Eng Ru
Отправить письмо

Битва электрических королей: Переменный против постоянного. Постоянный ток кто открыл


история открытия и изучения явления, применение в современном мире :: SYL.ru

Электричество в древнем мире

Еще древнегреческий философ Фалес писал о свойствах янтаря, потертого шерстью, притягивать мелкие предметы. Но достаточно долгое время все знания об электричестве ограничивались этим любопытным опытом. Никто не связывал с этим явлением природные молнии, наблюдаемые во время гроз. Дальнейшее изучение электрического тока, пока без разделения на постоянный и переменный, продолжилось лишь в XVII веке. И за пару сотен лет ученые продвинулись очень далеко.

Открытие явления

В 1600 году был введен термин "электричество", а более чем полвека спустя началось его активное изучение. Изначально разделения на постоянный и переменный ток не существовало, так что исследования были несистематичными. Первая теория, касающаяся природы электричества, была сформулирована в XVIII веке Бенджамином Франклиным, который, впрочем, остался в истории в первую очередь как политический деятель. Чуть позднее был сконструирован первый конденсатор - так называемая Лейденская банка. Тем не менее, считается, что всерьез история исследования постоянного тока началась с опытов Гальвани, касающихся, как ни странно, в первую очередь биологии, а не физики. Знаменитый итальянец буквально перевернул науку.

Изучение постоянного тока

Опыты Гальвани касались в первую очередь физиологии. Пропуская электрический ток через тело лягушки, он заметил, как ее мышцы сокращались. Описание этих опытов заинтересовало не только биологов, но и физиков. Сам же Гальвани, проведя еще серию исследований, счел, что мышцы являются чем-то вроде Лейденской банки, или, если быть точнее, ее батарей. Эти опыты легли в основу современной электрофизиологии. Последователь итальянца, его соотечественник Алессандро Вольта, в 1800 году создал первый источник питания постоянного тока - гальванический элемент. Англичане Карлейл и Николсон повторили опыты своего коллеги, придя к выводу, что в определенных условиях электричество, пропущенное через воду, заставляет ее разлагаться на составные элементы. Подобные эксперименты в конечном итоге дали стимул развитию химии. Русские ученые также приложили руку к исследованиям - уроженец Санкт-Петербурга Василий Петров в 1803 году описал явление электрической дуги. Однако 9 лет спустя это открытие произошло снова и было представлено как случившееся впервые. Дальнейшие исследования уже были направлены на изучение характеристик и законов, управляющих током. Параллельно ученые находили все новые и новые способы применения электричества, изобретая удивительные приборы, которыми человечество пользуется до сих пор.

Характеристики и параметры

Как очевидно из названия, величина постоянного тока и его напряжение в любой момент остаются неизменными. Несмотря на то что движение заряженных частиц происходит непрерывно, их общее пространственное положение остается стационарным. Кстати, как ни удивительно, но с технической точки зрения термин "постоянный ток" является некорректным, ведь неизменным является не он, а напряжение источника питания, его электродвижущая сила (ЭДС). Но понятие настолько прочно вошло в употребление, что его изменение просто невозможно представить. Итак, главным признаком этой разновидности остается отсутствие смены полярности напряжения на источнике питания. Постоянный ток обладает рядом параметров, которые, разумеется, присущи и другим типам:

  • Сила или величина (I). Показывает количество тока, протекающего через поперечное сечение проводника за единицу времени. Измеряется в амперах.
  • Плотность (F). Отношение силы тока к площади поперечного сечения проводника. Единицы измерения - А/мм2.
  • Напряжение (V). Эта физическая величина показывает работу источника электроэнергии при переносе заряда по отношению к ее величине. Измеряется в вольтах.
  • Электрическая мощность (P). Обозначает скорость передачи или преобразования электроэнергии. Единица - ватт.
  • Сопротивление (R). Эта величина характеризует свойство проводника препятствовать прохождению тока. Измеряется в омах.

Законы и формулы

Все вышеназванные величины напрямую связаны друг с другом, и практически любая из них может быть выражена через остальные. В школьном курсе физики это подробно изучается, но нелишним будет повторить все снова. Самыми простыми примерами формул могут являться следующие:

  • V = I x R = P : I;
  • I = V : R = P : V;
  • R = V2 : P = V : I = P : I2;
  • P = V x I = I2 x R = V2 : R.

Разумеется, многие помнят и о законе Ома, хотя не все смогут его сформулировать. Он применим и к постоянному току и описывает зависимость ЭДС источника или напряжения и силы от сопротивления. На языке формул это выглядит так:

  • U = IR. То есть разность потенциалов между началом и концом проводника равна произведению силы тока и сопротивления.

В том числе и с этим законом связана еще одна важная зависимость. Она описывает переход электрической энергии в тепловую при передаче. Иными словами, речь идет о потерях мощности в виде нагрева проводов. Эта зависимость называется законом Джоуля-Ленца и описывается так:

где Q - выделяемая теплота, I - сила тока, R - сопротивление, а t - промежуток времени.

Эта формула работает только для постоянной разновидности. То есть она применима только для частного случая, в то время как для переменного она будет выглядеть несколько сложнее.

Отличия от остальных видов

Если рассмотреть графики основных типов электротока, то никаких вопросов не возникнет. Линия постоянного будет прямой, остающейся на одном уровне с течением времени, переменного - пилообразной. В отличие от последнего, первый не обладает таким параметром, как частота, вернее, в этом случае она является нулевой. Кроме того, направление постоянного тока не меняется со временем. Различается и обозначение - DC (direct current) и AC (alternating current). Как нетрудно догадаться, первый - это постоянный, а второй - переменный. К тому же последняя разновидность может быть как одно-, так и трехфазной. В этом и заключаются основные отличия.

Источники и усилители

Разумеется, постоянный ток не берется из ниоткуда. Существуют спеицальные приборы, которые его генерируют. Это обычные батарейки, аккумуляторы и другие современные источники. Первым из них был тот самый гальванический элемент Вольта. Но иногда ток нужно не только генерировать, но и усиливать. Для этого тоже есть специальные устройства - усилители постоянного тока (УПТ). Эти приборы необходимы для того, чтобы повышать напряжение. Усилитель в полном смысле можно назвать УПТ, если его рабочий диапазон включает все частоты, вплоть до самых низких, и нулевую. Эти устройства очень востребованы и широко используются во многих областях электроники, так что их развитие и совершенствование происходит непрерывно.

Применение в современном мире

Он повсеместно. Любые современные приборы, работающие как от сети, так и от аккумуляторов, используют постоянный ток. В первом случае устройство предусматривает специальный элемент, преобразующий электричество из одной разновидности в другую. Во втором же в источнике питания происходит химическая реакция, которая поддерживает напряжение неизменным. Казалось бы, что в этом случае проще было бы, если бы в сети был постоянный, а не переменный ток, но это не так. Вторую разновидность проще вырабатывать, а также его не приходится преобразовывать для работы трансформаторов. А устройства, позволяющие из переменного получать постоянный называются выпрямителями, хотя приборы, проводящие обратное действие, - инверторами. Нашел свое применение этот вид тока и в электрохимии, некоторых видах сварки, обработке металлов, медицине и многих других областях. Он действительно везде, и иногда это кажется настоящим чудом, ведь все начиналось с обычного янтаря.

www.syl.ru

Кто придумал переменный ток | Электрик в Киеве

Электропроводка в квартире, доме стала обязательным атрибутом в наше время. Кажется все просто: звоним мастеру-электрику, говорим, где и сколько установить розеток и светильников и всё. Мы уже не задумываемся, как электрическое освещение пришло в наш дом. При этом, с каждым годом все больше инноваций входят в нашу повседневную жизнь. Например, взять системы освещения с помощью светодиодных ламп. Еще совсем недавно это было новшество.

В данной статье, хотелось бы заострить внимание лишь на небольшой отрезок времени, а именно середину — конец 19 века. Именно в это время был открыт переменный многофазный ток, которым мы пользуемся до сих пор.

Реклама ламп Эдисона

Реклама лампы Эдисона: никакой опасности, дыма или запаха

Начнем с времени, когда уже существовали генераторы электрического тока, которые устанавливались для подачи электроэнергии отдельно взятого дома (домов), для освещения улиц.

В 19 веке были широко распространены электродвигатели и генераторы постоянного тока. В те времена, Т. Эдисон, ученый, изобретатель и предприниматель, зарегистрировавший большое количество патентов, завоевывал Американский континент.Кстати, это он создал компанию General Electric, которая благополучно существует и до сих пор.

В 1884 году произошла первая встреча еще никому неизвестного Н.Теслы и Т.Эдисона. Но удачного тандема двух талантливых людей не получилась, а превратилась в антагонизм.

Тесла и Эдисон, фотография

Тесла и Эдисон

Когда Тесла уволился, несколько лет жил в нищете, после чего его дела постепенно пошли в гору. Суть в том, что у Никола Тесла были разногласия с Томасом Эдисоном по поводу типа тока, который использовать для эксплуатации. Эдисон делал упор на использование постоянного тока, а Тесла – переменного. С этого момента и началась так называемая война токов.

Переменный ток, в отличие от постоянного, непрерывно изменяется как по величине, так и по направлению. Эти изменения называются частотой.Но самое важное в том, что электростанции постоянного тока, используя обычное напряжение, могут передавать электроэнергию в радиусе не больше мили. Это означает, что для того, чтоб осветить город, нужно было бы построить целую сеть местных электростанций. С переменным током все иначе: для того, чтоб осветить город, нужна одна большая электростанция.

К 1887 году, в Америке уже работало около сотни электростанций постоянного тока. Постоянный ток не имеет частоты и не меняет направление, его генераторы гораздо легче подключаются и он удобнее для аккумулирующих станций. Но у постоянного тока есть один огромный недостаток: из-за потерь мощности в проводах, его крайне сложно и дорого передавать на большие расстояния.

Генератор Теслы: Многофазный генератор переменного тока, мощностью 500 л.с.

Многофазный генератор переменного тока, мощностью 500 л.с.

Тесла начал разрабатывать новый тип генератора и двигателя с другим видом тока. Кстати, он же придумал использовать землю как проводник. Этими его открытиями мы пользуемся до сих пор.

Известный промышленник, Джорж Вестингауз, хорошенько изучив патент Эдисона, пришел к выводу, что разработанные Теслой, который был менее известным, генераторы переменного тока более рентабельны. Поэтому, он предложил Тесле 1 млн долларов за все полученные им патенты, а также обещал платить по 1 доллару за каждую одну лошадиную силу сделанных на основе патентов генераторов. В те времена единица измерения мощности. С тех времен переменный ток и начал внедряться человечеством.

К слову, приблизительно в то же время, была принята новая единица измерения мощности, которой мы пользуемся до сих пор : Ватт.

Кроме вышеизложенного, хотелось бы упомянуть некоторые любопытные открытия Тесла, о которых мало кто знает.

Тесла выполнял много экспериментов с током высокой частоты и доказал, что ток с частотой выше 700 герц, то ток протекает по поверхности тела и является безопасным для человека.

Он же первый продемонстрировал модель радиоуправляемой лодки

Также, на видео можно увидеть, как работает фактически никуда не подключенная лампа благодаря трансформатору Тесла

Никола Тесла умер 7 января 1943 года при загадочных обстоятельствах. По официальным данным, смерть ученого наступила вследствие сердечной недостаточности. Однако, существует мнение, что Тесла не умер, а был похищен. И для похорон использовали тело двойника, которое впоследствии тайно кремировали.

В номере отеля спецслужбы провели обыск, в ходе которого были изъяты все бумаги Теслы. Позже было объявлено, что записи содержат исключительно философские размышления ученого. Однако до сих пор многие исследователи считают, что наиболее важные изобретения Николы Теслы были засекречены. Среди них бестопливный генератор энергии, беспроводная передача энергии, телепортация, искусственный интеллект, боевые лазеры

Статья создана по мотивам документального фильма:Свободная энергия Теслы SIGNAL RED

www.elektrik-kiev.com

Спор Эдисона и Вестингауза, изобретших постоянный и переменный ток, длился 100 лет

В школе нам рассказывали о знаменитых войнах, которые меняли ход истории. Все мы знаем о Столетней войне между Францией и Англией, хотя она закончилась еще в середине XV века. А вот о другом столетнем конфликте, завершившемся в конце ноября 2007 года, мало кто знает. Отчасти потому, что он разворачивался в США — и отнюдь не на полях сражений.

Драмы науки: неизвестная  

Драмы науки: неизвестная  "война токов"

Проницательные читатели уже догадались, что речь пойдет о так называемой "Войне токов" — War of the Currents или Battle of Currents. Так стали называть противостояние между Томасом Эдисоном (1847-1931) и Джорджем Вестингаузом (1846-1914) за использование постоянного и переменного тока. Неизвестно точно, кто и когда первым использовал это определение — в газетах конца XIX века оно не встречается. Спор, начатый двумя американскими изобретателями и бизнесменами еще в 1880-е годы, окончательно завершился в конце ноября 2007 года, когда Нью-Йорк, электрифицированный 125 лет назад Эдисоном, окончательно перешел с постоянного тока на переменный.

Это была война за столь огромный рынок, как Соединенные Штаты Америки, которую вели две крупнейшие корпорации, Edison General Electric (в начале 1890-х годов она стала называться General Electric) и Westinghouse Electric. Первоначально в США стали использоваться стандарт постоянного тока. Патент на предоставление этого вида услуг имел Эдисон, поэтому он отстаивал право передавать электрическую энергию таким способом.

Однако при передаче постоянного тока, в котором электроны летят в одном направлении, на большие расстояния значительное количество электроэнергии теряется. Ток с электростанций Эдисона, вырабатывавших напряжение 110 вольт, эффективно передавался лишь на расстояние чуть более полутора километров. Ликвидировать этот недостаток можно было, используя медные провода очень большого сечения или строя множество локальных электростанций. Обе перспективы оказались не слишком радужными из-за их сложности и дороговизны.

Читайте также: Мельница мифов: от Эдисона до Ильича

Когда Джордж Вестингауз узнал про планы Эдисона, он выступил за ток переменный. К тому времени уже появились недорогие трансформаторы, работавшие на высоких мощностях. Передавать электричество на большие расстояния с минимальными потерями можно было при помощи высоковольтных линий. Кроме того, выпускник высшего технического училища в Граце и Пражского университета, серб-эмигрант Никола Тесла, в течение года успешно работавший на фирму Эдисона, в 1885 году оказался у Вестингауза — на предыдущем месте ему опрометчиво отказались повысить зарплату. Уже в 1888 году Тесла запатентовал работавший на переменном токе индукционный двигатель.

Казалось, у Эдисона не было никаких шансов победить. Тогда предприниматель в Эдисоне взял верх над изобретателем и физиком. Он подал дюжину исков, обвиняя Вестингауза в плагиате, но сутяге Эдисону во всех случаях было отказано. И тогда отец фонографа решил создать своему противнику имидж злокозненного изобретателя — посредством черного пиара представить Вестингауза зловещим мистером Хайдом, скрывавшимся под личиной добренького доктора Джекила.

Как-то раз в результате несчастного случая погиб человек. Его убило переменным током от пробитого трансформатора, стоявшего у него в подвале. Происшествие широко освещалось в прессе, что сыграло на руку Эдисону. Вдобавок Эдисон в 1903 году заснял казнь слонихи Топси — она была приговорена к убийству электрическим током за то, что растоптала троих людей, в том числе и жестокого дрессировщика.

При помощи электричества стали отправлять в лучший мир не только слонов. Первым преступником, казненным в США на электрическом стуле, стал некий Уильям Кеммлер, убивший жену топором. В 1890 году через тело Кеммлера пропустили два мощных разряда переменного тока напряжением 1,3 тысяч вольт каждый. А уже на следующий день появилась статья с громким заголовком "Вестингауз казнил Кеммлера". Казнь выглядела настолько мерзко, что сам Вестингауз мрачно заметил: "Топором бы у них вышло лучше". В итоге он отказался поставлять генераторы переменного тока для казни на электрическом стуле.

Однако победа Эдисона на поверку оказалась пирровой. Несмотря на то, что уже в 1892 году на Манхэттене появилась первая в США работающая на постоянном токе электростанция и количество потребителей увеличивалось год от года, законы рынка, как водится, были неумолимы.

Уже в 1893 году Вестингауз и Тесла выиграли тендер на освещение Всемирной ярмарки в Чикаго, а три года спустя смонтировали на Ниагарском водопаде первую гидросистему для питания переменным током второго по величине города штата Нью-Йорк — Буффало. В то же время Эдисону спешно пришлось объединить свою компанию с Thomson-Houston Electric Company, занимавшейся производством продукции для инфраструктуры энергоснабжения переменным током.

Персональный спор двух деловых людей завершился к 1896 году, его результат определили соображения экономической выгоды от использования переменного тока. Все дела в General Electric Эдисон передал в руки профессиональных менеджеров. Скрепя сердце он вынужден был признать поражение и назвал свое выступление в поддержку постоянного тока самой большой ошибкой в своей карьере.

Читайте также: Сверхпроводимость есть! Энергии хватит всем

Впрочем, не исключено, что "война токов" скоро возобновится, поскольку у постоянного тока появился шанс взять реванш. Дело в том, что в активно разрабатываемых сейчас сверхпроводящих кабелях наиболее выгодно использовать именно эту разновидность электрического тока. Поэтому говорить об окончательной победе сторонников переменного тока пока что рано…

Читайте все статьи из серии "Драмы науки"

Читайте самое интересное в рубрике "Наука и техника"

www.pravda.ru

Постоянный и переменный ток - история великой битвы

172900784Электроэнергия в современном мире существует в двух видах. Одна её ипостась – постоянный ток, а вторая – переменный. Разница между ними принципиальная и то, что доступно одному виду электричества, недоступно другому. Так, постоянный ток известен людям очень давно, а переменный был поставлен человеком на службу цивилизации буквально сегодня по историческим меркам. Данная статья посвящена рассмотрению различий и мест применения электроэнергии с постоянной и переменной составляющей.

Постоянный ток, его происхождение и применение

С источниками постоянного тока мы сталкиваемся ежесекундно. Когда вы читаете эту статью с экрана своего монитора, в том, что вы различаете буквы, есть заслуга постоянного тока. Именно от источников постоянного тока запитан компьютер и все его микросхемы. Именно перепадами между уровнями сигнала, соответствующим нулю и единице, мы обязаны существованию цифровой вселенной. Постоянный ток протекает в фонарике и мобильном телефоне, в автомобиле и множестве других устройств бытового и специального назначения, где есть хоть один транзистор или диод.

Вместе с тем, способы получения и применение постоянного тока были известны еще во времена Древнего Мира. Археологами, производящими раскопки в долине Евфрата, были найдены странные керамические сосуды в жилище некоторых ювелиров. Сосуды имели устройство, схожее с гальванической батареей и соединялись между собой медной проволокой. Каково же было удивление археологов, когда они ради эксперимента заполнили один из сосудов кислотой и получили на его полюсах потенциал, равный полутора вольтам! Оказалось, что блоки батарей древние ювелиры применяли для гальванического покрытия ювелирных изделий различными металлами, что и подтвердили готовые образцы изделий, которые часто попадались ученым ранее.

Есть гипотезы, говорящие в пользу того, что при строительстве пирамид в Египте использовали электричество для освещения залов и коридоров в тех местах, где наносили росписи барельефы. Ученые спорят до сих пор по этому поводу, так как есть предположение о том, что свет подавали при помощи системы зеркал с поверхности. Как бы то ни было, но следов копоти на стенах древних залов с  росписями не обнаружено и это факт, который остается необъяснимым до сих пор. Ясно одно, что шумеры умели пользоваться электричеством, а жили они раньше египетской цивилизации.

В современном понимании постоянный ток возникает в замкнутой цепи, состоящей из источника постоянного тока, например, аккумуляторной или химической батареи, проводников и нагрузки. В качестве нагрузки может выступать материал с электрическим сопротивлением, гораздо большим, нежели сопротивление проводников, замыкающих электрическую цепь. Это может быть лампочка с вольфрамовой спиралью или реостат из нихромовой проволоки или любая другая нагрузка, сопротивление которой имеет значение, отличное от нуля.

Получают постоянный ток различными способами. Самый древний из них – химический, основанный на возникновении разницы потенциалов между проводниками из разных материалов, помещенных в кислотную или щелочную среду. Химические батареи и аккумуляторы используются людьми не одно тысячелетие и сегодня они в ходу, только в очень усовершенствованном виде по сравнению со своими древними предками. Более современные источники постоянного тока – фотоэлементы, позволяющие получать разницу потенциалов при облучении их Солнцем и генераторы постоянного тока, которые приводят в действие при помощи механической энергии, прилагаемой снаружи. Сегодня генераторы постоянного тока наиболее распространены в ветроустановках с преобразователем напряжения.

Постоянный ток движет поезда на железной дороге. Электрифицированные участки сегодня составляют значительную величину по протяженности в нашей стране. Постоянный ток применяют и для передачи на большие расстояния значительных мощностей электрической энергии при сверхвысоких потенциалах.

При всей широте применения постоянного тока имеются значительные ограничения, которые препятствуют использованию его в повседневной деятельности для питания бытовых приборов и промышленных установок. Связано это с большими потерями на омическое сопротивление в проводниках, что сказывается самым негативным образом на работе осветительного и прочего оборудования. Для того чтобы снизить потери, необходимо применять проводники большего сечения, причем, альтернативы меди здесь практически нет. А медные провода весьма дороги.

Это препятствие заставило ученых искать иные способы получения и передачи электроэнергии на любые расстояния практически без потерь. Ныне в этой области человеческой деятельности главную роль играет переменный ток.

Переменный ток — происхождение и применение

Появление генераторов и систем передачи энергии переменного тока стало одним из важнейших достижений девятнадцатого века. При этом научные изыскания в этой сфере велись с самого начала столетия. В основу исследований были положены теоретические расчеты, которые показывали, что переменное магнитное поле должно вызывать переменное электрическое поле, которое в свою очередь вызывает снова переменное магнитное поле  и процесс этот может протекать до бесконечности. При значительной частоте колебаний образуются электромагнитные волны, способные свободно распространяться в пространстве, а при незначительной частоте почти вся энергия остается в проводнике, по которому происходит её передача.

Gorskii_04414uСамый простой способ возбудить электрические колебания с переменной амплитудой напряжения – перемещать постоянный магнит внутри рамки с изолированным проводом. При этом, чем больше количество витков в рамке и чем мощнее магнит, тем выше максимальное значение амплитуды напряжения, которое может зарегистрировать вольтметр на зажимах обмотки рамки.

Важной особенностью переменного напряжения является смена полярности при прохождении магнита в обратную сторону. А так же прохождение нулевой отметки значения амплитуды напряжения при смене полярности. Такое поведение напряжения, а значит и тока при подключении нагрузки, позволяет очень легко преобразовывать переменное напряжение в другие величины при помощи трансформаторов, что открывает отличные перспективы для передачи практически без потерь значительных мощностей на любые расстояния, что недостижимо для установок постоянного тока, кроме работающих на сверхвысоких напряжениях.

Первые генераторы переменного тока были разработаны Теслой и Эдисоном. Тесла разработал трехфазную схему производства и передачи электроэнергии на большие расстояния. Он же предложил принцип трансформации напряжения в зависимости от решаемых задач. Так, для потребления электроэнергии конечными установками он предложил ввести переменное напряжение частотой 50 или 60 Гц с амплитудой 110, 127 или 220 вольт, а для передачи на большие расстояния рекомендовал повышать напряжение до 10 тысяч вольт и выше. При высоких напряжениях для передачи по проводнику одинаковой мощности требуется меньший ток, а чем он меньше, тем меньше потери в проводнике. Поэтому сегодня в линии электропередач подают переменное напряжение с амплитудой до 330 кВ.

Простое преобразование напряжений открывает очень широкие возможности для прямого использования переменного тока. Так, существующие асинхронные трехфазные и однофазные двигатели, осветительные приборы, обогреватели и многие другие бытовые приборы могут работать непосредственно от сети, а более сложная радиотехника и устройства с автоматикой, требующие для работы наличие постоянного напряжения, приспособлены для получения его прямо на месте из переменного сетевого напряжения. Так сводят к минимуму потери постоянного тока в проводниках.

К сожалению, на сегодняшний день в мире нет единого сетевого напряжения. Так, для стран Европы и России принят стандарт 230 вольт при частоте 50 Гц, Северная Америка осталась верна напряжению 127 вольт при частоте 60 Гц, в Японии можно встретить и то, и другое напряжение, а в некоторых странах до сих пор в ходу генераторы, вырабатывающие напряжение 100 вольт при частоте 50 Гц. Поэтому, отправляясь в путешествие, сегодня кроме погоды и особенностей национальной кухни в стране пребывания туристов интересует напряжение и частота в сети переменного тока. Ведь в эпоху цифровых технологий важно иметь возможность зарядить свой ноутбук, мобильный телефон и фотоаппарат, чтобы запечатлеть и поделиться с друзьями всеми моментами своего путешествия.

Перспективы совместного существования переменного и постоянного тока

Ученых и практиков от электротехники давно занимает вопрос соединения воедино положительных качеств переменного и постоянного тока. Подобные решения стали возможны, благодаря появлению мощных импульсных полупроводниковых вентилей. Сегодня ни у кого не вызывают удивления инверторные устройства, преобразующие постоянное напряжение в переменное, промышленной частоты, и наоборот. Импульсные источники питания в радиоэлектронной аппаратуре и компьютерной технике стали компактными и мощными, в десятки раз более эффективными по сравнению с источниками питания на обычных трансформаторах.

Сегодня можно утверждать о настоящей революции в сварочном деле, которая произошла благодаря появлению инверторов, значительно облегчивших в прямом и переносном смыслах сварочные аппараты и процессы. Теперь даже те виды сварки, которые считались прерогативой закрытых оборонных предприятий стали доступны любому сварщику, а стоимость производства таких работ, как аргонно-дуговая сварка и полуавтоматическая сварка значительно снизилась. Доступные по цене, легкие переносные сварочные аппараты, которые можно запитывать от обычной розетки в любой квартире, дали возможность проявить свой творческий потенциал многим любителям и профессионалам работы с металлом.

Не менее впечатляющими достижениями импульсной техники могут похвастаться производители источников бесперебойного питания, сетевых импульсных стабилизаторов напряжения, систем получения электроэнергии от альтернативных источников с возможностью аккумулирования и последующего преобразования запасенной энергии при возникновении потребности. Возможности импульсной техники изучены и использованы далеко не полностью. Мы в самом начале этого пути единения постоянного и переменного тока. Совсем не за горами автомобили на электричестве и прочие чудеса, которые станут явью с внедрением новых открытий и разработок в области импульсных источников электроэнергии.

5sklad.ru

Битва электрических королей: Переменный против постоянного

Весь мир освещается благодаря усилиям этих людей. Но два великих изобретателя — Никола Тесла и Томас Эдисон — были заклятыми врагами.

Печатающий телеграф (слева), фонограф (справа), лампа накаливания и еще более тысячи изобретений, защищенных патентами…

…сделали Томаса Эдисона королем изобретателей

Генератор переменного тока, ставший основой современной электроэнергетики и экзотическая высоковольтная высокочастотная катушка — изобретения другого «электрического» гения…

…Николы Теслы

Телефон и фонограф, системы радиолокации и кинокамера, диктофон и электрогенераторы, телеуправляемые механизмы, высокочастотная техника, паровые турбины и магнитный способ сепарации железной руды — буквально ко всему два этих великих изобретателя — Томас Эдисон и Никола Тесла — приложили свои руки и головы. Но, пожалуй, главная их заслуга — свет на улицах и в домах. Они заложили основы всей системы электрификации, от электростанций и до ламп накаливания, от генераторов и до небольших остроумных деталей — цоколей, патронов, предохранителей и счетчиков. Именно электрические устройства стали полем битвы двух гениев.

Сверхчеловек

Родившийся в Хорватии Никола Тесла довольно рано проявил признаки своего научного гения: уже в детстве его переполняли самые фантастические грезы. Он читал запоем, и герои книг будили в нем желание стать сверхчеловеком: в распорядке дня на сон отводилось не более четырех часов, Тесла изнурял себя учебой, уделяя внимание не только техническим наукам, но и профессионально разбирался в музыке, лингвистике, философии, свободно общался на нескольких языках. Со стороны он, впоследствии названный Резерфордом «пророком электричества», походил на одержимого: таким и счел его профессор Пражского университета Пешль, которому 24-летний студент изложил свою идею генератора переменного тока. Пешль пренебрежительно пожал плечами, но авторитеты для молодого изобретателя перестали существовать. Распродав все свое имущество, он отправился в Америку, к легендарному «королю изобретателей» Томасу Эдисону.

Король изобретателей

Будучи старше Теслы на девять лет, Эдисон уже гремел по всему миру. Он был самоучкой: после того, как однажды учитель назвал Томаса «полным тупицей», возмущенная мать забрала его из школы, и тот продолжил образование самостоятельно. Томас много читал и, не имея достаточно средств на восхитительные игрушки, которыми обладали сверстники, конструировал их сам, попутно дорабатывая и совершенствуя механизмы. На всю жизнь он сохранит такой подход к работе: беря за основу уже существующие принципы и изобретения, улучшать их, доводя до ума.

Гульельмо Маркони признан новатором в радио, Александр Белл сконструировал первый телефон, Луи Жан и Огюст Люмьеры — киноаппарат, но коммерческую выгоду от этих изобретений сумел получить только Томас Альва Эдисон, усовершенствовав их, сделав удобными, популярными и продаваемыми.

Эдисон усовершенствовал телеграфный аппарат и «мимеограф», самопишущее электронное перо: специальная игла наносила на лист бумаги едва заметные отверстия, а типографский валик оттискивал по этому трафарету необходимое число копий. В наши дни этот механизм используется в машинках для татуировок, а во времена Эдисона мимеограф, «дедушка ксерокса», был чрезвычайно популярен среди бизнесменов. Это позволило молодому инженеру не только встать на ноги, но и организовать собственную лабораторию в Менло-Парке, в короткий срок превратив ее в настоящую «фабрику изобретений», на которой трудились десятки ученых и техников. Патенты на микрофон, динамо-машину и другие изобретения сыпались, как из рога изобилия.

Переменный и постоянный

Сюда и направился Никола буквально прямиком с борта трансатлантического лайнера. В те годы Эдисон, уже запатентовавший лампу накаливания и генератор постоянного тока, совершенствовал свою систему электрификации города, опытная модель которой успешно действовала в деловой части Манхэттена. Изучив проект Теслы, Эдисон решил отложить его «под сукно», тем временем предложив молодому сербу поработать над его системой на основе постоянного тока. Тот согласился, однако в тайне продолжил работу над совершенствованием собственного генератора переменного тока и уже через год получил на него патент. Но ревнивый начальник развернул против проекта Теслы настоящую войну, и Тесле пришлось покинуть Менло-Парк.

Тормозные деньги

К счастью, известный промышленник и изобретатель Джордж Вестингауз оказался более сметливым человеком. Присутствуя на одном из докладов Теслы, он сразу оценил его идеи и, потратив миллион долларов, выкупил у него патенты на генераторы, электродвигатели, трансформаторы и другие механизмы. Вскоре принадлежавшая фирме Вестингауза Ниагарская ГЭС начала генерировать переменный ток. Казалось бы, успех полный, однако Эдисон не оставил попыток одолеть строптивого «ученика».

Потерпев фиаско в доказательстве экономической нецелесообразности использования переменного тока, он обратился к другим аргументам — создавал образ смертельной опасности, которой подвергает себя всякий, кто рискнет воспользоваться приборами и механизмами, питающимися переменным электричеством. Действительно, вопрос стоял нешуточный — прежде всего, с финансовой стороны.

Собачьи аргументы

Как раз в те годы парламентом штата Нью-Йорк была создана специальная комиссия для выбора «наиболее гуманного способа приведения в исполнение смертных приговоров». Воспользовавшись моментом, Эдисон устроил показательную демонстрацию: нескольких кошек и собак при большом стечении народа заманили на металлическую пластину, находящуюся под напряжением в 1000 вольт (разумеется, переменным). Пресса подробно живописала смерть несчастных животных.

В борьбу включились и «птенцы гнезда Эдисононова», бывшие и нынешние работники Менло-Парка: инженеры Браун и Питерсон пропустили через собаку постоянный ток напряжением до 1000 вольт — собака мучилась, но не умирала, но переменный ток даже 330 вольт убивал ее мгновенно. Вестингауз использовал все свое влияние, пытаясь опротестовать такие «показательные выступления». В New York Times он опубликовал открытое письмо, в котором обвинил Брауна в том, что тот действует «в интересах и на средства» принадлежащей Эдисону компании — но было уже поздно. Джозеф Шапл стал первым в истории преступником, приговоренным к смертной казни на электрическом стуле, а Эдисон, по слухам, лично сконструировал первый такой аппарат, работавший от генераторов «убийственного» переменного тока компании Westinghouse. Приговор был приведен в исполнение в августе 1890 года. «Топором бы у них получилось лучше», — резюмировал Вестингауз.

Человек-молния

Но неутомимый Никола Тесла придумал эффектный ответный ход. Через несколько лет его представление, состоявшееся на Всемирной выставке в Чикаго, потрясло весь мир. С совершенно спокойным видом он пропускал через себя переменный ток напряжением в миллионы вольт — молнии плясали на поверхности его кожи, но сам он оставался невредимым. А когда объятый электрическими разрядами «сумасшедший» брал в руки не подключенные ни к каким проводам лампы накаливания, они послушно загорались в его руках. Это казалось настоящим волшебством. И вскоре Эдисону пришлось пойти на перемирие: эдисоновская компания General Electric вынуждена была приобрести лицензии на электрическое оборудование у компании Westinghouse.

Сумасшедший гений

Если за Эдисоном с годами все больше закреплялась репутация «изобретателя-предпринимателя», то Никола Тесла приобретал славу сумасшедшего гения. Он мог часами в одиночестве прохаживаться по парку, декламируя наизусть «Фауста», в гостиничную комнату соглашался вселиться лишь в том случае, если ее номер был кратен трем, а микробов боялся панически. Большинство своих изобретений он совершал в голове, так говоря об этом: «Когда появляется идея, я начинаю дорабатывать ее в своем воображении: меняю конструкцию, усовершенствую и «включаю» прибор, чтобы он зажил у меня в голове. Мне совершенно все равно, подвергаю ли я тестированию свое изобретение в лаборатории или в уме». Но на практике не все проходило гладко. Однажды в ходе одного из экспериментов Теслы на расстоянии нескольких километров от его лаборатории в Нью-Йорке стены окружающих домов принялись вибрировать — и только вмешательство полиции спасло их от обрушения. «Я мог бы обрушить Бруклинский мост за час», — признавался позже изобретатель. Но современники с готовностью прощали ему и не такие «шалости». Ведь то, что он делал, действительно далеко опережало все, что умела тогда наука.

В 1915 году New York Times сообщила, что Николе Тесле и Томасу Эдисону могут присудить Нобелевскую премию в области физики. Но ни один из них так и не стал нобелевским лауреатом. Оба великих изобретателя отказались получать эту престижную премию: они не смогли простить друг другу прошлых обид.

Статья опубликована в журнале «Популярная механика» (№4, Апрель 2005).

www.popmech.ru

Переменный ток, электродвигатели, история | ЭлектроАС

Дата: 29 ноября, 2013 | Рубрика: Разная ИнформацияМетки: Генератор, переменный ток, постоянный ток, преимущества переменного тока, Трансформатор, электродвигатель, электропривод

Этот материал подготовлен специалистами компании "ЭлектроАС". Нужен электромонтаж или электроизмерения? Звоните нам!

Трансформатор постоянного тока ЛемейераЭлектричество вошло в жизнь человечества в 19 веке, и с тех пор является его неотъемлемой частью. До середины 19 столетия наиболее часто использовались химические источники постоянного тока -  гальванические элементы — «прародители» современной батарейки. Но использовать их в  промышленности было проблематично. Затем появились генераторы постоянного тока. Первый электродвигатель был тоже, соответственно, с постоянными характеристиками тока.

Марсель Депре (1843–1918)

Для использования электричества на практике, в производстве, необходимо передавать электроэнергию  на некоторые расстояния, однако постоянный ток мало для этого подходил. Например, французский электротехник Марсель Депре пытался передать электроэнергию постоянного тока на расстояние 57  км., напряжение 2000 В (для передачи энергии на расстояние требуется значительное повышение  напряжения), однако получил всего КПД 22%.

Машина переменного тока фирмы «Сименс и Гальске» и рядом машина постоянного тока для возбуждения электричества

Для справки — постоянный ток не меняет свое значение и направление, в отличии от переменного, у которого эти параметры изменяются.  В настоящее время его получают из переменного, путем так называемого «выпрямления». Есть  приборы, устройства и техника для которых необходим только постоянный ток. Например -  троллейбусы, трамваи, электровозы, также — в электрохимических установках, использующих электролиз,  для питания устройств автоматики, в приводах прокатных станов, в летательных аппаратах, для  освещения в шахтах и т.п. Получить высокое напряжение от генератора постоянного тока нельзя, из-за коллектора и скользящих контактов . Соединение нескольких генераторов для этой цели также ненадежно и малоэффективно. Нужны были какие-то принципиально новые методы для использования и передачи энергии.

Никола Тесла

Открытие Николой Теслой переменного тока не очень-то жаловали некоторые прогрессивные умы того  времени — утверждали о его непригодности для использования и опасности для человека. Этому  способствовала и рыночная конъюнктура США, и видный ученый того времени — Эдиссон, который нажил  состояние на постоянном токе, они всеми правдами и неправдами стремился сохранить его господство. Пиар кампания против переменного тока привела к ужасным последствиям -  появлению казни на электрическом стуле. А именно Эдиссон первым убивал током животных, демонстрируя его опасность. (но и действительно при небольших значениях напряжения постоянный ток безопаснее, собака оставалась жива при 1000 В постоянного тока, и умирала — при 380 — переменного).

Первая электрическая свеча Яблочкова

Внедрению переменного тока способствовал русский ученый Яблочков, который изобрел «электрическую  свечу», которая устойчиво горела, включенная в цепь переменного тока. Он же первым предложил  идею электростанции — «электрического завода», от которого бы энергия распределялась по потребителям, подобно газу и воде. Однако первая электростанция переменного тока была построена в 1884 году в Лондоне. В России появилась в 1887 году — в Одессе, а затем и в Петербурге — на  Васильевском острове (ее мощность была 800 кВт). Примерно тогда же начались первые его промышленные опытные использования. Электропривод, который постоянно совершенствуется и видоизменяется, до сих пор является ключевым устройством на многих производства.

Линии переменного тока

Преимущества переменного тока:1) значительно более дешевое производство генераторов;2) также и электродвигатели в изготовлении дешевле и проще;2) более удобная передача на большие расстояния;3) возможность легко менять напряжение;4) возможность преобразовывать его в постоянный

Трансфоматор переменного тока

Данный тип электроэнергии можно было гораздо проще передавать на дальние расстояния, с более  высоким КПД, а трансформатор позволяет регулировать напряжение. Трансформатор — устройство для изменения переменного тока одного напряжения в другое (обычно, более низкое) при этом частота остается постоянной (стандартная частота для России 50 Гц), также более распространены синусоидальные колебания.

baner_1.1baner_2

elektroas.ru

Переменный ток: получение и применение

Переменный ток – род тока, направление протекания которого непрерывно меняется. Становится возможным, благодаря наличию разницы потенциалов, подчиняющейся закону. В повседневном понимании форма переменного тока напоминает синусоиду. Постоянный способен изменяться по амплитуде, направление прежнее. В противном случае получаем переменный ток. Трактовка радиотехников противоположна школьной. Ученикам говорят — постоянный ток одной амплитуды.

Создание переменного тока

Создание переменного тока

Как образуется переменный ток

Начало переменному току положил Майкл Фарадей, читатели подробнее узнают ниже по тексту. Показано: электрическое и магнитное поля связаны. Ток становится следствием взаимодействия. Современные генераторы работают за счет изменения величины магнитного потока через площадь, охватываемую контуром медной проволоки. Проводник может быть любым. Медь выбрана из критериев максимальной пригодности при минимальной стоимости.

Статический заряд преимущественно образуется трением (не единственный путь), переменный ток возникает в результате незаметных глазу процессов. Величина пропорциональна скорости изменения магнитного потока через площадь, охваченную контуром.

История открытия переменного тока

Впервые переменным токам стали уделять внимание ввиду коммерческой ценности после появления на свет изобретений, созданных Николой Тесла. Материальный конфликт с Эдисоном отметил сильным отпечатком судьбы обоих. Когда американский предприниматель забрал назад обещания перед Николой Тесла, потерял немалую выгоду. Выдающемуся ученому не понравилось вольное обращение, серб выдумал двигатель переменного тока промышленного типа (изобретение сделал намного раньше). Предприятия пользовались исключительно постоянным. Эдисон продвигал указанный вид.

Тесла впервые показал: переменным напряжением можно достичь гораздо больших результатов. В особенности, когда энергию приходится передавать на большие расстояния. Использование трансформаторов без труда позволяет повысить напряжение, резко снижая потери на активном сопротивлении. Приемная сторона параметры вновь возвращает к исходным. Неплохо сэкономите на толщине проводов.

Сегодня показано: передача постоянного тока экономически выгоднее. Тесла изменил ход истории. Придумай ученый преобразователи постоянного тока, мир выглядел бы иначе.

Начало активному использованию переменного тока положил Никола Тесла, создав двухфазный двигатель. Опыты передачи энергии на значительные расстояния расставили факты по своим местам: неудобно переносить производство в район Ниагарского водопада, гораздо проще проложить линию до места назначения.

Отличие переменного тока от постоянного

Школьный вариант трактовки переменного и постоянного тока

Переменный ток демонстрирует ряд свойств, отличающих явление от постоянного. Вначале обратимся к истории открытия явления. Родоначальником переменного тока в обиходе человечества считают Отто фон Герике. Первым заметил: заряды природные двух знаков. Ток способен протекать в разном направлении. Касательно Тесла, инженер больше интересовался практической частью, авторские лекции упоминают двух экспериментаторов британского происхождения:

  1. Вильям Споттисвуд лишен странички русскоязычной Википедии, национальная часть — замалчивает работы с переменным током. Подобно Георгу Ому, ученый — талантливый математик, остается сожалеть, что с трудом можно узнать, чем именно занимался муж науки.
  2. Джеймс Эдвард Генри Гордон намного ближе практической части вопроса применения электричества. Много экспериментировал с генераторами, разработал прибор собственной конструкции мощностью 350 кВт. Много внимания уделял освещению, снабжению энергией заводов, фабрик.

Считается, первые генераторы переменного тока созданы в 30-е годы XIX века. Майкл Фарадей экспериментально исследовал магнитные поля. Опыты вызывали ревность сэра Хемфри Дэви, критиковавшего ученика за плагиат. Сложно потомкам выяснить правоту, факт остается фактом: переменный ток полвека просуществовал невостребованным. В первой половине XIX-го века выдуман электрический двигатель (авторство Майкла Фарадея). Работал, питаемый постоянным током.

Никола Тесла впервые догадался реализовать теорию Араго о вращающемся магнитном поле. Понадобились две фазы переменного тока (сдвиг 90 градусов). Попутно Тесла отметил: возможны более сложные конфигурации (текст патента). Позднее изобретатель трехфазного двигателя, Доливо-Добровольский, тщетно силился запатентовать детище плодотворного ума.

Продолжительное время переменный ток оставался невостребованным. Эдисон противился внедрению явления в обиход. Промышленник боялся крупных финансовых потерь.

Н. Тесла изучал переменный ток

Никола Тесла изучал электрические машины

Почему переменный ток используется чаще постоянного

Ученые доказали недавно: передавать постоянный ток выгоднее. Снижаются потери излучения линии. Никола Тесла перевернул ход развития истории, правда восторжествовала.

Никола Тесла: вопросы безопасности и эффективности

Никола Тесла посетил конкурирующую с эдисоновской компанию, продвигая новое явление. Увлекся, часто ставил эксперименты на себе. В противовес сэру Хемфри Дэви, который укоротил жизнь, вдыхая различные газы, Тесла добился немалого успеха: покорил рубеж 86 лет. Ученый обнаружил: изменение направления течения тока со скоростью выше 700 раз в секунду делает процесс безопасным для человека.

Во время лекций Тесла брал руками лампочку с платиновой нитью накала, демонстрировал свечение прибора, пропуская через собственное тело токи высокой частоты. Утверждал: явление безвредно, даже приносит пользу здоровью. Ток, протекая по поверхности кожи, одновременно очищает. Тесла говорил, экспериментаторы прежних дней (смотрите выше) пропускали удивительные явления по указанным причинам:

  • Несовершенные генераторы механического типа. Вращающееся поле использовалось в прямом смысле: при помощи двигателя раскручивался ротор. Подобный принцип бессилен выдать токи высокой частоты. Сегодня проблематично, невзирая на нынешний уровень развития технологии.
  • В простейшем случае применялись ручные размыкатели. Вовсе нечего говорить о высоких частотах.

Сам Тесла использовал явление заряда и разряда конденсатора. Подразумеваем RC-цепочку. Будучи заряжен до определённого уровня, конденсатор начинает разряжаться через сопротивление. Параметров элементов определяют скорость процесса, протекающего согласно экспоненциальному закону. Тесла лишен возможности использовать методы управления контуров полупроводниковыми ключами. Термионные диоды были известны. Рискнем предположить, Тесла мог использовать изделия, имитируя стабилитроны, оперируя с обратимым пробоем.

Однако вопросы безопасности лишены почетного первого места. Частоту 60 Гц (общепринятая США) предложил Никола Тесла, как оптимальную для функционирования двигателей собственной конструкции. Сильно отличается от безопасного диапазона. Проще сконструировать генератор. Переменный ток в обоих смыслах выигрывает у постоянного.

Через эфир

Поныне безуспешно ведутся споры, касаемо первооткрывателя радио. Прохождение волны через эфир обнаружил Герц, описав законы движения, показав, сродство оптическим. Сегодня известно: переменное поле бороздит пространстве. Явление Попов (1895 год) использовал, передавая первое Земное сообщение «Генрих Герц».

Видим, ученые мужи дружны между собой. Сколько уважения демонстрирует первое сообщение. Дата остается спорной, каждое государство первенство хочет присвоить безраздельно. Переменный ток создает поле, распространяющееся через эфир.

Сегодня общеизвестны диапазоны вещания, окна, стены атмосферы, различных сред (вода, газы). Важное место отводится частоте. Установлено, каждый сигнал можно представить суммой элементарных колебаний-синусоид (согласно теоремам Фурье). Спектральный анализ оперирует простейшими гармониками. Суммарный эффект рассматривается, как равнодействующая элементарных составляющих. Произвольный сигнал раскладывается преобразованием Фурье.

Окна атмосферы определяются аналогичным образом. Увидим частоты, проходящие сквозь толщу хорошо и плохо. Не всегда последнее оказывается негативным эффектом. Микроволновые печи используют частоты 2,4 ГГц, ударно поглощаемые парами воды. Для связи волны бесполезны, зато хороши кулинарными способностями!

Новичков тревожит вопрос распространения волны через эфир. Обсудим подробнее неразрешенную поныне учеными загадку.

Диполь антенна Герца

Диполь антенна Герца

Вибратор Герца, эфир, электромагнитная волна

Взаимосвязь электрического, магнитного полей впервые продемонстрировал в 1821 году Майкл Фарадей. Чуть позднее показали: конденсатор пригоден для создания колебаний. Нельзя сказать, чтобы связь двух событий немедленно осознали. Феликс Савари разряжал лейденскую банку через дроссель, сердечником которому служила стальная игла.

Неизвестно доподлинно, чего добивался астроном, результат оказался любопытным. Иногда игла оказывалась намагниченной в одном направлении, иногда — противоположном. Ток генератора одного знака. Ученый правильно сделал вывод: затухающий колебательный процесс. Толком не зная индуктивных, емкостных реактивных сопротивлений.

Теорию процесс подвели позже. Опыты повторены Джозефом Генри, Вильямом Томпсоном, определившим резонансную частоту: где процесс продолжался максимальный период времени. Явление позволило количественно описать зависимости характеристик цепи от элементов составляющих (индуктивность и емкость). В 1861 году Максвелл вывел знаменитые уравнения, одно следствие особенно важно: «Переменное электрическое поле порождает магнитное и наоборот».

Возникает волна, векторы индукции взаимно перпендикулярны. Пространственно повторяют форму породившего процесса. Волна бороздит эфир. Явление использовал Генрих Герц, развернув обкладки конденсатора в пространстве, плоскости стали излучателями. Попов догадался закладывать информацию в электромагнитную волну (модулировать), что используется сегодня повсеместно. Причем в эфире и внутри полупроводниковой техники.

Где используется переменный ток

Переменный ток лежит в основе принципа действия большинства известных сегодня приборов. Проще сказать, где применяется постоянный, читатели сделают выводы:

  1. Постоянный ток применяется в аккумуляторах. Переменный порождает движение – не может храниться современными устройствами. Потом в приборе электричество преобразуется в нужную форму.
  2. КПД коллекторных двигателей постоянного тока выше. По этой причине выгодно применять указанные разновидности.
  3. При помощи постоянного тока действуют магниты. К примеру, домофонов.
  4. Постоянное напряжение применяется электроникой. Потребляемый ток варьируется в некоторых пределах. В промышленности носит название постоянного.
  5. Постоянное напряжение применяется кинескопами для создания потенциала, увеличения эмиссии катода. Случаи назовем аналогами блоков питания полупроводниковой техники, хотя иногда различие значительно.

В остальных случаях переменный ток выказывает весомое преимущество. Трансформаторы — неотъемлемая составляющая техники. Даже в сварке далеко не всегда господствует постоянный ток, но в любом современном оборудовании этого типа имеется инвертор. Так гораздо проще и удобнее получить достойные технические характеристики.

Хотя исторически первыми получены были статические заряды. Вспомним шерсть и янтарь, с которыми работал Фалес Милетский.

vashtehnik.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта