Eng Ru
Отправить письмо

Гидроэнергетика России. Примеры гэс в россии


Крупнейшие ГЭС России.

  • Вторник, 27 Октябрь 2009, 10:00
  • Гидро
  • 28092 смотр.

По состоянию на 2009 г. в Рф имеется 15 действующих, достраиваемых и находящихся в замороженном строительстве гидравлических электрический станций свыше 1000 МегаВт и более сотни гидроэлектростанций меньшей мощности.

В Советский период развития энергетики упор делался на особую роль единого народнохозяйственного плана электрификации страны — ГОЭЛРО, который был утвержден 22 декабря 1920 г.. Этот день был объявлен в С.С.С.Р профессиональным праздником — Днём энергетика. Глава плана, посвященная гидроэнергетике — называлась «Электрификация и водная энергия». В ней указывалось, что ГЭС могут быть экономически выгодными, главным образом, в случае комплексного использования: для выработки электрической энергии, улучшения условий судоходства или мелиорации. Предполагалось, что в течение 10-15 лет в стране можно соорудить ГЭС общей мощностью 21 254 тыс. лошадиных сил (около 15 млн кВт), в том числе в европейской части Рф — мощностью 7394, в Туркестане — 3020, в Сибири — 10 840 тыс. л.с. На ближайшие 10 лет намечалось сооружение ГЭС мощностью 950 тыс. кВт, однако в последующем было запланировано сооружение десяти ГЭС общей рабочей мощностью первых очередей 535 тыс. кВт.

Хотя уже за г. до этого в 1919 г. Совет труда и обороны признал строительства Волховской и Свирской ГЭС объектами, имеющими оборонное значение. В том же г. началась подготовка к возведению Волховской ГЭС, первой из гидроэлектростанций возведенных по плану ГОЭЛРО.

Однако и до начала строительства Волховской ГЭС Россия имела достаточно богатый опыт промышленного гидростроительства, в основном, частными компаниями и концессиями. Информация об этих ГЭС, построенных в Рф за последнее десятилетие 19-го века и первые 20 лет двадцатого столетия достаточно разрознена, противоречива и требует специальных исторических исследований.

9 октября 1963 г. — одна из крупнейших гидротехнических аварий на плотине Вайонт в северной Италии.12 сентября 2007 г. — на Новосибирской ГЭС произошел крупный пожар на одном из ТС по причине замыкания и вследствие этого возгорания битума и обшивки трансформатора.3 августа 2009 г. — возгорание на трансформаторе напряжения открытого распределительного устройства 200 килоВ Бурейской ГЭС.[5].16 августа 2009 года — пожар в мини-АТС Братской ГЭС, выход из строя аппаратуры связи и телеметрии ГЭС [6] (Братская ГЭС входит в тройку крупнейших ГЭС России).17 августа 2009 года — крупная авария на Саяно-Шушенской ГЭС (Саяно-Шушенская ГЭС самая мощная электростанция России).

Читать еще: Крупнейшие ГЭС в мире.

Еще записи на эту же тему:

Оставить комментарий (Зарегистрируйтесь и пишите коментарии без CAPTCHи !)

energyfuture.ru

Гидроэнергетические ресурсы России

 

Гидравлическая энергия является возобновляемым источником энергии. Запасы поверхностного стока по территории России распределены неравномерно, что весьма неблагоприятно для народного хозяйства, в том числе и для энергетики. Более 80 % речного стока российских рек приходится на еще мало освоенные территории бассейнов Северного Ледовитого и Тихого океанов.

Особенностью стока реки является его неравномерное распределение как по годам, так и в течение года.

Многолетняя неравномерность стока неблагоприятна для всех отраслей народного хозяйства и прежде всего для энергетики. Различают: многоводные, средневодные и маловодные годы. В маловодные годы обычно значительно снижается выработка энергии на гидроэлектростанциях.

Неравномерность стока в течение года неблагоприятна для энергетики. Для большинства рек России маловодный период наблюдается зимой, когда потребность в электроэнергии наибольшая. Механическая энергия речного стока (или гидравлическая энергия) может быть преобразована в электрическую посредством гидротурбин и генераторов. В естественных условиях энергия водотока расходуется на преодоление внутреннего сопротивления движения воды, сопротивления на трение на стенках русла, размыв дна, берегов и т.п.

Гидроэнергетика использует возобновимые источники энергии, что позволяет экономить минеральное топливо. На гидроэлектростанциях (ГЭС) энергия текущей воды преобразуется в электрическую энергию. Основная часть ГЭС — плотина, создающая разницу уровней воды и обеспечивающая ее падение на лопасти генерирующих электрический ток турбин. К преимуществам ГЭС следует отнести высокий кпд — 92—94% (для сравнения у АЭС и ТЭС — около 33%), экономичность, простоту управления. Гидроэлектростанцию обслуживает сравнительно немногочисленный персонал: на 1 МВт мощности здесь занято 0,25 чел. (на ТЭС — 1,26 чел., на АЭС — 1,05 чел.). ГЭС наиболее маневренны при изменении нагрузки выработки электроэнергии, поэтому этот тип энергоустановок имеет важнейшее значение для пиковых режимов работы энергосистем, когда возникает необходимость в резервных объемах электроэнергии. ГЭС имеют большие сроки строительства — 15—20 лет (АЭС и ТЭС — 3—4 года) и требуют на этом этапе больших капиталовложений, но все минусы компенсируются длительными сроками эксплуатации (до 100 лет и больше) при относительной дешевизне поддерживающего обслуживания и низкой себестоимости выработанной электроэнергии.

Любая ГЭС — комплексное гидротехническое сооружение: она не только вырабатывает электроэнергию, но и регулирует сток реки, плотина используется для транспортных связей между берегами. В нашей стране при крупных ГЭС часто создавались значительные промышленные центры, использовавшие мощности строительной индустрии, высвободившиеся после сооружения плотины, и ориентированные на дешевую электроэнергию гидроустановок. Таковы Тольятти при Волжской ГЭС им. Ленина, Набережные Челны при Нижнекамской ГЭС, Братск при Братской ГЭС, Балаково при Саратовской ГЭС, Новочебоксарск при Чебоксарской ГЭС, Чайковский при Воткинской ГЭС, Волжский при Волжской ГЭС им. XXII съезда КПСС. Похожим образом создавался промышленный центр Саяногорск в Хакасии в относительном удалении от Саяно-Шушенской ГЭС.

Гидроэлектростанция

Гидроэлектростанция. Фото: Jean-Etienne Minh-Duy Poirrier

Бесспорные преимущества ГЭС несколько приуменьшает относительная «капризность» этого типа электростанций: для их размещения необходим выгодный створ в речной долине, относительно большое падение воды, сравнительно равномерный сток по сезонам года, создание водохранилища и затопление прирусловых территорий, которые прежде использовались в хозяйственной деятельности и для расселения людей. Более полно гидроэнергетические ресурсы используют серии ГЭС на одной реке — каскады. Наиболее мощные каскады ГЭС в России построены на Енисее, Ангаре, Волге, Каме. По числу отдельных ГЭС на протяжении небольшого участка русла в России нет равных каскадам Кольского полуострова: Нивскому (6 ГЭС общей установленной мощностью 578 МВт), Пазскому (5 ГЭС, 188 МВт), Серебрянскому (4 ГЭС, 512 МВт).

Гидроэнергетический потенциал рек России оценивается величиной 852 млрд. кВт ч в год. Это так называемый экономический потенциал, пригодный для промышленного использования. По величине гидроэнергопотенциала Россия занимает 2-е место в мире, уступая только Китаю.

Распределение гидроэнергоресурсов по территории страны крайне неравномерно. На Европейскую часть России приходится 25 %, на Сибирь 40% и 35% на Дальний Восток. В наиболее промышленно развитой части страны – Центре Европейской части, гидроэнергопотенциал использован практически полностью. Возможности развития гидроэнергетики в Европейской части имеются на Северо-Западе и Северном Кавказе. В целом по Европейской части России использование гидроэнергопотенциала составляет 46%.

Необходимо отметить, что в наиболее развитых странах мира процент использования гидроэнергетических ресурсов, как правило, существенно выше. Если же такие страны располагают существенным гидропотенциалом, то они практически полностью обеспечивают себя электроэнергией за счет ГЭС – Норвегия, Швейцария, Австрия и др. Особенно показателен пример Норвегии. Она является абсолютным мировым лидером по производству электроэнергии на душу населения – 24 000 кВт час в год, 99,6 % из которых производится на ГЭС. Именно эти страны обладают наивысшими рейтингам качества жизни.

В России наиболее богатым гидроэнергоресурсами регионом является Сибирь. Здесь протекают крупнейшие реки России – Енисей, Ангара Лена и др. На сегодня гидроэнергоресурсы Сибири использованы на 20%. Здесь построены крупнейшие ГЭС России – Красноярская, Братская, Усть-Илимская, Саяно-Шушенская. На базе этих ГЭС возник мощный промышленно развитый регион, основу которого составили предприятия с энергоемкими производствами: металлургические, химические, лесоперерабатывающие и др.

Наименее освоены гидроэнергоресурсы Дальневосточного региона. Из крупных ГЭС здесь действуют только Зейская и Колымская ГЭС, заканчивается строительство Бурейской. Потенциал региона освоен только примерно на 4 %.

Крупнейшие гидроэлектростанции России

Ранг Название Размещение Установленная мощность, МВт Река Год ввода в эксплуатацию Энерго- система
1 Саяно-Шушенская ГЭС пос. Черёмушки, Респ. Хакасия 6 400
Енисей
1978 ОЭС Сибири
2 Kрасноярская ГЭС г. Дивногорск, Kрасноярский край 6 000 Енисей 1971 ОЭС Сибири
3 Братская ГЭС г. Братск, Иркутская обл. 4 500 Ангара 1967 ОЭС Сибири
4 Усть-Илимская ГЭС г. Усть-Илимск, Иркутская обл. 3 840 Ангара 1980 ОЭС Сибири
5 Волжская ГЭС им. XXII съезда KПСС г. Волгоград, Волгоградская обл. 2 541 Волга 1962 ОЭС Центра
6
Волжская ГЭС им. В.И. Ленина
г. Тольятти, Самарская обл. 2 300 Волга 1957 ОЭС Средней Волги
7 Чебоксарская ГЭС г. Новочебоксарск, Респ. Чувашия 1 370 Волга 1980 ОЭС Средней Волги
8 Саратовская ГЭС г. Балаково, Саратовская обл. 1 360 Волга 1970 ОЭС Средней Волги
9 Зейская ГЭС г. Зея, Амурская обл. 1 330 Зея 1980 ОЭС Востока
10 Нижнекамская ГЭС г. Набережные Челны, Респ. Татария 1 205 Kама 1979 ОЭС Средней Волги
11 Загорская ГАЭС пос. Богородское, Московская обл. 1 200 Kунья 1987 ОЭС Центра
12 Воткинская ГЭС г. Чайковский, Пермская обл. 1 020 Kама 1963 ОЭС Урала
13 Чиркейская ГЭС пос. Дубки, Респ. Дагестан 1 000 Сулак 1976 ОЭС Северного Kавказа

Братская ГЭС в России

 



biofile.ru

Гидроэлектростанция - это... Что такое Гидроэлектростанция?

Одна из самых крупных по выработке российская ГЭС — Братская

Гидроэлектроста́нция (ГЭС) — электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища.

Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонобразные виды рельефа.

Особенности

  • Себестоимость электроэнергии на российских ГЭС более чем в два раза ниже, чем на тепловых электростанциях.[1]
  • Турбины ГЭС допускают работу во всех режимах от нулевой до максимальной мощности и позволяют медленно изменять мощность при необходимости, выступая в качестве регулятора выработки электроэнергии.
  • Сток реки является возобновляемым источником энергии.
  • Строительство ГЭС обычно более капиталоёмкое, чем тепловых станций.
  • Часто эффективные ГЭС более удалены от потребителей, чем тепловые станции.
  • Водохранилища часто занимают значительные территории, но примерно с 1963 г. начали использоваться защитные сооружения (Киевская ГЭС), которые ограничивали площадь водохранилища, и, как следствие, ограничивали площадь затопляемой поверхности (поля, луга, поселки).
  • Плотины зачастую изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам, однако часто благоприятствуют увеличению запасов рыбы в самом водохранилище и осуществлению рыбоводства.
  • Водохранилища ГЭС, с одной стороны, улучшают судоходство, но с другой — требуют применения шлюзов для перевода судов с одного бьефа на другой.
  • Водохранилища делают климат более умеренным.

Принцип работы

Схема плотины гидроэлектростанции

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией — естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

  • мощные — вырабатывают от 25 МВт и выше;
  • средние — до 25 МВт;
  • малые гидроэлектростанции — до 5 МВт.

Мощность ГЭС зависит от напора и расхода воды, а также от КПД используемых турбин и генераторов. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

Типичная для горных районов Китая малая ГЭС (ГЭС Хоуцзыбао, уезд Синшань округа Ичан, пров. Хубэй). Вода поступает с горы по чёрному трубопроводу

Гидроэлектростанции также делятся в зависимости от максимального использования напора воды:

  • высоконапорные — более 60 м;
  • средненапорные — от 25 м;
  • низконапорные — от 3 до 25 м.

В зависимости от напора воды, в гидроэлектростанциях применяются различные виды турбин. Для высоконапорных — ковшовые и радиально-осевые турбины с металлическими спиральными камерами. На средненапорных ГЭС устанавливаются поворотнолопастные и радиально-осевые турбины, на низконапорных — поворотнолопастные турбины в железобетонных камерах. Принцип работы всех видов турбин схож — вода, находящаяся под давлением (напор воды) поступает на лопасти турбины, которые начинают вращаться. Механическая энергия, таким образом, передается на гидрогенератор, который и вырабатывает электроэнергию. Турбины отличаются некоторыми техническими характеристиками, а также камерами — стальными или железобетонными, и рассчитаны на различный напор воды.

Гидроэлектрические станции также разделяются в зависимости от принципа использования природных ресурсов, и, соответственно, образующейся концентрации воды. Здесь можно выделить следующие ГЭС:

  • русловые и плотинные ГЭС. Это наиболее распространенные виды гидроэлектрических станций. Напор воды в них создается посредством установки плотины, полностью перегораживающей реку, или поднимающей уровень воды в ней на необходимую отметку. Такие гидроэлектростанции строят на многоводных равнинных реках, а также на горных реках, в местах, где русло реки более узкое, сжатое.
  • приплотинные ГЭС. Строятся при более высоких напорах воды. В этом случае река полностью перегораживается плотиной, а само здание ГЭС располагается за плотиной, в нижней её части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели, а не непосредственно, как в русловых ГЭС.
  • деривационные гидроэлектростанции. Такие электростанции строят в тех местах, где велик уклон реки. Необходимая концентрация воды в ГЭС такого типа создается посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние — спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида — безнапорные или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создается более высокая плотина, и создается водохранилище — такая схема еще называется смешанной деривацией, так как используются оба метода создания необходимой концентрации воды.
  • гидроаккумулирующие электростанции. Такие ГАЭС способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные периоды (не пиковой нагрузки), агрегаты ГАЭС работают как насосы от внешних источников энергии и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и приводит в действие турбины.

В состав гидроэлектрических станций, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы или судоподъемники, способствующие навигации по водоему, рыбопропускные, водозаборные сооружения, используемые для ирригации, и многое другое.

Ценность гидроэлектрической станции состоит в том, что для производства электрической энергии они используют возобновляемые природные ресурсы. Ввиду того, что потребности в дополнительном топливе для ГЭС нет, конечная стоимость получаемой электроэнергии значительно ниже, чем при использовании других видов электростанций. [2]

Крупнейшие ГЭС в мире

Наименование Мощность,ГВт Среднегодоваявыработка, млрд кВт·ч Собственник География
Три ущелья 22,40 100,00 р. Янцзы, г. Сандоупин, Китай
Итайпу 14,00 100,00 Итайпу-Бинасионал р. Парана, г. Фос-ду-Игуасу, Бразилия/Парагвай
Гури 10,30 40,00 р. Карони, Венесуэла
Черчилл-Фолс 5,43 35,00 Newfoundland and Labrador Hydro р. Черчилл, Канада
Тукуруи 8,30 21,00 Eletrobrás р. Токантинс, Бразилия

Гидроэлектростанции России

По состоянию на 2009 год в России имеется 15 гидроэлектростанций свыше 1000 МВт (действующих, достраиваемых или находящихся в замороженном строительстве), и более сотни гидроэлектростанций меньшей мощности.

Крупнейшие гидроэлектростанции России

Наименование Мощность,ГВт Среднегодоваявыработка, млрд кВт·ч Собственник География
Саяно-Шушенская ГЭС 2,56 (6,40)[сн 1] 23,50[сн 1] ОАО РусГидро р. Енисей, г. Саяногорск
Красноярская ГЭС 6,00 20,40 ОАО «Красноярская ГЭС» р. Енисей, г. Дивногорск
Братская ГЭС 4,52 22,60 ОАО Иркутскэнерго, РФФИ р. Ангара, г. Братск
Усть-Илимская ГЭС 3,84 21,70 ОАО Иркутскэнерго, РФФИ р. Ангара, г. Усть-Илимск
Богучанская ГЭС[сн 2] 3,00 17,60 ОАО «Богучанская ГЭС», ОАО РусГидро р. Ангара, г. Кодинск
Волжская ГЭС 2,58 12,30 ОАО РусГидро р. Волга, г. Волжский
Жигулёвская ГЭС 2,32 10,50 ОАО РусГидро р. Волга, г. Жигулевск
Бурейская ГЭС 2,01 7,10 ОАО РусГидро р. Бурея, пос. Талакан
Чебоксарская ГЭС 1,40 (0,8)[сн 3] 3,31 (2,2)[сн 3] ОАО РусГидро р. Волга, г. Новочебоксарск
Саратовская ГЭС 1,36 5,7 ОАО РусГидро р. Волга, г. Балаково
Зейская ГЭС 1,33 4,91 ОАО РусГидро р. Зея, г. Зея
Нижнекамская ГЭС 1,25 (0,45)[сн 3] 2,67 (1,8)[сн 3] ОАО «Генерирующая компания», ОАО «Татэнерго» р. Кама, г. Набережные Челны
Загорская ГАЭС 1,20 1,95 ОАО РусГидро р. Кунья, пос. Богородское
Воткинская ГЭС 1,02 2,60 ОАО РусГидро р. Кама, г. Чайковский
Чиркейская ГЭС 1,00 2,47 ОАО РусГидро р. Сулак, п. Дубки

Примечания:

  1. ↑ 1 2 Восстанавливается после аварии (2009 год), в скобках указано доаварийное значение.
  2. ↑ Строящиеся объекты.
  3. ↑ 1 2 3 4 Мощность и выработка при проектном уровне водохранилища; в настоящее время фактическая мощность и выработка значительно ниже, указаны в скобках.

Другие гидроэлектростанции России

Предыстория развития гидростроения в России [3]

Район Название Мощность,тыс. кВт
Северный Волховская 30
  Нижнесвирская 110
  Верхнесвирская 140
Южный Александровская 200
Уральский Чусовая 25
Кавказский Кубанская 40
  Краснодарская 20
  Терская 40
Сибирь Алтайская 40
Туркестан Туркестанская 40

В Советский период развития энергетики упор делался на особую роль единого народнохозяйственного плана электрификации страны — ГОЭЛРО, который был утвержден 22 декабря 1920 года. Этот день был объявлен в СССР профессиональным праздником — Днём энергетика. Глава плана, посвященная гидроэнергетике — называлась «Электрификация и водная энергия». В ней указывалось, что гидроэлектростанции могут быть экономически выгодными, главным образом, в случае комплексного использования: для выработки электроэнергии, улучшения условий судоходства или мелиорации. Предполагалось, что в течение 10-15 лет в стране можно соорудить ГЭС общей мощностью 21 254 тыс. лошадиных сил (около 15 млн кВт), в том числе в европейской части России — мощностью 7394, в Туркестане — 3020, в Сибири — 10 840 тыс. л.с. На ближайшие 10 лет намечалось сооружение ГЭС мощностью 950 тыс. кВт, однако в последующем было запланировано сооружение десяти ГЭС общей рабочей мощностью первых очередей 535 тыс. кВт.

Хотя уже за год до этого в 1919 году Совет труда и обороны признал строительства Волховской и Свирской гидростанций объектами, имеющими оборонное значение. В том же году началась подготовка к возведению Волховской ГЭС, первой из гидроэлектростанций возведенных по плану ГОЭЛРО.

Однако и до начала строительства Волховской ГЭС Россия имела достаточно богатый опыт промышленного гидростроительства, в основном, частными компаниями и концессиями. Информация об этих ГЭС, построенных в России за последнее десятилетие 19-го века и первые 20 лет двадцатого столетия достаточно разрознена, противоречива и требует специальных исторических исследований.

Наиболее достоверным считается, что первой гидроэлектростанцией в России была Березовская (Зыряновская) ГЭС, построенная в Рудном Алтае на реке Березовка (приток р. Бухтармы) в 1892 году. Она была четырехтурбинная общей мощностью 200 кВт и предназначалась для обеспечения электричеством шахтного водоотлива из Зыряновского рудника.[5]

На роль первой также претендует Ныгринская ГЭС, которая появилась в Иркутской губернии на реке Ныгри (приток р. Вачи) в 1896 году. Энергетическое оборудование станции состояло из двух турбин с общим горизонтальным валом, вращавшим три динамо—машины мощностью по 100 кВт. Первичное напряжение преобразовывалось четырьмя трансформаторами трехфазного тока до 10 кВ и передавалось по двум высоковольтным линиям на соседние прииски. Это были первые в России высоковольтные ЛЭП. Одну линию (длиной 9 км) проложили через гольцы к прииску Негаданному, другую (14 км) — вверх по долине Ныгри до устья ключа Сухой Лог, где в те годы действовал прииск Ивановский. На приисках напряжение трансформировалось до 220 В. Благодаря электроэнергии Ныгринской ГЭС в шахтах установили электрические подъемники. Кроме того, электрифицировали приисковую железную дорогу, служившую для вывоза отработанной породы, которая стала первой в России электрифицированной железной дорогой.[6]

Преимущества

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 22 февраля 2012.
  • использование возобновляемой энергии.
  • очень дешевая электроэнергия.
  • работа не сопровождается вредными выбросами в атмосферу.
  • быстрый (относительно ТЭЦ/ТЭС) выход на режим выдачи рабочей мощности после включения станции.

Недостатки

  • затопление пахотных земель
  • строительство ведется только там, где есть большие запасы энергии воды
  • на горных реках опасны из-за высокой сейсмичности районов
  • сокращенные и нерегулируемые попуски воды из водохранилищ по 10-15 дней (вплоть до их отсутствия), приводят к перестройке уникальных пойменных экосистем по всему руслу рек, как следствие, загрязнение рек, сокращение трофических цепей, снижение численности рыб, элиминация беспозвоночных водных животных, повышение агрессивности компонентов гнуса (мошки) из-за недоедания на личиночных стадиях, исчезновение мест гнездования многих видов перелетных птиц, недостаточное увлажнение пойменной почвы, негативные растительные сукцессии (обеднение фитомассы), сокращение потока биогенных веществ в океаны.

Крупнейшие аварии и происшествия

Примечания

См. также

Ссылки

  Крупнейшие ГЭС мира Google Maps  KMZ (файл меток KMZ для Google Earth)

biograf.academic.ru

Гидроэнергетика России — Documentation

Материал из Documentation.

Производство электроэнергии гидроэлектростанциями России (в млрд кВт∙ч) и мощность гидроэлектростанций России (в ГВт) в 1991—2010 годах Производство электроэнергии гидроэлектростанциями России (в млрд кВт∙ч) и мощность гидроэлектростанций России (в ГВт) в 1991—2010 годах

Гидроэнергетика России — отрасль российской электроэнергетики.

Гидроэнергетика предоставляет системные услуги (частоту, мощность) и является ключевым элементом обеспечения системной надежности Единой Энергосистемы страны, располагая более 90 % резерва регулировочной мощности. Из всех существующих типов электростанций именно ГЭС являются наиболее маневренными и способны при необходимости быстро существенно увеличить объемы выработки, покрывая пиковые нагрузки.[1]

У России большой гидроэнергетический потенциал, что подразумевает значительные возможности развития отечественной гидроэнергетики. На территории России сосредоточено около 9 % мировых запасов гидроресурсов. По обеспеченности гидроэнергетическими ресурсами Россия занимает второе место в мире, опережая США, Бразилию, Канаду. В настоящее время общий теоретический гидроэнергопотенциал России определён в 2900 млрд кВт*ч годовой выработки электроэнергии или 170 тыс. кВт*ч на 1 кв. км территории. Однако сейчас освоено лишь 20 % этого потенциала. Одним из препятствий развития гидроэнергетики является удалённость основной части потенциала, сконцентрированной в центральной и восточной Сибири и на Дальнем Востоке, от основных потребителей электроэнергии.[2]

Выработка электроэнергии российскими ГЭС обеспечивает ежегодную экономию 50 млн тонн условного топлива, потенциал экономии составляет 250 млн тонн; позволяет снижать выбросы СО2 в атмосферу на величину до 60 млн тонн в год, что обеспечивает России практически неограниченный потенциал прироста мощностей энергетики в условиях жёстких требований по ограничению выбросов парниковых газов. Кроме своего прямого назначения — производства электроэнергии с использованием возобновляемых ресурсов — гидроэнергетика дополнительно решает ряд важнейших для общества и государства задач: создание систем питьевого и промышленного водоснабжения, развитие судоходства, создание ирригационных систем в интересах сельского хозяйства, рыборазведение, регулирование стока рек, позволяющее осуществлять борьбу с паводками и наводнениями, обеспечивая безопасность населения.[3]

В настоящее время на территории России работают 102 гидроэлектростанции мощностью свыше 100 МВт. Общая установленная мощность гидроагрегатов на ГЭС в России составляет примерно 46 ГВт (5 место в мире). В 2011 году российскими гидроэлектростанциями выработано 153 млрд кВт*ч электроэнергии. В общем объёме производства электроэнергии в России доля ГЭС в 2011 году составила 15,2 %.[4]

В ходе реформы электроэнергетики была создана федеральная гидрогенерирующая компания ОАО «ГидроОГК» (текущее название — ОАО «РусГидро»), которая объединила основную часть гидроэнергетических активов страны. Сегодня компания управляет 68 объектами возобновляемой энергетики, в том числе 9 станциями Волжско-Камского каскада общей установленной мощностью более 10,2 ГВт, первенцем большой гидроэнергетики на Дальнем Востоке — Зейской ГЭС (1 330 МВт), Бурейской ГЭС (2 010 МВт), Новосибирской ГЭС (455 МВт) и несколькими десятками гидростанций на Северном Кавказе, в том числе Кашхатау ГЭС (65,1 МВт), введённой в эксплуатацию в Кабардино-Балкарской Республике в конце 2010 года. Также в состав РусГидро входят геотермальные станции на Камчатке и высокоманевренные мощности Загорской гидроаккумулирующей электростанции (ГАЭС) в Московской области, используемые для выравнивания суточной неравномерности графика электрической нагрузки в ОЭС Центра.[5]

До недавнего времени крупнейшей российской гидроэлектростанцией считалась Саяно-Шушенская ГЭС им. П. С. Непорожнего мощностью 6721 МВт (Хакасия). Однако после аварии 17 августа 2009 года её мощности частично выбыли из строя. В настоящее время полным ходом ведутся восстановительные работы, которые предполагается завершить полностью к 2014 году. 24 февраля 2010 года состоялось включение в сеть под нагрузку гидроагрегата № 6 мощностью 640 МВт, в декабре 2011 года был введён в работу гидроагрегат № 1. На сегодняшний день в работе находятся ГА № 1, 3, 4, 5 с суммарной мощностью 2560 МВт. Вторая по установленной мощности гидроэлектростанция России — Красноярская ГЭС.[6]

Перспективное развитие гидроэнергетики России связывают с освоением потенциала рек Северного Кавказа (строятся Зарамагские, Кашхатау, Гоцатлинская ГЭС, Зеленчукская ГЭС-ГАЭС; в планах — вторая очередь Ирганайской ГЭС, Агвалинская ГЭС, развитие Кубанского каскада и Сочинских ГЭС, а также развитие малой гидроэнергетики в Северной Осетии и Дагестане), Сибири (достройка Богучанской, Вилюйской-III и Усть-Среднеканской ГЭС, проектирование Южно-Якутского ГЭК и Эвенкийской ГЭС), дальнейшим развитием гидроэнергетического комплекса в центре и на севере Европейской части России, в Приволжье, строительством выравнивающих мощностей в основных потребляющих регионах (в частности — строительство Ленинградской и Загорской ГАЭС-2).[7]

  1. ↑ Основные виды производства электроэнергии на территории России
  2. ↑ Основные виды производства электроэнергии на территории России
  3. ↑ Основные виды производства электроэнергии на территории России
  4. ↑ Основные виды производства электроэнергии на территории России
  5. ↑ Основные виды производства электроэнергии на территории России
  6. ↑ Основные виды производства электроэнергии на территории России
  7. ↑ Основные виды производства электроэнергии на территории России

newsruss.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта