3.2 Принцип действия биполярного транзистора. Принцип действия биполярного транзистора3.2 Принцип действия биполярного транзистораПрименение транзистора для усиления электрических колебаний основано на его принципе дейст-вия как управляемого электронного прибора. В схеме включения транзистора (рис. 14) к эмиттерному переходу должно быть приложено прямое напряжение, а к коллекторному – обратное. Если на эмиттерном переходе нет напряжения, то через коллекторный переход протекает очень небольшой обратный ток Iкобр. По сравнению с рабочим током им можно пренебречь для упрощения рассуждений и считать, что в коллек-
электрическим полем коллекторного перехода в область коллектора. Происходит экстракция электро-нов под действием обратного напряжения из базы в коллектор. Движение электронов в процессе экс-тракции из базы в коллектор создает ток коллектораIк. Незначительная часть инжектируемых из эмиттера в базу электронов рекомбинирует в области базы с дырками, количество которых пополня-ется из внешней цепи от источника Еэ. За счет этого в цепи базы протекает ток базы Iб. Он очень мал из-за небольшой толщины базы и малой концентрации основных носителей заряда – дырок. При этих условиях число рекомбинаций, определяющих величину тока базы, невелико. Ток коллектора управляется током эмиттера: если увеличится ток эмиттера, то практически про-порционально возрастет ток коллектора. Ток эмиттера может изменяться в больших пределах при ма-
Iэ = Iк + Iб. Ток базы значительно меньше тока коллектора, поэтому для практических расчетов часто считают ток коллектора приближенно равным току эмиттера: Iк ≈ Iэ. Принцип действия p-n-p-транзистора аналогичен рассмотренному, но носителями заряда, создаю-щими токи через p-n-переходы в процессе инжекции и экстракции, являются дырки; полярность источ-ников Еэ и Ек должна быть изменена на противоположную, соответственно изменятся и направления токов в цепях. На основании рассмотренных процессов можно сделать вывод, что транзистор как управляемый прибор действует за счет создания транзитного (проходящего) потока носителей заряда из эмиттера через базу в коллектор и управления током коллектора путем изменения тока эмиттера. Таким обра- зом, биполярный транзистор управляется током. Ток эмиттера как прямой ток p-n-перехода значительно изменяется при очень малых изменениях напряжения на эмиттерном переходе и вызывает, соответственно, большие изменения тока коллектора.
Рис. 15 Обобщенная схема включения транзистора для усиления электрических колебаний трические колебания , подаваемые во входную цепь, называют управляющим, или усиливаемым, сигна-лом. Выходная цепь является главной цепью, в нее последовательно с источником Е2 включается на-грузка RH, на которой надо получить усиленный сигнал. Таким образом, обобщенная схема включения транзистора для усиления электрических колебаний представляет собой четырехполюсник. Транзистор имеет три электрода, из которых в схеме включения один – входной, другой – выход-ной, а третий – общий для цепей входа и выхода. В зависимости от того, какой электрод является об-щим, возможны три схемы включения транзистора – с общей базой (ОБ), общим эмиттером (ОЭ) и об-щим коллектором (ОК). В схеме, на которой рассматривался принцип действия транзистора (рис . 14), входной элек-трод – эмиттер, выходной – коллектор, а общий, входящий и в цепь входа, и в цепь выхода, – база; следовательно, это была схема ОБ. При любой схеме включения в каждой цепи постоянный ток проходит от плюса источника питания через соответствующие области транзистора к минусу источника питания. Стрелка эмиттера указывает направление проходящего через него тока. Во всех трех схемах сохраняется рассмотренный принцип действия транзистора, но свойства схем различны; они также отличаются характеристиками и параметрами. В любой схеме включения в каждой из двух цепей действует напряжение между двумя электродами и протекает ток: во входной цепи – Uвх
Характеристики транзистора представляют собой зависимость одной из этих величин от другой при неизменной третьей величине. Для того чтобы одну из электрических величин можно было поддержи-вать постоянной, в схему для снятия характеристик надо включить только источники питания; нагрузку
ния база-эмиттер при постоянном напряжении коллектор-эмиттер: Iб = f (Uбэ) при Uкэ = const. Выходные характеристики транзистора, включенного по схеме ОЭ, представляют собой зависи-мость тока коллектора от напряжения коллектор – эмиттер при постоянном токе базы: Iк = f (Uкэ) при Iб = const. Примерный вид семейства входных и выходных характеристик биполярного транзистора приведен на рис. 17 и 23. На рис. 17 изображено семейство из двух входных характеристик, снятых при различных напряже-ниях на коллекторе (Uкэ1< Uкэ2). Даже при значительно отличающихся коллекторных напряжениях входные характеристики качественно одинаковы и незначительно смещаются вправо с ростом Uкэ. Это говорит о наличии слабой связи между входными и выходными цепями биполярного транзистора. Начальный круто восходящий участок каждой из выходных характеристик биполярного транзисто-ра (рис. 18) является нерабочим. Это участок малого напряжения Uкэ, изменяющегося в пределах от 0 до 0,5...1,5 В. При малых значениях Uкэ, соизмеримых с величиной Uбэ, следует учитывать, что напряжение
Рис. 18 Семейство выходных вольтамперных характе-ристик биполярного транзистора Uкэ = 0, когда Uкб = Uбэ. По мере роста Uкэ это прямое напряжение уменьшается и становится равным нулю при Uкэ = Uбэ. Прямое напряжение на коллекторном пе-реходе препятствует прохождению через него из базы в коллектор неосновных но-сителей заряда, которые инжектируются в базу из эмиттера. Поэтому уменьшение прямого напряжения на коллекторном пе-реходе приводит к увеличению экстракции этих носителей из базы в коллектор, а это в свою очередь вызывает резкое возрастание тока коллектора. При Uкэ > Uбэ полярность Uкб изменя-ется на обратную для коллекторного пере-хода. Изменение напряжения Uкэ на этом участке характеристик мало влияет на ве- личину тока коллектора; рабочий участок характеристики идет полого. Увеличение коллекторного напряжения выше максимально допустимого приводит к пробою кол-лекторного перехода. Кроме рассмотренных семейств характеристик для некоторых практических расчетов представляют интерес еще две характеристики: проходная и прямой передачи. Проходная характеристика – это зависимость выходного тока от входного напряжения при посто-янном выходном напряжении. Для схемы ОЭ это зависимость тока коллектора от напряжения база-эмиттер при постоянном напряжении коллектор-эмиттер. Характеристикой прямой передачи называют зависимость выходного тока от входного. Для схемы с ОЭ это зависимость тока коллектора от тока базы при постоянном напряжении коллектора. studfiles.net 3 Биполярные транзисторы3.1 Принцип действия биполярного транзистора. Режимы работы.3.1.1 Общие сведенияБиполярным транзистором(БТ) называется трехэлектродный полупроводниковый прибор с двумя взаимодействующимиp-nпереходами, предназначенный для усиления электрических колебаний по току, напряжению или мощности. Слово “биполярный” означает, что физические процессы в БТ определяются движением носителей заряда обоих знаков (электронов и дырок). Взаимодействие переходов обеспечивается тем, что они располагаются достаточно близко - на расстоянии, меньшем диффузионной длины. Дваp-n-перехода образуются в результате чередования областей с разным типом электропроводности. В зависимости от порядка чередования различают БТ типа n-p-n(или со структуройn-p-n) и типаp-n-p(или со структуройp-n-p), условные изображения которых показаны на рисунке 3.1.
Структура реального транзистора типа n-p-nизображена на рисунке 3.2. В этой структуре существуют два перехода с неодинаковой площадью: площадь левого переходаn1+-pменьше, чем у перехода n2-p. Кроме того, у большинства БТ одна из крайних областей (n1с меньшей площадью) сечения легирована гораздо сильнее, чем другая крайняя область (n2).
Рисунок 3.2 Структура реального БТ типа n-p-n. Сильнолегированная область обозначена верхним индексом “+” (n+). Поэтому БТ является асимметричным прибором. Асимметрия отражается и в названиях крайних областей: сильнолегированная область с меньшей площадью (n1+) называетсяэмиттером, а областьn2-коллектором.Соответственно область (p) называется базовой (или базой). Правая областьn+ служит для снижения сопротивления коллектора. Контакты с областями БТ обозначены на рисунках 3.1 и 3.2 буквами: Э - эмиттер; Б - база; К- коллектор. Основные свойства БТ определяются процессами в базовой области, которая обеспечивает взаимодействие эмиттерного и коллекторного переходов. Поэтому ширина базовой области должна быть малой (обычно меньше 1 мкм). Если распределение примеси в базе от эмиттера к коллектору однородное (равномерное), то в ней отсутствует электрическое поле и носители совершают в базе только диффузионное движение. В случае неравномерного распределения примеси (неоднородная база) в базе существует “внутреннее” электрическое поле, вызывающее появление дрейфового движения носителей: результирующее движение определяется как диффузией, так и дрейфом. БТ с однородной базой называют бездрейфовыми, а с неоднородной базой -дрейфовыми. Биполярный транзистор, являющийся трехполюсным прибором, можно использовать в трех схемах включения: с общей базой (ОБ) (рисунок 3.3,а), общим эмиттером (ОЭ) (рисунок 3.3,б), и общим коллектором (ОК) (рисунок 3.3,в). Стрелки на условных изображениях БТ указывают (как и на рисунке 3.1) направление прямого тока эмиттерного перехода. В обозначениях напряжений вторая буква индекса обозначает общий электрод для двух источников питания. В общем случае возможно четыре варианта полярностей напряжения переходов, определяющих четыре режима работы транзистора. Они получили названия: нормальный активный режим, инверсный активный режим, режим насыщения (или режим двухсторонней инжекции) и режим отсечки.
В нормальном активном режиме(НАР) на эмиттерном переходе действует прямое напряжение (напряжение эмиттер - база UЭБ), а на коллекторном переходе - обратное (напряжение коллектор - база UКБ). Этому режиму соответствуют полярности источников питания на рисунке 3.4 и направления токов дляp-n-pтранзистора. В случаеn-p-nтранзистора полярности напряжения и направления токов изменяются на противоположные.
Рисунок 3.4 Физические процессы в БТ. Этот режим работы (НАР) является основным и определяет назначение и название элементов транзистора. Эмиттерный переход осуществляет инжекцию носителей в узкую базовую область, которая обеспечивает практически без потерь перемещение инжектированных носителей до коллекторного перехода. Коллекторный переход не создает потенциального барьера для подошедших носителей, ставших неосновными носителями заряда в базовой области, а, наоборот, ускоряет их и поэтому переводит эти носители в коллекторную область. “Собирательная” способность этого перехода и обусловила название “коллектор”. Коллектор и эмиттер могут поменяться ролями, если на коллекторный переход подать прямое напряжение UКБ, а на эмиттерный -обратное UЭБ. Такой режим работы называется инверсным активным режимом (ИАР). В этом случае транзистор “работает” в обратном направлении: из коллектора идет инжекция дырок, которые проходят через базу и собираются эмиттерным переходом, но при этом его параметры отличаются от первоначальных. Режим работы, когда напряжения на эмиттерном и коллекторном переходах являются прямыми одновременно, называют режимом двухсторонней инжекции (РДИ) или менее удачно режимом насыщения (РН). В этом случае и эмиттер, и коллектор инжектируют носители заряда в базу навстречу друг другу и одновременно каждый из переходов собирает носители, приходящие к нему от другого перехода. Наконец, режим, когда на обоих переходах одновременно действуют обратные напряжения, называют режимом отсечки (РО), так как в этом случае через переходы протекают малые обратные токи. Следует подчеркнуть, что классификация режимов производится по комбинации напряжений переходов, В схеме включения с общей базой (ОБ) они равны напряжениям источников питания UЭБиUКБ. В схеме включения с общим эмиттером (ОЭ) напряжение на эмиттерном переходе определяется напряжением первого источника (UЭБ= -UБЭ), а напряжение коллекторного перехода зависит от напряжений обоих источников и по общему правилу определения разности потенциалов UКБ= UКЭ+ UЭБ. Так как UЭБ= -UБЭ, тoUКБ= UКЭ- UБЭ; при этом напряжение источников питания надо брать со своим знаком: положительным, если к электроду присоединен положительный полюс источника, и отрицательным - в другом случае. В схеме включения с общим коллектором (ОК) напряжение на коллекторном переходе определяется одним источником: UКБ= -UБК. Напряжение на эмиттерном переходе зависит от обоих источников: UЭБ= UЭК+ UКБ= UЭК- UБК, при этом правило знаков прежнее. studfiles.net Принцип действия биполярного транзистора. Режимы работыОбщие сведения Биполярным транзистором (БТ) называется трехэлектродный полупроводниковый прибор с двумя взаимодействующими р-n-переходами, предназначенный для усиления электрических колебаний по току, напряжению или мощности. Слово «биполярный» означает, что физические процессы в БТ определяются движением носителей заряда обоих знаков (электронов и дырок). Взаимодействие переходов обеспечивается тем, что они располагаются достаточно близко – на расстоянии, меньшем диффузионной длины. Два p-n-перехода образуются в результате чередования областей с разным типом электропроводности. В зависимости от порядка чередования различают БТ типа п-р-п (или со структурой n-p-n) и типа р-п-р (или со структурой р-n-р), условные изображения которых показаны на рис. 5.1. Структура реального транзистора типа n-p-n изображена на рис. 5 2 В этой структуре существуют два перехода с неодинаковой площадью: площадь перехода n1-р меньше, чем у перехода n2-р. Кроме того, у большинства БТ одна из крайних областей (n1 с меньшей площадью) сечения легирована гораздо сильнее, чем другая крайняя область (n2). Поэтому БТ является асимметричным прибором. Асимметрия отражается и в названиях крайних областей: сильнолегированная область с меньшей площадью (n1) называется эмиттером, а область n2 – коллектором. Соответственно переход n1-р называют эмиттерным, а n2-p коллекторным. Средняя область (p) называется базовой (или базой). Контакты с областями БТ обозначены на рис. 5.2,а буквами: Э – эмиттер; Б –база; К– коллектор. Рабочей (активной) частью БТ является область объема структуры, расположенная ниже эмиттерного перехода (но заштрихована на рис. 5.2,а). Остальные (заштрихованные) участки структуры являются пассивными («паразитными»), обусловленными конструктивно-технологическими причинами. На рис. 5.2,б показана идеализированная структура БТ без пассивных областей, т.е. только активная часть транзистора, изображенная для удобства описания горизонтально. Сильнолегированная эмиттерная область обозначена верхним индексом «+» (n+), а нижние индексы 1 и 2 опущены. Основные свойства БТ определяются процессами в базовой области, которая обеспечивает взаимодействие эмиттерного и коллекторного переходов. Поэтому ширина базовой области должна быть малой (обычно меньше 1 мкм). Если распределение примеси в базе от эмиттера к коллектору однородное (равномерное), то в ней отсутствует электрическое поле и носители совершают в базе только диффузионное движение. В случае неравномерного распределения примеси (неоднородная база) в базе существует «внутреннее» электрическое поле, вызывающее появление дрейфового движения носителей: результирующее движение определяется как диффузией, так и дрейфом БТ с однородной базой называют бездрейфовыми, а с неоднородной базой – дрейфовыми. Биполярный транзистор, являющийся трехполюсным прибором, можно использовать в трех схемах включения: с общей базой (ОБ), общим эмиттером (ОЭ) и общим коллектором (ОК). На рис. 5.3 показаны эти схемы включения для р-n-р-транзистора. Стрелки на условных изображениях БТ указывают (как и на рис. 5.1) направление прямого тока эмиттерного перехода. В обозначениях напряжений вторая буква индекса обозначает общий электрод для двух источников питания. В общем случае возможно четыре варианта полярностей напряжения переходов, определяющих четыре режима работы транзистора. Они получили названия: нормальный активный режим, инверсный активный режим, режим насыщения (или режим двухсторонней инжекции) и режим отсечки. В нормальном активном режиме (НАР) на эмиттерном переходе действует прямое напряжение (напряжение эмиттер-база UЭБ), а на коллекторном переходе – обратное (напряжение коллектор-база UКБ). Этому режиму соответствуют полярности источников питания на рис. 5.5 и направления токов для p-n-p-транзистора. В случае n-p-n-транзистора полярности напряжения и направления токов изменяются на противоположные. Этот режим работы (НАР) является основным и определяет назначение и название элементов транзистора. Эмиттерный переход осуществляет инжекцию носителей в узкую базовую область, которая обеспечивает практически без потерь перемещение инжектированных носителей до коллекторного перехода. Коллекторный переход не создает потенциального барьера для подошедших носителей, ставших неосновными носителями заряда в базовой области, и поэтому переводит эти носители в коллекторную область. «Собирательная» способность этого перехода и обусловила название «коллектор». Коллектор и эмиттер могут поменяться ролями, если на коллекторный переход подать прямое напряжение UКБ, а на эмиттерный – обратное UЭБ. Такой режим работы называется инверсным активным режимом (ИАР) В этом случае транзистор «работает» в обратном направлении: из коллектора идет инжекция дырок, которые проходят через базу и собираются эмиттерным переходом. Режим работы, когда напряжения на эмиттерном и коллекторном переходах являются прямыми одновременно, называют режимом двухсторонней инжекции (РДИ) или менее удачно режимом насыщения (РН). В этом случае и эмиттер, и коллектор инжектируют носители заряда в базу навстречу друг другу, и одновременно каждый из переходов собирает носители, приходящие к нему от другого перехода. Наконец, режим, когда на обоих переходах одновременно действуют обратные напряжения, называют режимом отсечки (РО), так как в этом случае через переходы протекают малые токи. Наглядно связь режимов БТ с включением переходов показана на рис. 5.4. Следует подчеркнуть, что классификация режимов производится по комбинации напряжений переходов. В схеме включения с общей базой (ОБ) они равны напряжениям источников питания UЭБ и UКБ. В схеме включения с общим эмиттером (ОЭ) напряжение на эмиттерном переходе определяется напряжением первого источника (UЭБ = – UБЭ), а напряжение коллекторного перехода зависит от напряжений обоих источников и по общему правилу определения разности потенциалов. Так как UЭБ = – UБЭ, то UКБ = UКБ – UБЭ; при этом напряжение источников питания надо брать со своим знаком: положительным, если к электроду присоединен положительный полюс источника, и отрицательным – в другом случае. Всхеме включения с общим коллектором (ОК) напряжение на коллекторном переходе определяется одним источником: UКБ = – UБК. Напряжение на эмиттерном переходе зависит от обоих источников: UЭБ = UЭК + UКБ = = UЭК – UБК, при этом правило знаков прежнее.
Физические процессы в бездрейфовом биполярном транзисторе Основные физические процессы в идеализированном БТ удобно рассматривать на примере схемы с общей базой (рис. 5.5), так как напряжения на переходах совпадают с напряжениями источников питания. Выбор p-n-p-транзистора связан с тем, что направление движения инжектируемых из эмиттера носителей (дырок) совпадает с направлением тока. В нормальном активном режиме (НАР) на эмиттерном переходе действует прямое напряжение Uэб. Поэтому прямой ток перехода IЭ = IЭp + IЭn +IЭрек (5.1) где IЭp, IЭn – инжекционные токи дырок (из эмиттера в базу) и электронов (из базы в эмиттер), а IЭрек – составляющая тока, вызванная рекомбинацией в переходе тех дырок и электронов, энергия которых недостаточна для преодоления потенциального барьера (см. §3.5.1). Относительный вклад этой составляющей в ток перехода IЭ в (5.1) тем заметнее, чем меньше инжекционные составляющие IЭp и IЭn. определяющие прямой ток в случае идеализированного р-n-перехода. Если вклад IЭрек незначителен, то вместо (5.1) можно записать IЭ = IЭp + IЭn(5.2) Полезным в сумме токов выражения (5.1) является только ток IЭp, так как он будет участвовать в создании тока коллекторного перехода. «Вредные» составляющие тока эмиттера IЭn и IЭрек протекают через вывод базы и являются составляющими тока базы, а не коллектора. Поэтому вредные компоненты IЭn, IЭрекдолжны быть уменьшены. Эффективность работы змиттерного перехода учитывается коэффициентом инжекции эмиттера (5.3) который показывает, какую долю в полном токе эмиттера составляет полезный компонент. В случае пренебрежения током IЭрек (5.4) Коэффициент инжекции γЭтем выше (ближе к единице), чем меньше отношение IЭn / IЭp. Величина IЭn / IЭp << 1, если концентрация акцепторов в эмиттерной области p-n-p-транзистора NaЭ на несколько порядков выше концентрации доноров NдБ в базе (NaЭ >> NдБ). Это условие обычно и выполняется в транзисторах. Какова же судьба дырок, инжектированных в базу из эмиттера, определяющих полезный ток IЭp? Очевидно, что инжектированные дырки повышают концентрацию дырок в базе около границы с эмиттерным переходом, т.е. вызывают появление градиента концентрации дырок – неосновных носителей базы. Этот градиент обусловливает диффузионное движение дырок через базу к коллекторному переходу. Очевидно, что это движение должно сопровождаться рекомбинацией части потока дырок. Потерю дырок в базе можно учесть введением тока рекомбинации дырок Iб рек. Так что ток подходящих к коллекторному переходу дырок (5.5) Относительные потери на рекомбинацию в базе учитывают коэффициентом переноса æБ: æБ (5.6) Коэффициент переноса показывает, какая часть потока дырок, инжектированных из эмиттера в базу, подходит к коллекторному переходу. Значение æБ тем ближе к единице, чем меньшее число инжектированных дырок рекомбинирует с электронами – основными носителями базовой области. Ток IБрек одновременно характеризует одинаковую потерю количества дырок и электронов. Так как убыль электронов в базе вследствие рекомбинации в конце концов покрывается за счет прихода электронов через вывод базы из внешней цепи, то ток IБрек следует рассматривать как составляющую тока базы наряду с инжекционной составляющей IЭn. Чтобы уменьшить потери на рекомбинацию, т.е. увеличить æБ, необходимо уменьшить концентрацию электронов в базе и ширину базовой области. Первое достигается снижением концентрации доноров NдБ. Это совпадает с требованием NaЭ >> NдБ, необходимым для увеличения коэффициента инжекции. Потери на рекомбинацию будут тем меньше, чем меньше отношение ширины базы Wб и диффузионной длины дырок в базовой области LpБ. Доказано, что имеется приближенное соотношение æБ (5.7) Например, при Wб/LpБ= 0.1 , æБ = 0.995, что очень мало отличается от предельного значения, равного единице. Если при обратном напряжении в коллекторном переходе нет лавинного размножения проходящих через него носителей (см. § 3.5.3), то ток за коллекторным переходом с учетом (5.5) IKp=I*Kp=IЭр – IБрек (5.8) С учетом (5.6) и (5.3) получим IKp= æБ IЭр= γЭ æБ IЭ =α IЭ(5.9) где α = γЭ æБ = IKp/IЭ(5.10) Это отношение дырочной составляющей коллекторного тока к полному току эмиттера называют статическим коэффициентом передачи тока эмиттера. Ток коллектора имеет еще составляющую IКБ0. которая протекает в цепи коллектор-база при IЭ = 0 (холостой ход, «обрыв» цепи эмиттера), и не зависит от тока эмиттера. Это обратный ток перехода, создаваемый неосновными носителями областей базы и коллектора, как в обычном р-n-переходе (диоде). Таким образом, полный ток коллектора с учетом (5.8) и (5.10) IK = IKp + IКБ0 = α IЭ + IКБ0 (5.11) Из (5.11) получим обычно используемое выражение для статического коэффициента передачи тока: α =(IK – IКБ0)/IЭ (5.12) числитель которого (IК – IКБ0) представляет собой управляемую (зависимую от тока эмиттера) часть тока коллектора, IKp. Обычно рабочие токи коллектора IK значительно больше IКБ0. поэтому α ≈ IK/IЭ(5.13) С помощью рис. 5.5 можно представить ток базы через компоненты: IБ = IЭ n + IЭ рек + IБ рек– IКБ0 (5.14) По первому закону Кирхгофа для общей точки IЭ = IK + IБ (5.15) Как следует из предыдущего рассмотрения, IK и IБ принципиально меньше тока IЭ; при этом наименьшим является ток базы IБ = IЭ– IK (5.16) Используя (5.16) и (5.11), получаем связь тока базы с током эмиттера IБ = (1–α)IЭ–IКБ0 (5.17) Если в цепи эмиттера нет тока (IЭ = 0, холостой ход), то IБ = – IКБ0. т.е. ток базы отрицателен и по величине равен обратному току коллекторного перехода. По значению I′Э = IКБ0 /(1–α) ток IБ= 0, а при дальнейшем увеличении IЭ (IЭ > I′Э) ток базы оказывается положительным. Подобно (5.11) можно установить связь IK с IБ. Используя (5.11) и (5.15), получаем (5.18) где (5.19) – статический коэффициент передачи тока базы. Так как значение α обычно близко к единице, то β может быть очень большим (β >> 1). Например, при α = 0.99, β = 99. Из (5.18) можно получить соотношение β = (IK – IКБ0) / (IБ + IКБ0) (5.20) Очевидно, что коэффициент β есть отношение управляемой (изменяемой) части коллекторного тока (IK – IКБ0) к управляемой части базового тока (IБ + IКБ0). Действительно, используя (5.14), получаем IБ + IКБ0 = IЭ n + IЭ р + IБ рек Все составляющие последнего выражения зависят от IЭ и обращаются в нуль при IЭ =0. Введя обозначение IКЭ0 = IКБ0/(1– α)=( β+1) IКБ0 (5.21) можно вместо (5.18) записать (5.22) Отсюда очевиден смысл введенного обозначения IКЭ0: это значение тока коллектора при нулевом токе базы (IБ = 0) или при «обрыве» базы. При IБ = 0 IK = IЭ, поэтому ток IКЭ0 проходит через все области транзистора и является «сквозным» током, что и отражается индексами «К» и «Э» (индекс «0» указывает на условие IБ = 0).
Эффект Эрли В реальном БТ изменение напряжений на переходах UЭБ и UКБ вызывает изменение толщины обедненных слоев перехода и смещение границ базовой области, т.е. изменение ширины базовой области. Это явление называют эффектом Эрли. Особеннозаметноизменение ширины базы при подаче обратных напряжений на переходы. В нормальном активном режиме, когда на эмиттерном переходе прямое напряжение, а на коллекторном обратное и сравнительно большое по величине, толщина коллекторного перехода значительно больше, чем эмиттерного, и влиянием смещения границы эмиттерного перехода можно пренебречь. Поэтому увеличение (по модулю) обратного напряжения UКБ будет приводить к расширению коллекторного перехода и сужению базовой области. К каким же последствиям может привести эффект Эрли? Для определенности рассмотрим увеличение обратного напряжения UКБ, приводящее к уменьшению ширины базовой области WБ. 1. Уменьшение WБ вызовет рост градиента концентрации неосновных носителей в базе и, следовательно, рост тока эмиттера. На рис. 5.7 увеличение модуля |UКБ| от |UКБ1| до |UКБ1| при постоянном (заданном) напряжении UЭБсоответствует переходу от распределения 1 к распределению 2. Так как θЭ2 > θЭ1 (увеличение градиента), то IЭ2 > IЭ1. 2. В ряде случаев при изменении UКБ требуется сохранить ток эмиттера. Чтобы вернуть IЭ от значения IЭ2 к значению IЭ1, необходимо уменьшить напряжение на эмиттерном переходе до значения, при котором градиент вернется к исходному значению (θЭ3 = θЭ1), а распределение изобразится прямой 3 (A'C), параллельной прямой АБ. 3. Уменьшение WБ приведет также к росту коэффициента переноса æБ в базе. В случае поддержания постоянства тока эмиттера это будет сопровождаться уменьшением тока базы IБ. Однако можно доказать, что IБ также уменьшится, но в меньшей мере, если IЭ не возвратится к исходному значению. 4. Увеличение коэффициента переноса при уменьшении WБ означает некоторый рост статических коэффициентов передачи α и β. 5. Рост α и IЭ при уменьшении WБ приведет к увеличению коллекторного тока (5.11): IК = α IЭ + IКБО. Так как α ≈ 1 и его рост относительно мал, даже если он достигнет предельного значения (α = 1), то основное влияние окажет рост IЭ. 6. В ряде случаев требуется при уменьшении ширины базы из-за эффекта Эрли сохранять неизменным ток базы. Для компенсации произошедшего уменьшения IБнеобходимо дополнительно увеличить IЭ (т.е. общий поток инжектированных в базу носителей) в соответствии с формулой (5.17): IБ = (1–α)IЭ–IКБ0
Похожие статьи:poznayka.org Устройство и принцип действияБиполярный транзистор — трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают n-p-n и p-n-p транзисторы (n (negative) — электронный тип примесной проводимости, p (positive) — дырочный). В биполярном транзисторе, в отличие от полевого транзистора, используются заряды одновременно двух типов, носителями которых являются электроны и дырки (от слова «би» — «два»). Схематическое устройство транзистора показано на втором рисунке. Электрод, подключённый к центральному слою, называют базой, электроды, подключённые к внешним слоям, называют коллектором и эмиттером. На простейшей схеме различия между коллектором и эмиттером не видны. В действительности же главное отличие коллектора — бо́льшая площадь P-n-перехода. Кроме того, для работы транзистора необходима малая толщина базы.
Упрощенная схема поперечного разреза биполярного NPN транзистора Первые транзисторы были изготовлены на основе германия. В настоящее время их изготавливают в основном из кремния и арсенида галлия. Транзисторы на основе арсенида галлия используются в сверхбыстродействующих логических схемах и в схемах высокочастотных усилителей. Биполярный транзистор состоит из трёх различным образом легированных полупроводниковых слоёв: эмиттера E, базы B и коллектора C. В зависимости от типа проводимости этих зон различают NPN (эмиттер − n-полупроводник, база − p-полупроводник, коллектор − n-полупроводник) и PNP транзисторы. К каждой из зон подведены проводящие невыпрямляющие контакты. База расположена между эмиттером и коллектором и слаболегирована, поэтому имеет большое омическое сопротивление. Общая площадь контакта база-эмиттер значительно меньше площади контакта коллектор-база (это делается по двум причинам — большая площадь перехода коллектор-база увеличивает вероятность захвата неосновных носителей заряда из базы в коллектор и, так как в рабочем режиме переход коллектор-база обычно включен с обратным смещением, что увеличивает тепловыделение, способствует отводу тепла от коллектора), поэтому биполярный транзистор общего вида является несимметричным устройством (нецелесообразно путем изменения полярности подключения поменять местами эмиттер и коллектор и получить в результате аналогичный исходному биполярный транзистор — инверсное включение). В активном усилительном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении (закрыт). Для определённости рассмотрим npn транзистор, все рассуждения повторяются абсолютно аналогично для случая pnp транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку. В npn транзисторе электроны, основные носители тока в эмиттере, проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками). Однако, из-за того что базу делают очень тонкой и сравнительно слабо легированной, большая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора[1]. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает неосновные носители из базы (электроны), и переносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк). Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0,9—0,999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α/(1 − α), от 10 до 1000. Таким образом, малым током базы можно управлять значительно бо́льшим током коллектора. studfiles.net Принцип действия биполярного транзистораКоличество просмотров публикации Принцип действия биполярного транзистора - 254 Рассмотрим физические процессы, происходящие в транзисторе, как в системе двух взаимодействующих p-n – переходов. Выберем для анализа транзистор структуры p-n-p. Биполярному транзистору присущи некоторые конструктивные особенности: p-n-переходы сформированы очень близко друг к другу на расстоянии меньше длины диффузионного пробега носителей зарядов, в связи с этим заряды, прошедшие через один переход, могут достичь другого перехода и проникнуть через него; эмиттерную и коллекторную области легируют примесями значительно больше, чем область базы, в связи с этим концентрация базовых носителей (дырок) в эмиттере и коллекторе гораздо выше, чем электронов в базе. Из-за этого области p-n – переходов эмиттер-база (DХЭБ) и коллектор-база (DХКБ) смещены в область базы, что дополнительно уменьшает ширину базы. Схематичное изображение транзистора с такими конструктивными особенностями представлено на рис. 6.2. Рис. 6.2. Схематичное изображение транзистора структуры p-n-p Подключение к электродам транзистора внешних источников питания ЕЭБ плюсом к эмиттеру открывает переход эмиттер-база, а ЕКБ минусом к коллектору закрывает переход коллектор-база. Через открытый переход эмиттер-база начинает протекать ток эмиттера IЭ – ток базовых носителей зарядов: дырки из эмиттера проходят в базу, а электроны из базы – в эмиттер. Размещено на реф.рфПоскольку концентрация электронов в базе мала, то в базу проникает больше дырок, чем уходит из неё электронов. Происходит инжекция (проникновение) в базу не базовых для неё носителей зарядов – дырок. Инжектированные в базу дырки перемещаются в ней и частично рекомбинируют (соединяются, взаимно уничтожаются) с малым числом электронов, образуя ток базы IБ. Но ширина базы меньше длины диффузионного пробега дырок, в связи с этим большая часть дырок избегает рекомбинации и подходит к переходу коллектор-база. Переход коллектор-база закрыт для электронов (базовых носителей зарядов в базе), но для не базовых носителей он не представляет препятствия. Наоборот, электрическое поле от ЕКБ в области перехода коллектор-база ускоряет дырки, которые свободно проходят в коллектор, создавая ток коллектора IК. Токи в транзисторе связаны соотношением: . (6.1) Это – основное уравнение токов в транзисторе. Основным показателем качества транзистора является коэффициент передачи тока. Различают коэффициент передачи тока эмиттера: статический и динамический (дифференциальный) . (6.2) Поскольку ток коллектора всегда меньше тока эмиттера на величину тока базы, коэффициент передачи тока эмиттера всегда меньше единицы. Обычно . Коэффициент передачи тока базы: статический и динамический (дифференциальный) . (6.3) Поскольку ток коллектора всегда больше тока базы, коэффициент передачи тока базы всегда больше единицы. Обычно . Коэффициенты передачи тока можно выразить один через другой: ; . (6.4) Коэффициенты передачи тока зависят от режима работы транзистора. Особенно сильно они зависят от тока эмиттера. График зависимости a от IЭ представлен на рис. 6.3. Рис. 6.3. Зависимость коэффициента передачи тока эмиттера a от тока эмиттера IЭ В области 1 малых токов эмиттера a ® 0, так как чересчур мало дырок проникает из эмиттера в базу, и они почти все рекомбинируют, не достигая коллектора. В области 2 средних токов эмиттера a = const, транзистор работает так, как было рассмотрено выше. В области 3 больших токов эмиттера в базе образуется избыточный заряд не базовых носителей, снижается длина диффузионного пробега, растёт количество рекомбинаций, и a снижается. Дополнительно на работу транзистора влияет величина напряжения на коллекторе. При увеличении UКБ увеличивается толщина перехода коллектор-база DХКБ за счёт области базы. Толщина базы уменьшается. Это явление носит название модуляции ширины базы (эффект Эрли). Из-за эффекта Эрли: 1. Уменьшается число рекомбинаций в базе и время пролёта не базовых носителей через область базы, из-за чего уменьшается ток базы и возрастает ток коллектора, что приводит к увеличению коэффициентов передачи тока a и b. 2. При некоторой достаточно большой величине UКБ ширина базы DХБ ® 0, эмиттерный и коллекторный переходы смыкаются, и транзистор переходит в режим лавинного пробоя. Обычно это заканчивается электрическим пробоем цепи коллектор-эмиттер и выходом транзистора из строя. 3. Незначительно возрастает ток эмиттера, так как снижается напряжение UЭБ и входное сопротивление rЭБ. Это принято называть обратной связью по напряжению. Численное значение обратной связи определяется как коэффициент . Более подробные сведения об h-параметрах транзистора можно прочитать в [20]. referatwork.ru |