Eng Ru
Отправить письмо

Схема простого реле времени на транзисторе КТ814. Реле времени простое


Простое реле времени для начинающих 2.

Реле времени, схема которого приведена в предыдущей статье, устроено просто но его можно изменить для более удобного использования заменив переключатель кнопкой. Рассмотрим схему:

Рисунок 1 - Реле времени

Теперь конденсатор постоянно подключён к базе. После нажатия на кнопку SB1 конденсатор C1 начнёт заряжаться через резистор R1, транзистор VT1 в первый момент времени после нажатия на кнопку будет закрыт, после того как конденсатор С1 зарядится, до некоторого напряжения, откроется транзистор VT1, после этого конденсатор будет продолжать заряжаться до тех пор пока кнопка не будет отпущена. Если сопротивление резистора R1 будет достаточно низким то это произойдёт достаточно быстро для того чтобы этого не было заметно и показалось что транзистор открывается и включает реле сразу после нажатия на кнопку. После отпускания кнопки конденсатор будет некоторое время (время задержки) разряжаться через R2 и базу VT1 удерживая транзистор VT1 в открытом состоянии, через обмотку реле K1 будет протекать ток и контакты K1.1 этого реле будут замкнуты в течении времени задержки. Время при котором контакты замкнуты = времени задержки + (время удерживания кнопки - время заряда конденсатора до открытия транзистора на столько чтобы контакты K1.1 замкнулись). Время задержки - это время в течении которого конденсатор разряжается до напряжения (для данной схемы примерно 0.68В) при котором происходит разъединение контактов K1.1. Т.к. сопротивление база-эмиттер изменяется при изменении напряжения то рассчитать точное время задержки очень непросто но можно попытаться (программа для расчёта времени заряда/разряда конденсатора на странице: RC-цепь.). Если Сопротивление резистора R1 будет достаточно высоким то можно регулировать длительность задержки изменением длительности удерживания кнопки (ещё один плюс данной схеме по сравнению с предыдущей). Время задержки в данной схеме примерно 25с но его можно увеличить увеличением ёмкости конденсатора C1.
КАРТА БЛОГА (содержание)

electe.blogspot.com

Как сделать простое реле времени своими руками, пайка схемы задержки времени.

 

 

 

Тема: как собрать устройство, которое включается через заданный промежуток времени.

 

Порой возникает необходимость в отсроченном включении или выключении тех или иных электроприборов. Существуют специальные электронные схемы задержки времени срабатывания, которые называются реле времени. Их задача сводится к тому, что после своего ключения (подачи питающего напряжения на саму схему) они ждут определенное время, по истечению которого происходит их срабатывание и замыкание управляющих контактов обычного реле, что стоит внутри их схемы. Эти контакты являются ключами, что уже могут управлять включением или выключением различных сторонних электрических устройств, нуждающиеся в подобной задержки времени. Время задержки можно выставить изначально специальным переменным резистором, который находится на самом корпусе реле времени.

 

В этой статье я хочу предложить вашему вниманию достаточно простую схему электронного реле времени, что питается от напряжения 12 вольт. И в общих чертах поясню принцип работы данной схемы задержки времени. Вот сама принципиальная схема.

 

 

Итак, время задающими элементами в этой схеме являются переменный резистор R1 и конденсатор  C1. После подачи на схему электропитания величиной 12 вольт оно начинает постепенно перераспределяться между этими элементами. То есть, изначально конденсатор C1 находится в разряженном состоянии, на нем напряжение равно нулю, и все, поданное на схему, напряжение оседает на резисторе R1. С течением времени C1 начинает накапливать электрический заряд, напряжение на нем начинает постепенно увеличиваться, в то время как на R1 оно уменьшается (идет перераспределение). Напряжение на конденсаторе C1 достигнув определенной величины способствует открыванию транзистора VT1.

 

 

Как известно, чтобы биполярный кремниевый транзистор перешел из закрытого состояния (не пропускал ток через переход коллектор-эмиттер) в открытое (начал пропускать ток через переход коллектор-эмиттер) нужно чтобы на переходе база-эмиттер появилось некое напряжение насыщения транзистора, равное где-то в среднем 0,6 вольт. Так вот, получается следующее, время задающий конденсатор постепенно накапливает на себе электрический заряд (скорость заряда зависит от величины сопротивления R1, чем он больше, тем дольше будет заряжаться C1). Напряжение на C1 постепенно увеличивается, а поскольку параллельно конденсатору стоит цепь, состоящая из транзисторного перехода база-эмиттер, резистора R2 и R3, то это напряжение увеличивается и на этих элементах.

 

И как только на базо-эмиттерном переходе VT1 напряжение достигло величины 0,6 вольт, транзистор перешел в открытое состояние, через его переход коллектор-эмиттер пошел ток, после чего произошло открытие и транзистора VT2. И у второго транзистора, после его открытия, пошел ток через его коллекторно-эмиттерных переход, что способствовало включению реле K1. Данное реле после своего срабатывания замкнуло (или разомкнуло) свои контакты и привело в действие ту электрическую цепь, что нужно было включить или выключить с определенной задержкой времени.

 

Стоит обратить внимание, что на схеме параллельно катушки реле K1 стоит диод VD1. Включение у него обратное (плюс диода подключен к минусу питания, а минус диода на плюс питания). Зачем нужен этот диод? Дело в том, что у любых катушек существует такое свойство как самоиндукция. То есть, если мы подадим напряжение на катушку, а потом резко его снимем, то на концах данной катушки образуется ЭДС самоиндукции (сгенерируется некоторая величина напряжения, которое в значительной степени может превышать напряжение, что было подано изначально). Этот возникший всплеск напряжения легко может негативно повлиять на чувствительные элементы электрической схемы. В нашем случае могут выйти из строя транзисторы VT1 и VT2. Роль диода VD1 заключается как раз в закорачивании этого всплеска ЭДС самоиндукции. Он как бы гасит ЭДС на себе, защищая схему.

 

Итак, схема отработала цикл, контакты реле включили или выключили ту электрическую цепь, которая нуждалась в задержке времени срабатывания. Для того, чтобы схему сбросить, нужно, либо отключить от нее питание, либо же нажать кнопку S1, которая замкнет конденсатор C1 и обнулит его электрический заряд (напряжение сведя к нулю). После отпускания кнопки S1 реле времени начнет новый отсчет времени, после чего опять сработает. Кнопка S1 должна быть без фиксации, иначе реле времени после своего включения так и не начнет отсчет времени.

 

В принципе данная схема простого реле времени особо не капризна к величине напряжения своего питания. Она будет нормально работать и при 9 вольтах, и при 15. Тогда нужно будет поставить реле, у которого катушка будет рассчитана на величину подаваемого напряжения питания. Кроме этого нужно еще учесть, что в данной схеме я поставил маломощное реле, его катушка потребляет всего 50 миллиампер. Эта катушка стоит последовательно с транзистором VT2 (его переходом коллектор-эмиттер). Максимальный ток данного транзистора 100 миллиампер. То есть, у транзистора есть достаточный запас по коллекторному току. Если же в схему поставить более мощное реле, у которого катушка будет потреблять более 100 миллиампер (да и на пределе, чтобы было, не желательно), то скорее всего транзистор VT2 не выдержит и сгорит. В таком случае в место него нужно поставить более мощный, например КТ815 (у которого максимальный ток 1,5 ампер) или КТ817 (ток 3 ампера).

 

Вот наглядное видео, где я собираю данную схему реле времени своими руками.

 

 

P.S. Например, когда я ставил C1 с емкостью в 100 мкф и R1 с сопротивлением в 100 Ом, то время задержки включения данного реле времени было около 3 секунд. Следовательно, чем больше емкость конденсатора и чем больше сопротивление резистора, тем длительнее задержку можно получить. Экспериментируйте, подбирайте нужные времязадающие элементы, наслаждайтесь работой схемы. Эта схема после своей сборки сразу же начинает нормально работать, если конечно все детали годные и находятся в рабочем состоянии!

 

electrohobby.ru

Простое реле времени для начинающих.

Реле времени может быть одним из самых простых, в изготовлении, электронных устройств, но не смотря на это у начинающих радиолюбителей (электротехников, электронщиков и т.д.) могут возникать трудности при его изготовлении. Нет ничего страшного если что то не получается с первого раза. Однако при работе с высоким напряжением очень важна осторожность и внимательность. Напряжение не выше 24В безопасно. Простое реле времени можно изготовить с одним биполярным транзистором, для этого понадобятся детали:   Мультиметром можно определить назначения выводов диода: Мультиметром можно определить активное сопротивление обмотки реле:
Отношение напряжения питания к активному сопротивлению обмотки не должно быть больше максимального тока коллектора Iкmax используемого транзистора (для КТ315 Iкmax=100мА=0.1А). Мультиметром можно, также как и диод, проверить транзистор: После проверки деталей можно собирать устройство по схеме:

Рисунок 1 - Реле времени

Принцип работы схемы прост:

Когда переключатель S1 находится в положении "заряд" (см. рисунок 1) конденсатор С1 заряжается через резистор R1 (сопротивление этого резистора не должно быть слишком низким). Если при заряженном конденсаторе C1 переключатель перевести в положение "вкл." (см. рисунок 1) то этот конденсатор будет разряжаться через резистор R2 и базу транзистора VT1. При разряде конденсатора контакты реле будут замкнуты до тех пор пока ток коллектора не станет достаточно низким для того чтобы произошло разъединение контактов.

КАРТА БЛОГА (содержание)

electe.blogspot.com

Схема простого реле времени на транзисторе КТ814

September 16, 2012 by admin Комментировать »

   

   Реле времени, схема которого изображена на рис. 11.1, собрано на одном мощном кремниевом транзисторе типа КТ814А. Вместо указанного на схеме типа транзистора VT1 можно использовать КТ818 с любой буквой, а также старого типа, например, П202 или П213. Установку выдержки времени производят с помощью резисторов R1 и R2, при этом выдержки времени получаются от 1 до 60 секунд. Устройство работает следующим образом. После нажатия кнопки SA1 происходит заряд конденсатора С1 до величины напряжения источника питания. Отжатие кнопки приводит к разряду конденсатора С1 на цепь, состоящую из резисторов R1…R4, участка транзистора база-эмиттер и резистора R5.

   

   Рис. 11.1. Принципиальная схема реле времени

   И как видно из схемы время разряда определяется указанными элементами. Разрядный ток конденсатора, протекающий через транзистор, вызывает увеличение тока коллектора и приводит к срабатыванию реле К1, контакты которого включают сигнал, извещающий о начале установленного интервала времени. По прошествии установленного интервала времени ток разряда конденсатора уменьшается, что приводит к уменьшению коллекторного тока транзистора и возвращению реле в исходное состояние. В схеме резистор R2 обеспечивает выдержку 1…10 с, R1 — свыше 60 с. Если подобрать сопротивления, входящих в схему резисторов, то можно получить другие необходимые интервалы времени. Реле К1 типа РЭС-10 (паспорт РС4.524.302) с током срабатывания 22 мА и рабочее напряжение 24…36 В. Кнопка SA1 может быть любого типа, лишь бы устройство замыкания контактов отвечало схеме реле. Налаживание устройства заключается в установке тока срабатывания реле изменением резисторов, входящих в схему. Перед наладкой реле делают круглые шкалы для переменных резисторов R1 и R2, на которых в процессе налаживания наносят времена выдержек.

   

Литература: В.М. Пестриков. Энциклопедия радиолюбителя.

nauchebe.net

Простое электронное реле времени CAVR.ru

Рассказать в: Е.Л. Яковлев, г. Ужгород  РА 62010Схем электронных реле времени в массовой радиотехнической литературе было опубликовано уже достаточно много. При этом каждый из авторов старался предельно упростить свою конструкцию и применить в ней самые современные на то время радиокомпоненты. К сожалению, не все авторы проводили предварительное макетирование своих разработок. Только этим можно объяснить появление в печати недостаточно проработанных материалов.В одном из последних номеров журнала «Радио-Мир» [1] была опубликована схема для задержки выключения света в подсобных помещениях. Конструкция заинтересовала своей простотой, но при ее макетировании оказалось, что по своему прямому назначению она неработоспособна - после отпускания кнопки включения света SB1 «ПУСК» лампа накаливания мгновенно потухала.Даже простейший анализ схемы рис.1 Простое электронное реле времени CVAVR CAVR AVR CodeVision cavr.ru показывает, что в ней имеются, как минимум, две принципиальных ошибки. Первая и основная состоит в подключении диода однополупериодного выпрямителя VD1 к аноду симистора VS1. Если авторы [1] предполагали, что лампа EL1 в одном из режимов схемы «таки светится», то следовало бы учесть и то, что нецелесообразно значительно задерживать момент ее отпирания относительно моментов перехода сетевым напряжением через нуль - иначе упадет яркость свечения лампы. Допустим, за время задержки отпирания симистора VS1 амплитуда напряжения сети и на входе выпрямителя VD1, соответственно, возрастет от нуля до 50.. .60 В. При значении балластного сопротивления резисторов R1-R2 5 кОм амплитуда тока нагрузки составляет даже не 10 мА, а намного меньше, т.к. диод VD1 -однополупериодный выпрямитель. Возможное эффективное значение тока нагрузки выпрямителя будет и того меньше, поскольку диодом VD1 в схеме рис.1 выпрямляются достаточно кратковременные импульсы с анода симистора.На макете первоначально выпрямитель был заменен источником постоянного напряжения 8 В.Он подключался к схеме электромеханического реле (на транзисторах VT1-VT2 и электромагнитном реле К1) вместо стабилитрона VD2. Стабилитрон на время из схемы выпаивался, а сеть 220 В в это время, естественно, на схему не подавалась. Время задержки выключения света в устройстве определяется параметрами времязадающей цепочки C1-R5. Если требуется задержка на 1...1,5 мин, а емкость С1 равна 100 мкФ, то величина R5 должна быть не 15 кОм, как это было обозначено на рис.1 в [1], а не менее 1 МОм. Это необходимое для схемы условие, но, увы, недостаточное.Авторы применили в схеме реле К1 типа РЭС55А (паспорт 601). По справочнику [2] это реле (РС4.569.600-01) имеет сопротивление обмотки геркона около 380 Ом. Значит при напряжении питания 8 В, ток обмотки должен быть порядка 20 мА. Такой ток выпрямитель схемы рис.1 при свечении лампы EL1 не обеспечивает. Возможно, авторы [1] возлагали надежды на «помощь» конденсатора С2 в обеспечении работы реле. Но, емкость 50 мкФ малоэффективна при низкоомной обмотке реле. Это показал эксперимент.В первую очередь в схеме рис.2 анод диода VD1 был соединен непосредственно с сетевым проводом. Простое электронное реле времени CVAVR CAVR AVR CodeVision cavr.ru Поскольку однополупериодный выпрямитель на диоде VD1 заряжает накопительный конденсатор С1 через резистор R5, то и величина этого резистора была увеличена до 1 МОм. Схема стала работоспособной. Действующий макет показан на фото 1. Временная задержка схемы выключения света при испытаниях макета составила около 35 сек. Задержку можно было увеличивать, например, за счет увеличения емкости конденсатора С1, но выявился технологический недостаток схемы - балластные сопротивления R1-R2 сильно нагреваются в процессе нахождения схемы под напряжением. Целесообразной была замена резисторов типа МЛТ-2 на импортные спрессованные керамикой 5-ти ваттные - фото 2. Простое электронное реле времени CVAVR CAVR AVR CodeVision cavr.ruНа макете использовались отечественные симисторы типа КУ208Г - см. фото 1 и импортные см. фото 2. Одновременно для более надежного запирания симистора VS1 его управляющий переход был шунтирован резистором R6, а силовая цепь симистора - резистором C3-R7. Это желательно сделать, если, например, в качестве нагрузки симистора будет использоваться не только лампа накаливания, но и двигатель вентилятора.Для повышения надежности работы транзисторов схемы обмотка реле Р1 зашунтирована обратносмещенным диодом VD3.Схема рис.2 работоспособна, но не оптимальна из-за нагрева резисторов R1-R2 во время нахождения под напряжением 220 В. Исключить нагрев балластного сопротивления стабилитрона VD2 можно при использовании конденсатора С1 -рис.3. Простое электронное реле времени CVAVR CAVR AVR CodeVision cavr.ru Резистор R1 ограничивает ток заряда этого конденсатора при включении устройства в сеть, а резистор R2 обеспечивает разряд этого конденсатора после отключения схемы таймера. Внешний вид макета показан на фото 3. Простое электронное реле времени CVAVR CAVR AVR CodeVision cavr.ruУвеличив номинал конденсатора С1, например, до 0,68... 1,5 мкФ можно повышать и ток, потребляемый схемой таймера от конденсатора фильтра питания С2. При этом возможно надо будет увеличить емкость этого конденсатора и учесть, что возрастет и нагрев стабилитрона VD1 при работе таймера.В данной схеме стабилитрон VD1 используется как стабилизатор напряжения питания схемы таймера в отрицательные полупериоды сетевого напряжения и как обычный диод для возможности работы конденсатора С1 в данной схеме. Для облегчения температурного режима стабилитрона без замены маломощного типа (Д814Д) более мощным, например, Д815Д, единственная пара включающих контактов реле Р1 подает питание в схему выпрямителя питания таймера только на относительно короткое время его работы 1 ...1,5 мин. «Малое» количество групп контактов в использованном реле - всего одна у реле типа JZC-20F (4088) DC 12V - привело к необходимости использования для управления симистором VS1 напряжения питания реле Р1.В принципе, схема рис.3 была промежуточным вариантом в поиске и отработки схем электронных таймеров заданной выдержки времени, поэтому приводить топографию ее печатной платы и фотографию собранного макета нецелесообразно. Результаты экспериментов показали, что от «механического» реле управления бесконтактным выключателем (симистором) надо перейти к оптопаре. Наиболее распространенными и доступными на радиорынках в настоящее время являются импортные МОС 3021 ...3023 и аналогичные. Даже их цена приближается к стоимости механических реле - 5...6 гривен. Многие из этих реле специально разрабатывались для управления мощными симисторами.В схеме рис.4 Простое электронное реле времени CVAVR CAVR AVR CodeVision cavr.ru выходная цепь оптопары U1 через ограничительный резистор R6 включена между выводами анода и управляющего перехода силового симистора VS1. проверка десяти экземпляров оптопар МОС3021...МОС3023 показала, что они отпираются при токе через светодиод 3,5...6 мА. Величина этого тока ограничивается в схеме рис.4 резистором R5.Значительно повысить входное сопротивление ключевого элемента таймера можно при замене биполярного транзистора VT1 полевым - рис.5.  Простое электронное реле времени CVAVR CAVR AVR CodeVision cavr.ruИзменяется и алгоритм работы времязадающего конденсатора СЗ. Теперь в длительных паузах между включениями выдержки времени для управления лампой накаливания EL1 этот конденсатор разряжен через резистор R3. В момент кратковременного нажатия кнопки SB1 «ПУСК» конденсатор СЗ быстро заряжается до напряжения стабилизации стабилитрона VD5 (8 В). Транзистор VT1, оптопара U1 и симистор VS1 отпираются. Лампа накаливания EL1 зажигается.После разряда конденсатора СЗ через резистор R3 до напряжения запирания транзистора VT1 симистор VS1 переходит в непроводящее состояние.Разряд конденсатор СЗ происходит медленно, поэтому также медленно изменяется и сопротивление канала полевого транзистора VT1. Падает ток через светодиод оптопары и определенный момент он становится меньше тока включения симистора оптопары.Лучшими релейными свойствами обладает схема рис.6. Простое электронное реле времени CVAVR CAVR AVR CodeVision cavr.ru В ней в качестве порогового элемента использован «интегральный стабилитрон» DA1 типаТL431. Известно, что для него пороговым напряжением включения/выключения является 2,5 В. Если напряжение на конденсаторе СЗ превышает 2,5 В, то выходной транзистор DA1 насыщен. Соответственно, через ограничительный резистор R5 и светодиод оптопары U1 протекает достаточный для отпирания симистора оптопары ток. Светодиод HL1 - индикаторный. Он предназначен для оперативной индикации работы схемы силового симистора VS1 во время проверки работоспособности устройства без подключения лампы EL1. Достоинствами схемы рис.6 являются:•  двухполупериодная   схема   выпрямителя (VD1...VD4), что позволяет снизить требования к величине емкости конденсатора С1;•  возможность получения в схеме больших выдержек времени за счет использования конденсатора СЗ большой емкости и увеличения сопротивления резистора R3;•  возможность для достижения больших выдержек без увеличения номиналов C3-R3 увеличить до 25 В напряжение на выходе стабилизатора питания схемы. При этом, естественно, надо будет использовать и более высоковольтный стабилитрон VD5, увеличить номинал резистора R5.На рис.7 показан рисунок печатной платы устройства, на рис.8 - расположение радиокомпонентов на ней, а на фото 4 - внешний вид собранного макета. Простое электронное реле времени CVAVR CAVR AVR CodeVision cavr.ru Простое электронное реле времени CVAVR CAVR AVR CodeVision cavr.ru Простое электронное реле времени CVAVR CAVR AVR CodeVision cavr.ruСледует отметить, что при экспериментальной проверке макета, когда были схемно запрограммированы большие выдержки времени таймера, наблюдалось понижение яркости свечения лампы накаливания EL1 непосредственно перед ее погасанием. Объяснением этому является, хоть и небольшое, но различие чувствительности симисторов U1 и VS1 к полярности приложенного к ним напряжения. Работе устройства задержки выключения света лампы накаливания это не мешает. Более того, это своеобразный визуальный сигнализатор того, что через пару секунд свечение EL1 вообще прекратится.Внимательное прочтение этой статьи призвано показать читателям, что процесс познания и совершенствования безграничны. И вполне возможно, что уже в ближайшее время другой автор создаст еще более совершенную собственную схему или модернизирует вышеописанную. Такова жизнь. Только следует помнить, что критерием истины является практика, а на заслуженную критику никогда не следует обижаться. Особенно, если она доброжелательная. Но, это понимание приходит к человеку с годами...Литература:1.  Партии Я., Партина Л., Задержка выключения света// Радиомир. - 2010. - №3. - С.34.2.  Игловский И.Г., Владимиров Г.В., Справочник по слаботочным реле // Ленинград. - ЭНЕРГО-АТОИЗДАТ - 1990. - С.493-497. Раздел: [Схемы] Сохрани статью в: Оставь свой комментарий или вопрос:

www.cavr.ru

Реле времени своими руками / Сделай сам / Коллективный блог

Принципиальная схема реле времени показана на рисунке. Принцип работы такого реле времени основывается на том, что время заряда, когда конденсатор полностью разряжен, определяется произведением емкости конденсатора на сопротивление цепи заряда. Если задать значение этого произведения путем выбора емкости и сопротивления, то будет можно получить нужное время заряда. Такое реле времени можно запросто собрать самому, так как в схеме нет диффицитных деталей. После того как к схеме подключен источник питания начинается заряд конденсатора С1, который идет через резисторы R2 и R3 и эмиттерный переход транзистора VT1. Заряд открывается и на резисторе R3 произойдет падение напряжения, это связано с протеканием через него эмиттерного тока. Этим падением напряжения отопрется транзистор VT2, и сработает электромагнитное реле К1. Которое своими контактами К1.1 подает питание к шине светодиода HL1. Электрический ток светодиода ограничивает резистор R4. По мере заряда напряжение на конденсаторе начнет нарастать, а так заряда наоборот будет уменьшаться. Соответственно, уменьшиться и ток эмиттера и также уменьшиться падение напряжения на резисторе R3. В итоге, на конденсаторе электрический ток заряда станет настолько мал, что транзистор VT1 запрется, за ним запирание произойдет на транзисторе VT2. В результате реле опуститься светодиод погаснет. Для последующего запуска реле времени будет нужно на короткое время нажать кнопку SB1, это нужно для полной разрядки конденсатора С1. Нужный временной промежуток, в течение которого реле К1 будет находиться в сработавшем состоянии, можно установить путем подбора емкости конденсатора и сопротивления резистора R2 и R3. Если реле времени имеет еще одну пару контактов, то их можно будет использовать для включения или выключения других потребителей. Но главное, чтобы вторая пара контактов была хорошо замкнута. Выбор типа реле нужно делать по величине его рабочего напряжения, которое обязано быть равным напряжению питания устройства. В нашей схеме, реле рассчитано на напряжение в 12 вольт.

Реле времени на микросхеме

Устройство отключает нагрузку через заданный промежуток времени. Диапазон - до 5 мин. Uпит.= 3В Мощность нагрузки до 120 Ватт

Сборка на плате

ВложениеРазмер
2.JPG55.12 КБ
1247170816_1-92-1[1].gif10.1 КБ
1247170891_1-92-2[1].jpg18.05 КБ

44kw.com

Простое электронное реле времени - Таймеры (влажность, давление) - Конструкции для дома и дачи

Е.Л. Яковлев, г. Ужгород  РА 6'2010Схем электронных реле времени в массовой радиотехнической литературе было опубликовано уже достаточно много. При этом каждый из авторов старался предельно упростить свою конструкцию и применить в ней самые современные на то время радиокомпоненты. К сожалению, не все авторы проводили предварительное макетирование своих разработок. Только этим можно объяснить появление в печати недостаточно проработанных материалов.В одном из последних номеров журнала «Радио-Мир» [1] была опубликована схема для задержки выключения света в подсобных помещениях. Конструкция заинтересовала своей простотой, но при ее макетировании оказалось, что по своему прямому назначению она неработоспособна - после отпускания кнопки включения света SB1 «ПУСК» лампа накаливания мгновенно потухала.Даже простейший анализ схемы рис.1  показывает, что в ней имеются, как минимум, две принципиальных ошибки. Первая и основная состоит в подключении диода однополупериодного выпрямителя VD1 к аноду симистора VS1. Если авторы [1] предполагали, что лампа EL1 в одном из режимов схемы «таки светится», то следовало бы учесть и то, что нецелесообразно значительно задерживать момент ее отпирания относительно моментов перехода сетевым напряжением через нуль - иначе упадет яркость свечения лампы. Допустим, за время задержки отпирания симистора VS1 амплитуда напряжения сети и на входе выпрямителя VD1, соответственно, возрастет от нуля до 50.. .60 В. При значении балластного сопротивления резисторов R1-R2 5 кОм амплитуда тока нагрузки составляет даже не 10 мА, а намного меньше, т.к. диод VD1 -однополупериодный выпрямитель. Возможное эффективное значение тока нагрузки выпрямителя будет и того меньше, поскольку диодом VD1 в схеме рис.1 выпрямляются достаточно кратковременные импульсы с анода симистора.На макете первоначально выпрямитель был заменен источником постоянного напряжения 8 В.Он подключался к схеме электромеханического реле (на транзисторах VT1-VT2 и электромагнитном реле К1) вместо стабилитрона VD2. Стабилитрон на время из схемы выпаивался, а сеть 220 В в это время, естественно, на схему не подавалась. Время задержки выключения света в устройстве определяется параметрами времязадающей цепочки C1-R5. Если требуется задержка на 1...1,5 мин, а емкость С1 равна 100 мкФ, то величина R5 должна быть не 15 кОм, как это было обозначено на рис.1 в [1], а не менее 1 МОм. Это необходимое для схемы условие, но, увы, недостаточное.Авторы применили в схеме реле К1 типа РЭС55А (паспорт 601). По справочнику [2] это реле (РС4.569.600-01) имеет сопротивление обмотки геркона около 380 Ом. Значит при напряжении питания 8 В, ток обмотки должен быть порядка 20 мА. Такой ток выпрямитель схемы рис.1 при свечении лампы EL1 не обеспечивает. Возможно, авторы [1] возлагали надежды на «помощь» конденсатора С2 в обеспечении работы реле. Но, емкость 50 мкФ малоэффективна при низкоомной обмотке реле. Это показал эксперимент.В первую очередь в схеме рис.2 анод диода VD1 был соединен непосредственно с сетевым проводом.  Поскольку однополупериодный выпрямитель на диоде VD1 заряжает накопительный конденсатор С1 через резистор R5, то и величина этого резистора была увеличена до 1 МОм. Схема стала работоспособной. Действующий макет показан на фото 1. Временная задержка схемы выключения света при испытаниях макета составила около 35 сек. Задержку можно было увеличивать, например, за счет увеличения емкости конденсатора С1, но выявился технологический недостаток схемы - балластные сопротивления R1-R2 сильно нагреваются в процессе нахождения схемы под напряжением. Целесообразной была замена резисторов типа МЛТ-2 на импортные спрессованные керамикой 5-ти ваттные - фото 2. На макете использовались отечественные симисторы типа КУ208Г - см. фото 1 и импортные см. фото 2. Одновременно для более надежного запирания симистора VS1 его управляющий переход был шунтирован резистором R6, а силовая цепь симистора - резистором C3-R7. Это желательно сделать, если, например, в качестве нагрузки симистора будет использоваться не только лампа накаливания, но и двигатель вентилятора.Для повышения надежности работы транзисторов схемы обмотка реле Р1 зашунтирована обратносмещенным диодом VD3.Схема рис.2 работоспособна, но не оптимальна из-за нагрева резисторов R1-R2 во время нахождения под напряжением 220 В. Исключить нагрев балластного сопротивления стабилитрона VD2 можно при использовании конденсатора С1 -рис.3.  Резистор R1 ограничивает ток заряда этого конденсатора при включении устройства в сеть, а резистор R2 обеспечивает разряд этого конденсатора после отключения схемы таймера. Внешний вид макета показан на фото 3. Увеличив номинал конденсатора С1, например, до 0,68... 1,5 мкФ можно повышать и ток, потребляемый схемой таймера от конденсатора фильтра питания С2. При этом возможно надо будет увеличить емкость этого конденсатора и учесть, что возрастет и нагрев стабилитрона VD1 при работе таймера.В данной схеме стабилитрон VD1 используется как стабилизатор напряжения питания схемы таймера в отрицательные полупериоды сетевого напряжения и как обычный диод для возможности работы конденсатора С1 в данной схеме. Для облегчения температурного режима стабилитрона без замены маломощного типа (Д814Д) более мощным, например, Д815Д, единственная пара включающих контактов реле Р1 подает питание в схему выпрямителя питания таймера только на относительно короткое время его работы 1 ...1,5 мин. «Малое» количество групп контактов в использованном реле - всего одна у реле типа JZC-20F (4088) DC 12V - привело к необходимости использования для управления симистором VS1 напряжения питания реле Р1.В принципе, схема рис.3 была промежуточным вариантом в поиске и отработки схем электронных таймеров заданной выдержки времени, поэтому приводить топографию ее печатной платы и фотографию собранного макета нецелесообразно. Результаты экспериментов показали, что от «механического» реле управления бесконтактным выключателем (симистором) надо перейти к оптопаре. Наиболее распространенными и доступными на радиорынках в настоящее время являются импортные МОС 3021 ...3023 и аналогичные. Даже их цена приближается к стоимости механических реле - 5...6 гривен. Многие из этих реле специально разрабатывались для управления мощными симисторами.В схеме рис.4  выходная цепь оптопары U1 через ограничительный резистор R6 включена между выводами анода и управляющего перехода силового симистора VS1. проверка десяти экземпляров оптопар МОС3021...МОС3023 показала, что они отпираются при токе через светодиод 3,5...6 мА. Величина этого тока ограничивается в схеме рис.4 резистором R5.Значительно повысить входное сопротивление ключевого элемента таймера можно при замене биполярного транзистора VT1 полевым - рис.5.  Изменяется и алгоритм работы времязадающего конденсатора СЗ. Теперь в длительных паузах между включениями выдержки времени для управления лампой накаливания EL1 этот конденсатор разряжен через резистор R3. В момент кратковременного нажатия кнопки SB1 «ПУСК» конденсатор СЗ быстро заряжается до напряжения стабилизации стабилитрона VD5 (8 В). Транзистор VT1, оптопара U1 и симистор VS1 отпираются. Лампа накаливания EL1 зажигается.После разряда конденсатора СЗ через резистор R3 до напряжения запирания транзистора VT1 симистор VS1 переходит в непроводящее состояние.Разряд конденсатор СЗ происходит медленно, поэтому также медленно изменяется и сопротивление канала полевого транзистора VT1. Падает ток через светодиод оптопары и определенный момент он становится меньше тока включения симистора оптопары.Лучшими релейными свойствами обладает схема рис.6.  В ней в качестве порогового элемента использован «интегральный стабилитрон» DA1 типаТL431. Известно, что для него пороговым напряжением включения/выключения является 2,5 В. Если напряжение на конденсаторе СЗ превышает 2,5 В, то выходной транзистор DA1 насыщен. Соответственно, через ограничительный резистор R5 и светодиод оптопары U1 протекает достаточный для отпирания симистора оптопары ток. Светодиод HL1 - индикаторный. Он предназначен для оперативной индикации работы схемы силового симистора VS1 во время проверки работоспособности устройства без подключения лампы EL1. Достоинствами схемы рис.6 являются:•  двухполупериодная   схема   выпрямителя (VD1...VD4), что позволяет снизить требования к величине емкости конденсатора С1;•  возможность получения в схеме больших выдержек времени за счет использования конденсатора СЗ большой емкости и увеличения сопротивления резистора R3;•  возможность для достижения больших выдержек без увеличения номиналов C3-R3 увеличить до 25 В напряжение на выходе стабилизатора питания схемы. При этом, естественно, надо будет использовать и более высоковольтный стабилитрон VD5, увеличить номинал резистора R5.На рис.7 показан рисунок печатной платы устройства, на рис.8 - расположение радиокомпонентов на ней, а на фото 4 - внешний вид собранного макета.   Следует отметить, что при экспериментальной проверке макета, когда были схемно запрограммированы большие выдержки времени таймера, наблюдалось понижение яркости свечения лампы накаливания EL1 непосредственно перед ее погасанием. Объяснением этому является, хоть и небольшое, но различие чувствительности симисторов U1 и VS1 к полярности приложенного к ним напряжения. Работе устройства задержки выключения света лампы накаливания это не мешает. Более того, это своеобразный визуальный сигнализатор того, что через пару секунд свечение EL1 вообще прекратится.Внимательное прочтение этой статьи призвано показать читателям, что процесс познания и совершенствования безграничны. И вполне возможно, что уже в ближайшее время другой автор создаст еще более совершенную собственную схему или модернизирует вышеописанную. Такова жизнь. Только следует помнить, что критерием истины является практика, а на заслуженную критику никогда не следует обижаться. Особенно, если она доброжелательная. Но, это понимание приходит к человеку с годами...Литература:1.  Партии Я., Партина Л., Задержка выключения света// Радиомир. - 2010. - №3. - С.34.2.  Игловский И.Г., Владимиров Г.В., Справочник по слаботочным реле // Ленинград. - ЭНЕРГО-АТОИЗДАТ - 1990. - С.493-497.

cxema.my1.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта