0 В, а напряжение логической «1» - 5 В. Внутреннее сопротивление вольтметра значительно больше сопротивления резистора R1.

Вспомним особенности вольтамперной характеристики полупроводникового кремниевого диода небольшой мощности. При обратном напряжении ток, протекающий через диод, составляет десятые доли микроампера. Напряжение на диоде при протекании через него в прямом направлении тока в десятки миллиампер, равно приблизительно 0,7-0,8 В.Определим примерно параметрылогических уровней на выходах данного элемента, если на входе действуют логические уровни с указанными ранее параметрами. Если на оба входа поданы напряжения логических «1», то токи через диодыVD1 иVD2 не протекают, и напряжение на выходе элемента при условии, что сопротивление нагрузки значительно больше сопротивления резистораR1, будет примерно равно напряжению питания. Если хотя бы один из входов элемента соединить с минусовым проводом источника питания, то на выходе элемента в случае кремниевых диодов будет напряжение 0,7 - 0,8 В (зависит от сопротивления резистораR1 и напряжения источника питания).

Примечание: для рассмотренного логического элемента логическая «1» на входе будет, если вход никуда не подключен или подключен к плюсовому выводу источника питания.

На рисунке 1.7,б приведена схема простого и удобного в работе стенда для исследования диодно-резистивного логического элемента 2И. Светодиоды VD3-VD5 являются индикаторами логических сигналов на входах и выходе логического элемента. ВольтметрVпозволяет определить напряжения логической единицы и логического нуля. Для диодно-резистивного логического элемента 2И напряжение логического нуля на выходе примерно 0,7-0,8 В, а напряжение логической единицы чуть меньше напряжения на зажимах источника питания (определяется соотношением сопротивлений резистораR1 и нагрузки).

На рисунках 1.8,а и 1.8,б приведены схемы для исследования диодно-резистивного логического элемента 2ИЛИ. Для этого элемента напряжение логического нуля на выходе равно 0 В, а напряжение логической единицы равно напряжению питания минус 0,7-0,8 В.

Следующим этапом совершенствования элементной базы цифровой техники было создание логических элементов диодно-транзисторной логики.

Рассмотримпринципиальную схему логического элемента 2И-НЕ диодно-транзисторной логики (рис. 1.9,а).

Для понимания принципа работы логического элемента 2И-НЕ диодно-транзисторной логики необходимо знать, какой вид имеет зависимость тока коллектора транзистора от напряжения база-эмиттер при постоянном напряжении эмиттер- коллектор. Эта характеристика имеет примерно такой же вид, как и прямая ветвь вольтамперной характеристики полупроводникового диода. Для кремниевых транзисторов при напряжении база-эмиттер (в прямом направлении) менее 0,5 В ток в цепи коллектор-эмиттер практически равен нулю при любых допустимых напряжениях коллектор-эмиттер (транзистор закрыт, сопротивление между коллектором и эмиттером закрытого транзистора VТ1 может достигать единиц МОм). При незначительном увеличении напряжения база-эмиттер (в прямом направлении) более 0,5 В ток коллектора значительно увеличивается, говорят, что транзистор открывается.

Диоды VD1,VD2 и резистор R1 (рис. 1.9,а) образуют логический элемент 2И. Роль инвертора выполняет транзистор VT1. Если транзистор закрыт, то ток в цепи: плюс источника питания, резистор R2, коллектор-эмиттер транзистора VT1, минус источника питания не протекает и напряжение между эмиттером и коллектором транзистора будет равно напряжению на зажимах источника питания. ДиодыVД3,VД4 необходимы для надежного закрытия транзистораVТ1, когда хотя бы на одном из входов элемента было напряжение логического нуля.

Если на обоих входах Х1, Х2 присутствуют сигналы логических единиц, транзистор VT1 открывается током базы, протекающим по цепи: плюс источника питания, резисторR1, диодыVD3,VD4, переход база-эмиттер транзистораVT1, минус источника. На выходе элемента будет напряжение 0,1-0,2 В, что соответствует логическому нулю.

На рисунке 1.9,б приведен вариант логического элемента 2И-НЕ на транзисторах. Инвертор на транзисторе VT1 не обеспечивает большую нагрузочную способность, поэтому в качестве инверторов применяют более сложные схемы. Сложный инвертор в микросхемах транзисторно-транзисторной логики будет рассмотрен чуть позже. Сейчас остановимся на принципе работы инверторов, схемы которых приведены на рисунке 1.10.

Рассмотрим делитель напряжения (делитель напряжения источника питания) образованного резистором R3 и цепью коллектор-эмиттер транзистораVТ1 (рис.1.10,а). Если на входе элемента логическая единица (подвижный контакт переключателяSA1 в верхнем положении), то транзисторVT1 открыт и в его коллекторной цепи протекает ток. Напряжение между коллектором и эмиттером транзистора составляет десятые доли вольта (не более 0,4 В). При логическом нуле на входе элемента транзистор закрыт и напряжение на выходе элемента равно напряжению питания, что соответствует логической единице.

На рисунках 1.10,б и 1.10,в приведены схемы инверторов с использованием полевых транзисторов. Напомним устройство и принцип действия полевых транзисторов. Существуют следующие виды полевых транзисторов: полевые транзисторы с управляющим p-nпереходом, полевые транзисторы с изолированным затвором со встроенным каналом, полевые транзисторы с изолированным затвором с индуцированным каналом.

Полевые транзисторы называются также униполярными, одноканальными. Полевой транзистор в отличие от биполярного имеет большое входное сопротивление по цепи управления. Ток в выходной цепи полевого транзистора управляется напряжением, в то время как в биполярном транзисторе ток в выходной цепи транзистора управляется током во входной цепи транзистора. Таким образом, мощность управления в полевом транзисторе значительно меньше, чем в биполярном.

Полевой транзистор имеет 3 вывода: исток, сток, затвор. Исток – это вывод полевого транзистора, от которого основные носители заряда идут в канал. Сток – это вывод полевого транзистора, к которому идут основные носители заряда из канала. Затвор - это вывод полевого транзистора, на который подается управляющее напряжение относительно истока или относительно стока.

Наибольшее распространение имеют схемы включения транзистора с общим истоком, когда управляющее напряжение подается на затвор относительно истока.

В вычислительной технике в качестве электронных ключей широко используются полевые транзисторы с изолированным затвором с индуцированным каналом. Рассмотрим устройство и принцип действия полевого транзистора с изолированным затвором с индуцированным каналом n-типа (рис. 1.11). В полупроводникеp-типа сделаны два кармана с проводимостьюn-типа. Знакn+указывает на большую концентрацию электронов, что делается для уменьшения сопротивлений выводов стока и истока. Металлический затвор изолирован от кристалла полупроводника.

При напряжении затвор-исток, равном нулю, в цепи сток-исток ток не протекает при любых допустимых напряжениях сток-исток, так как образуются два p-nперехода, причем верхний подключен в обратном направлении.

Подадим на затвор относительно истока положительный потенциал. В полупроводниках p-типа имеются неосновные носители заряда (электроны). Рассмотрим движение электронов и дырок в слое полупроводникаp-типа, прилежащем к затвору. Для упрощения рассмотрения соединим областьp-типа с выводом истока. Под действием электрического поля, обусловленного наличием напряжения затвор – исток, дырки будут двигаться вправо, а электроны влево, т.е. в полупроводнике в приграничной к затвору области концентрация дырок уменьшается, а концентрация электронов увеличивается. При определенном напряжении затвор-исток в указанной области концентрация электронов станет больше концентрации дырок, наступит инверсия проводимости, т.е. в приграничной к затвору области появится слой полупроводникаn-типа. В этом случае в цепи сток-исток протекает ток, т.к. между выводами стока и истока появился каналn-типа. Этот канал называется индуцированным (наведенным).

Для понимания принципа работы логических элементов на полевых транзисторах необходимо знать, что собой представляет стоко-затворная характеристика полевого транзистора. Стоко-затворная характеристика полевого транзистора в схеме включения с общим истоком (исток является общим для входной и выходной цепи) - это зависимость тока стока от напряжения затвор-исток при постоянном напряжении сток-исток. Эта характеристика полевого транзистора с изолированным затвором с индуцированным каналом n-типа приведена на рисунке 1.12. Особенности стоко-затворных характеристик полевых транзисторов с изолированным затвором с индуцированным каналом позволяют использовать эти транзисторы в качестве электронных ключей. Сравним основные характеристики электронного ключа на полевом транзисторе с характеристиками механического ключа. Сопротивление разомкнутого механического ключа можно считать бесконечно большим (пока не наступит электрический пробой),сопротивление ключа на полевом транзисторе порядка 10 МОм. Когда контакты механического ключа замкнуты сопротивление между контактами составляет сотые доли ома, для такого же состояния полевого транзистора сопротивление между стоком и истоком сотни Ом.

Если на входе инвертора, схема которого приведена на рисунке 1.10,б, напряжение логической единицы, то сопротивление между выводами сток и исток транзистора мало. Сопротивление резистора R1 выбирают значительно больше сопротивления между стоком и истоком открытого полевого транзистора и, следовательно, напряжение на выходе элемента будет близко к нулю вольт. При логическом нуле на входе логического элемента НЕ полевой транзистор будет закрыт, и на выходе элемента будет напряжение, примерно равное напряжению источника питания. Это обусловлено тем, что сопротивление резистораR1 выбирают во много раз меньше сопротивления между стоком и истоком закрытого транзистора.

Рассмотрим принцип работы инвертора (логического элемента НЕ) КМОП (комплиментарный, металл, окисел, полупроводник) структуры (рис. 1.10,в). Комплиментарный означает дополняющий друг друга по типу проводимости. Микросхемы КМОП имеют транзисторы как с каналом p-типа, так и с каналомn-типа. Учтем, что сопротивление между выводами сток-исток открытого транзистора - 200-300 Ом, а сопротивление между выводами сток-исток закрытого транзистора более 10 МОм.

Выберем напряжение питания 9 В. Пусть на вход Х подано напряжение логического «0», тогда транзистор VТ2 будет закрыт, а транзисторVТ1 открыт, так как потенциал затвора транзистораVТ1 относительно истока этого же транзистора равен минус 9В. На выходе элемента логическая единица.

Подадим на вход Х напряжение, соответствующее логической единице. Для рассмотренного случая это + 9 В относительно общего провода. В этом случае транзистор VТ2 будет открыт, а транзисторVТ1 – закрыт и на выходе элемента будет напряжение логического нуля.

studfiles.net


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта