Зачем нужен драйвер для светодиода и как подобрать. Подключения светодиодов схемыПодключение светодиода к питанию 5 и 12 Вольт: схемы с описаниемС тех пор, как сверхъяркие светодиоды (LED) стали доступны широкому кругу потребителей, к ним сразу проявился большой интерес. На основе LED можно создавать множество интересных светотехнических конструкций. Однако, подключение светодиода к 12 вольтам, принципиально отличается от подключения к 12 вольтам той же лампы накаливания. В этом материале будет подробно рассказано о подключении светоизлучающих диодов к источникам питания, имеющим различное напряжение. Какие светодиоды подключают к 12 вольтам?Если коротко ответить на вопрос, вынесенный в качестве подзаголовка, то ответ будет звучать так: никакие! Неспециалисту такой ответ покажется парадоксальным, ведь в продаже имеются светодиоды, которые, как заявляют продавцы, рассчитаны на питание от источника 12 вольт. Возьмемся утверждать, что на конкретное напряжение могут быть рассчитаны только изделия на основе светодиодов. Говорить о конкретном рабочем напряжении LED не корректно. Это связанно с физическими процессами, протекающими в нем при испускании света. Главными характеристиками этих процессов являются рабочий ток и максимально допустимый ток прибора. В справочниках и даташитах указывают напряжения на светодиодах при протекании рабочего тока. Эти величины используют для расчетов LED конструкций, а не для выбора источника питания. Кстати, напряжение в рабочем режиме лежит всего лишь в пределах от 1.5 В до 3.5 В. Величина зависит, в основном, от цвета испускаемого LED. Меньшие напряжения падают на красных светодиодах, большие значения относятся к сверхъярким. Имеющиеся в продаже светоизлучающие диоды на 12 вольт не являются единичными приборами. Двенадцативольтовые LED это матрицы, состоящие из нескольких светоизлучающих диодов. Матрицы представляют собой светодиодные сборки, собранные из цепочек последовательно подключенных приборов. В каждой матрице имеется несколько цепочек, которые подключены параллельно между собой. Когда говорят, что светодиод рассчитан на двенадцать вольт, то подразумевают, что падение напряжения на последовательной цепочке из них при протекании рабочего тока составляет примерно 12 В. Подключение сверхярких и мощных LED к 12ВСначала рассмотрим способ подключения одного мощного сверхъяркого светодиода к 12 Вольтам. Допустим, в нашем распоряжении имеется прибор, рабочий ток которого 350 мА. При этом падение напряжения на нем в рабочем режиме составляет примерно 3.4 Вольта. Нетрудно подсчитать, что потребляемая мощность такого прибора составляет 1 W. Понятно, что подключать его напрямую к 12 Вольтам нельзя. Нам придется, каким-то образом, «погасить» часть напряжения. В простейших случаях для этих целей применяются гасящие (токоограничивающие) резисторы. Его соединяют со светодиодом последовательно. Схема питания одного LED показана на фото. Чтобы рассчитать номинал токоограничивающего резистора пользуются формулой: R=(Uпит – Uраб)/Iраб. Вооружившись калькулятором легко подсчитать, что сопротивление будет составлять около 25 Ом. На нем будет рассеиваться мощность, которую рассчитывают по формуле: P=I2*R. В нашем примере мощность составит около 3 ватт. Найти сопротивление такой мощности довольно трудно, поэтому в качестве гасящего резистора можно применить два резистора по 100 Ом мощностью 2 Вт, соединенные параллельно. В принципе на основе этих расчетов уже можно создавать практическую конструкцию. Выполнив подключение светодиода к 12В через выключатель, можно организовать дополнительную подсветку подкапотного пространства автомобиля, багажника или перчаточного бокса. Мы показали, что создание такой схемы возможно, но применение ее нерационально. Нетрудно заметить, что две трети мощности потребляемой конструкцией приходится на гасящий резистор и, следовательно, тратится впустую. Ниже мы расскажем, как избежать ненужных потерь. Сколько LED можно подключить к 12В?Очевидно, что по простейшей схеме к источнику 12 Вольт можно подключить сколько угодно. Главное, чтобы у подключаемого источника питания хватало мощности. Однако мы видели, что при такой схеме подключения много энергии расходуется бесполезно. Простейшим выходом из этой ситуации является снижение мощности рассеиваемой на токоограничивающем резисторе. Для снижения бесполезно рассеиваемой мощности, несколько светодиодов подключают последовательно и питают через один гасящий резистор. В этом случае падение напряжения на сопротивлении оказывается значительно меньше. Следовательно, существенно снижаются потери энергии. Расчет сопротивления для последовательного подключения светоизлучающих диодов выполняют по формуле: R=(Uпит – nUраб)/Iраб. Где n – количество последовательно подключенных LED. В случае источника 12 Вольт разумно подключать последовательно три светодиода и один гасящий резистор. Падение напряжения на светодиодах не превысит 10.5 Вольта и на долю резистора останется всего 1,5 Вольт. Такое техническое решение широко применяют, когда количество подключаемых к 12 Вольтам светодиодов кратно трем. Т. е. так можно подключить 6, 9, 12, …, 3N LED. Например, так поступают производители светодиодных лент. В них светодиоды сгруппированы по три и питаются через одно общее сопротивление. Если нужно подключить 4 светодиода к 12 Вольтам, то целесообразно сгруппировать их по 2, и каждую пару питать через токоограничивающий резистор. Последовательно следует подключать светодиоды с одинаковым рабочим током. Иначе разные приборы будут светить с различной яркостью или будет превышен ток какого-либо LED, и он выйдет из строя. Что касается подключения светодиодов «рассчитанных на 12 В» то лучше установить их «рабочее напряжение» опытным путем. Для этого их надо подключить к лабораторному блоку питания и, постепенно поднимая напряжение, контролировать потребляемый ток. Напряжение, при котором рабочий ток будет достигнут, можно использовать для расчета токоограничивающего резистора. Как подключить LED к 3 или 5 вольтамБольшинство маломощных светодиодов нормально работают и от 3 и тем более от 5 вольт. Выполнить для них расчет токоограничивающих сопротивлений можно по приведенной выше формуле. При изготовлении конструкций с автономными источниками питания, особенно если в них используются сверхъяркие «мощные» LED, такой подход не приемлем. Мощность, рассеиваемая на гасящем резисторе, значительно сокращает время работы устройства. Поэтому в современных ручных фонарях, работающих от низковольтных батарей применяют электронные преобразователи напряжения – драйверы. Потери в драйверах намного ниже, чем на токоограничивающих резисторах. Сейчас драйверы доступны и их можно легко найти в магазинах. Имея некоторые познания в электронике и навыки работы с паяльником, простой драйвер можно изготовить самостоятельно. Одна из простых схем преобразователя для мощного светодиода приведена ниже. Как подключить к 12 вольтам автомобиляПодключение светодиодов к бортовой сети автомобиля не имеет существенных отличий от подключения к другим источникам питания. Просто не нужно забывать, что аккумуляторная батарея автомобиля в нормальном состоянии выдает не 12 Вольт, а примерно 14 Вольт. Еще при подключении надо помнить, что не в каждом автомобиле надежно работает система стабилизации напряжения бортовой сети. Поэтому при расчетах гасящих резисторов лучше принимать напряжение питания равным 15 – 17 вольт. Это несколько снизит яркость свечения, но зато значительно продлит срок службы, так как светодиод будут работать в «щадящем» режиме. Видео о подключенииПеред подключением советуем посмотреть хорошее видео для закрепления полученных знаний. Автор подробно и доступным языком рассказывает, как подключить светодиод к 12 вольтам от блока питания компьютера, как рассчитать резистор и другие нюансы. ИтогиВ заключении можно сказать, что при подключении сверхъярких светодиодах нужно принимать во внимание следующие соображения:
Запомнив все вышеперечисленные аспекты подключения, Вы с легкостью запитаете любой светодиод, в любом количестве, от любого источника питания постоянного тока 12 Вольт.
ledno.ru Как подключать светодиоды | Схема-авто — поделки для авто своими руками.Многие автовладельцы хотели бы заменить простые лампочки на светодиоды, их освещение это; — первое — очень низкий ток потребления, второе — надежность и долговечность, третье — более высокая светоотдача по сравнению с простой лампочкой и четвертое отсутствие нагрева. Если вы вдруг забыли выключить габариты, а утром пришли в гараж и были приятно удивлены, что аккумулятор не разряжен. Эта статья расскажет вам как самостоятельно заменить автомобильные лампочки на светодиоды и избежать ошибок. Хочу сказать- не пытайтесь сразу выкидывать лампочки и сувать на их место светодиоды, ничего хорошего из этого не выйдет… Будьте внимательны и аккуратны, ремонт электрооборудования в результате ваших неправильных действий – штука не очень приятная. Это касается не только светодиодов, но и других, любых действий с электропроводкой автомобиля. Но, тем не менее, ничего сложного в подобной замене нет, любой человек способен произвести ее самостоятельно, прочитав данную статью. Основы, которые нам нужно усвоить: Первое —— Напряжение в сети автомобиля обычно это 12 — 13,5 Вольт при заглушенном движке и 13 — 14,5 В при заведенном двигателе. Второе ——- Напряжение питания обычного светодиода – 3,5 вольта. В зависимости от цвета и маркировки — это значение может быть таким — для красных и желтых светодиодов — 2 — 2,5 вольта.; для зеленых , синих, белых — 3-3,8 вольт. Ток маломощного светодиода – 20 мА, а мощного достигает до 350 мА. (Но это очень мало) Третье ——- Не все светодиоды,если сравнивать с лампочками, освещают пространство вокруг себя. Это нужно учитывать к примеру, когда меняешь индикаторные лампы, к примеру, в приборной панели. Когда покупаете светодиод нужно обратить внимание на тип линзы или просто спросить у продавца (если конечно он в этом сам разбирается). Узконаправленные светодиоды, практически все, имеют на конце маленькую увеличительную линзу. Мой совет, купите разных светодиодов и проверьте сами какие вам больше подойдут. Четвертое ——- У светодиода, есть плюс и минус, как и у аккумулятора. Минус у него это- катод, плюс — анод, вот как выглядят на схемах : Если вы правильно поняли, то просто взять и воткнуть в бортовую сеть, значит просто сжечь его. Хотите в этом убедиться ? Попробуйте подключить любой светодиод напрямую к аккумулятору. Он красиво вспыхнет, задымится и сгорит. Зато будете иметь представление, как это происходит. Подключаем светодиоды Первое — В продаже, на сегодняшний день, есть светодиодные панельки, они ещё называются кластерами, вот эти кластеры рассчитаны на 12 вольт. Их можно сразу взять и подключить к бортовой сети автомобиля и радоваться как они красиво горят. Но есть одно «но»– при изменении оборотов двигателя, соответственно будет и меняться их яркость. Не очень заметно конечно, но видно… К тому же, нормально они светят только при напряжении 12,5 вольт, и если у вас низкое напряжение в сети авто, кластеры будут гореть тускло. Состав кластера это — цепочка светодиодов и резисторов. На каждые 3 светодиода — один резистор, который нужен для гашения лишнего напряжения. Светодиодные ленты, по принципу, устроены практически также, и если вам надо, к примеру отрезать какой-то кусок, небольшого размера, посмотрите на ленту, там вы увидите те места, где ее можно отрезать. Обычно это 3 светодиода и 1 резистор, и можно резать… Второе — Можно самому сделать цепочку из последовательно соединенных между собой кластеров и два вывода к питанию Но любые светодиоды можно высчитать…К примеры если они для 12-14 вольт, то нам понадобится 3 светодиода. В сумме они дадут 3,5х3=10,5 вольт. Последовательное соединение– это когда плюс первого светодиода соединяется с минусом следующего диода и так далее… Но, их пока подключать еще нельзя, нужно также последовательно включить в цепочку гасящий резистор — номиналом 100-150 Ом, и мощностью 0,5 Вт. Резисторы можно приобрести в любом магазине радиодеталей. Но данный способ имеет недостаток, о котором мы говорили выше — это изменение свечения при смене оборотов двигателя. Но этим способом можно пользоваться…Если вам надо поставить больше 3 диодов(в цепочке), то тут уже придеться соединять паралельно. Параллельно — это значит соединять несколько цепочек (3 диода+резистор—одна цепочка), плюс цепочки надо соединять обязательно с плюсом следующей цепочки, и также минус к минусу. Номинал резистора, можно высчитать по закону Ома. Если вы не дружите с Омом то, можно применить такое правило: если включаете один светодиод — то резистор надо 500 Ом, если 2, то 300 Ом, 3 светодиода — 150 Ом. Но лучше всё же почитайте закон Ома, чтобы не наделать ошибок. Теперь немного по-подробней. Вам понадобятся : тестер Первое — Прибор-измеритель или просто сказать»Мультиметр». Можно купить практически везде… Только не надо покупать самый дорогой, чем проще тем вам будет понятней. Им можно будет произвести все нужные измерения, но сначало, конечно надо немного изучить по инструкции как им пользоваться. Второе — Немного о Законе Ома для электрической цепи, то есть для вашегосветодиода и резистора, будет такая формула R=U/I . Где R — это сопротивление резистора, U — напряжение, которое нам надо погасить, и I — это ток в цепи. То есть, объесняю, для того чтобы получить сопротивление гасящего резистора, надо взять и разделить напряжение, на ток, который нужно получить. Рассмотрим пример. Допустим у нас есть белый светодиод и его надо подключить к авто… Напряжение питания данного светодиода 3,5 вольт, ток — 20 мА. Первое — Что нужно сделать это измерить напряжение в том месте, где мы его собираемся устанавливать. Само напряжение в разных частях автомобиля (на разных разъёмах)может быть разным…Итак включаем прибор в режим измерения напряжения и производим замер.Допустим у нас вышло 13 вольт. Второе — Вычитаем из 13 вольт напряжение светодиода (3,5 вольт). И получаем 9,5 вольт. Ток в нашу формулу надо подставлять в амперах, в одном ампере 1000 миллиампер, то есть 20 мА это 0,02 Ампера. Также поформуле вычисляем сопротивление : 9,5/0,02=475 Ом. Для того чтобы наш резистор не грелся, надо вычислить его мощность. Для этого нам нужно умножить напряжение, которое гасит резистор — 9,5 в, на ток, который проходит через него — 0,02 ам. 9,5 умножаем на 0,02= 0,19 ватт. Конечно берём чуть с запасом — то есть 0,5-1 ватт. Чтобы померить ток в цепи. Надо включить наш «мультиметр» в режиме измерения тока в разрыв между резистором и светодиодом (то есть соединять надо последовательно). Для этого надо установить диск переключения на мультиметре на «10А», и воткнуть красный щуп в гнездо с надписью «10А». Он должен нам показать 20 миллиампер или немного меньше. У резисторов и светодиодов есть небольшой разброс параметров, поэтому ток может немного отличаться. Чем больше будет ток, тем ярче будет светить наш светодиод, но это может сказаться на сроке его службы. Поэтому для обычных светодиодов не нужно устанавливать ток выше 20 микроампер, среднее значение — 18мА. Вот так теперь вы узнали, из вышеописанного, как можно подключить любое количество светодиодов в любом месте автомобиля. Нужно только знать напряжение и ток, и далее следовать формуле.Ещё к дополнению, можно подключать параллельно светодиоду простой диод, практически любого типа, он избавит нас от напряжения обратной полярности. Подключать надо катод диода к аноду светодиода. Дальше—— мы узнаем как подсоеденить светодиоды, чтобы обороты двигателя не влияли на их яркость…Конечно самым правильным будет включить светодиоды через стабилизатор. Стабилизатор служит для стабилизирования напряжения и ограничивания тока, таким образом, можно подсоединить хоть киловольт, а светодиод всё равно будет светить нормально. Для стабилизации тока используются приборы, их называют драйверами. Вот самый простой драйвер — схема на микросхеме-стабилизаторе LM317. Главное достоинство этой микросхемы — её очень трудно спалить. Нам потребуется микросхема и трехвыводной стабилизатор напряжения. Слишком подробно не буду писать, итак нам надо переменный резистор 0,5 кОм. Дальше надо припаять средний вывод резистора к любому крайнему. Включаем свой мультиметр, ставим в режим измерения сопротивления. Потом подключаем к проводам резистора, который паяли, и замеряем сопротивление . Вращением резистора надо добиться, чтобы он нам показал 500 Ом (или около того). Это надо для того, чтобы не спалить светодиод при слишком маленьком сопротивлении резистора. Дальше собираем и паяем цепь, ещё раз всё проверяем и подключаем. Прибор включаем в режим измерения тока. Начинаем вращать переменный резистор и добиваемся показаний в 20 мА. Потом отключаем цепь и замеряем сопротивление резистора и впаиваем вместо него обычный резистор с таким же сопротивлением. Вот и все ваш первый в жизни драйвер собран. Он у нас имеет ограничение по максимальному току в пределах 1-1,5 А, Если будете включать много светодиодов, то тогда, берите резистор большей мощности. Если в процессе работы микросхема становится горячей — то нужно сделать для нее теплоотвод или радиатор. Ещё один нюанс наша — корпус автомобиля это «минус» аккумулятора, а подложка нашей микросхемы (корпус) — со своей второй ножкой. Поэтому нельзя крепить ее на кузов , то есть массы без прокладки. Сама микросхема устроена так, что она снижает напряжение, которое подается на светодиод, на 2-3 вольта.Поэтому выходное напряжение у этого драйвера будет 11-12 вольт. Но его главный плюс он легок в сборке.Ну вот будем надеяться, что у вас всё получилось, если что не понятно, пишите в комментариях или на форуме. . xn----7sbbil6bsrpx.xn--p1ai Виды, схема, подключение светодиодных лент декоративной подсветки
Современные элементы интерьера во многом преображаются, если добавить в них декоративную подсветку, которая является той самой «изюминкой» оригинальности и выражением современного высокотехнологичного дизайна. Именно для этого применяют светодиодные ленты подсветки, которые производятся во многих вариантах, как цветовой гаммы, так и других характеристик, о которых пойдет речь.
В принципе, ничего сложного нет ни в монтаже, ни в подключении подсветки к электричеству, но самым сложным есть выбор той или иной системы, и понимания ее принципа работы. Есть системы, которые работают от 220 В и соответственно, не требуют блока питания, есть на 12/24 В подсветки, а для большого количества освещения, может понадобиться не один блок питания, плюс усилители.
Но нужно понимать, что данный вид осветительных приборов является вспомогательным, и как правило, не обходится без точечного или группового лампового освещения (см. «Виды и принцип работы современных электрических бытовых ламп освещения»), а общего или зонированного – другой вопрос.
Виды светодиодных лент декоративной подсветки
Плотность светодиодов на метр погонный ленты – это та характеристика, которая определяет (большей частью) яркость освещения. Самая высокая плотность составляет 240 светодиодов на метр погонный, то есть, 24 на секцию 10 см, как можно видеть на рисунке ниже. Там же видно, что ленты плотностью 120 штук на м/п, выполнены в двух вариантах – в один и в два ряда. Также можно видеть, что 240 располагается в два ряда, а 140 – в три. Это все связано с габаритными размерами светодиодов, их цветностью, а также архитектурой схемы и резисторов самой ленты, об этом еще пойдет речь далее.
Само расположение не принципиально, тут показано лишь, что бывает лента в один, два и три ряда, различного расположения (вряд, в «шахматку»). Мелкие светодиоды могут располагаться в один ряд и достигать плотности 120 штук на метр, а более громоздкие для такой же плотности приходится располагать в два ряда, но и светоотдача у них, как правило, больше, и/или они способны излучать несколько цветов. В последнем случае, расположение усугубляет большее количество дорожек и обслуживающих резисторов.
Типы светодиодов для ленты условно делятся на одноцветные и многоцветные. Первые могут излучать оттенки одного из основных цветов спектра (красного, зеленого, синего), а также разной мягкости белого (от солнечного до чисто-белого). Они обычно меньшего размера и потребляют немного электричества, имеют два контакта для подключения в схеме ленты и один обслуживающий токоотводящий резистор на стандартную секцию из трех светодиодов.
Многоцветные же обозначаются аббревиатурой RGB, что в переводе на русский КЗС – красный, зеленый, синий. Их конструкция такова, что вмещает в одном корпусе одного кристалла три проводниковых элемента, каждый из которых при подаче напряжения излучает свой цвет. В таких светодиодах конструктивно можно наблюдать шесть контактов, три на одной стороне, три на другой, каждый ведет на свой проводниковый элемент в кристалле. На секцию из трех таких светодиодов положено три обслуживающих токоотводящих резистора – на каждый цвет трех светодиодов по одному.
Различают светодиодные ленты подсветки и по размеру, который можно узнать, судя по маркировке. Наиболее распространенные варианты цифровых значений – 3528 и 5050, которые указывают на размер светодиода. Первые две цифры в маркировке 3528 например, обозначают размер в миллиметрах (целое и дробное значения) одной габаритной стороны светодиода – 3,5 мм. Вторые две соответственно – габариты по второй стороне: 2,8 мм.
Одноцветные ленты производят на базе светодиодов SMD (Surface Mounted Device, или монтированный на поверхность прибор), различных размеров, основные из них – это SMD 3528, SMD 3020, SMD 3015, SMD 2012 с соответствующими размерами 3,5х2,8 мм, 3х2 мм, 3х1,5 мм, 2х1,2 мм. Бывают более мощные одноцветные устройства с тремя и более проводниковыми источниками света в кристалле, а также многоцветные RGB, с маркировками SMD 5050 (5х5 мм) и SMD 5060 (5х6 мм). Имеется еще аббревиатура DIP, которая указывает на цилиндрический корпус светодиода, и соответственно, прикрепленная к ней цифра обозначает диаметр корпуса.
Характеристики потребляемой энергии светодиодных лент бывают самые разнообразные, в зависимости от плотности и типа используемых светодиодов. Еще один нюанс «прожорливости» этих источников света – цвет освещения, но это больше относится к одноцветным видам, а в RGB можно самостоятельно настроить оттенок, тем самым немного изменить характеристику потребления.
Есть ленты, которые рассчитаны на потребление напряжения 12, 24, 36, 48 и 220 Вольт. Наиболее распространенные – 12 и 24 В, которые выпускаются в бухтах по 5 м и имеют размер секции равный 10 см. Ленты на 36 и 48 В выпускаются в большем количестве случаев под заказ, бухтами по 30 м, с секциями по 15-20 см, но стоимость по метру погонному с одинаковыми характеристиками 12/24-х вольтовых лент одинакова.
Потребляемая мощность указывается производителем на 1 м/п ленты, и зависит она от плотности светодиодов, а также потребления вида светодиода. К примеру, если взять ленту с маркировкой SMD 3528 4,8W 60 LED R, то судя по ней, можно увидеть светодиоды 3,5х2,8 мм (SMD 3528), с мощностью потребления на метр ленты 4,8 Вт (4,8W), плотностью 60 светодиодов (60 LED) красного цвета (60 LED R) на метр погонный. Каждый светодиод серии SMD 3528 LED R потребляет 0,08 Вт, из этого следует: 60*0,08=4,8 Ватт потребляемой мощности на метр погонный ленты из шестидесяти светодиодов.
Схемы, конструкции светодиодных лент декоративной подсветки
Многочиповые светодиоды имеют наиболее сложную схему, то есть те, в корпусах которых имеется по несколько элементов, вырабатывающих свет. К ним относятся элементы класса SMD 5050 (5060), которые бывают одноцветными и многоцветными (RGB). В первом случае чипы, излучающие свечение, выполнены из одного материала, выдающего один цвет. Если речь идет о RGB, то там расположено три чипа, выполненных из разных материалов, каждый из которых светится своим цветом.
Составные обслуживающие элементы (токоограничивающие резисторы) и количество контактов, которое вмещает в себе схема светодиодной ленты RGB, не настолько велика, как на основе пятичиповых SDM 5050, так как имеет всего четыре действующих контакта. Но принцип все тот же: три чипа в светодиоде – три управляющих, замыкающих цепь контакта, плюс общий 12 В.
Первый в секции светодиод запаян на силовой контакт с одной стороны, а далее идет последовательное соединение одного за другим тремя токопроводящими дорожками, в цепь каждой включен токоограничивающий резистор, отводящий излишек тока от своего чипа. Стоит обратить внимание на саму конструкцию светодиода в данном случае, которая отличается от пятичиповой, в которой имеется один общий силовой 12 В контакт, который, как правило, расположен посередине в нижнем ряду, а остальные – замыкающие.
Управление чипами производится отдельно каждым, и соответственно, комбинациями различной яркости из трех разноцветных, можно добиться практически любого оттенка, а также белого цвета. Также можно дискретным образом, просто включать или выключать определенный чип. В одноцветных многочиповых светодиодах такой дискретный способ управления яркостью освещения является более удобным, чем метод плавного регулирования реостатом.
На схеме секции можно наблюдать, что подключение светодиодов происходит в последовательном порядке, но подключение самих секций в ленте осуществляется параллельно. Разъединение секций производится путем разреза по токопроводящим незащищенным контактам, по намеченным линиям разреза.
Одночиповые светодиоды довольно просты в подключении на ленте, и они имеют всего один чип, соответственно, излучают свет одного оттенка, настроить можно только яркость с помощью реостата. Наиболее простой считается схема подключения светодиодной ленты на основе одночиповых SMD 3528, SMD 3020, SMD 3015, SMD 2012 и других (разнообразие их велико, описаны наиболее широкие в применении). Секция такой ленты декоративного освещения имеет три светодиода, на которых приходится один токоограничивающий резистор, все это на две дорожки – силовую и нулевую.
Подключение элементов в секции ленты последовательное, а подключение секций – параллельное. Такие ленты, как правило, более тонкие, так как светодиоды менее громоздкие, чем многочиповые (плюс к тому только один резистор на секцию), и могут помещаться в один ряд при таком количестве, котором потребуется два ряда SMD 5050. Но при этом светоотдача их естественно, меньше.
Выше приведены основных два вида светодиодных лент, но существуют и гибридные, многочиповые с одночиповыми, а также с секционным управлением, которое обеспечивает эффект «бегающий огонь», различные мерцания и т. д., подобно новогодним гирляндам. Для этого нужен еще специальный контроллер, но об этом далее.
Расположение дорожек и размещение элементов на ленте может отличаться от приведенных выше схем, но принципиальная составляющая остается все та же. Лента может иметь различного цвета защитное покрытие, под которым спрятаны дорожки, а также класс защиты IP, первая цифра которого указывает на степень защиты от пыли и твердых тел, вторая – от влажностных воздействий. В статье «Виды, устройство и маркировки современных электрических бытовых розеток» имеется полная таблица расшифровки всех классов защиты, от IP 00 до IP 69.
Схемы и особенности подключения светодиодных лент
Блок питания для светодиодной ленты входит в любую схему подключения, за исключением тех, которые рассчитаны на характеристики сетевого напряжения 220 В переменного тока – такие ленты могут подключаться напрямую. Существуют разные блоки, которые подбираются по напряжению, а также общей мощности и рабочему току всей длины ленты, которую планируется подключить к нему. К примеру, нужно подобрать блок питания к пяти метровой SMD 3528 60 LED подсветке. Характеристики ее: рабочее напряжение – 12 В; рабочий ток – 0,4 А/м; потребляемая мощность – 4,8 Вт/м.
Эти данные указываются производителем на метр погонный, а на нужных в нашем случае пять, просто умножаем их на это количество: 0,4*5=2 А; 4,8*5=24 Вт. При этом напряжение остается одинаковым что на один, что на пять метров, и таким образом, блок питания для нашей пятиметровой SMD 3528 60 LED, должен быть рассчитан на ток в 2 А, и иметь мощность, равную 24 Вт, естественно, при выходном напряжении 12 В постоянного тока.
Выше приведена на основе одного и двух блоков (А) схема питания светодиодной ленты, на одночиповых светодиодах, рассчитанной на 12 В. В обоих случаях потребителя два – две пятиметровых ленты. Но в первом случае мы наблюдаем блок питания (А) такой мощности и выходного тока, который способен запитать две ленты (Б). Во втором же случае, либо ленты очень «прожорливые», почему невозможно или экономически не целесообразно брать один высокомощный блок на две, либо подобрано специально два блока питания, по одному на каждую, чтобы при выходе из строя одного, замена стоила дешевле, ну или из других соображений (их немало).
Это наиболее примитивная схема, на которой не изображено элементов управления. Как минимум должен быть один – выключатель 220 В, который замыкает первичную силовую цепь в блок питания. По желанию можно включить и другие элементы управления, например, сенсорный выключатель или модуль дистанционного управления при помощи пульта. О современных системах управления электрическими потребителями можно узнать из статьи «Виды реле для бытовых электросетей, их назначение и принцип работы».
RGB-контроллер для многоцветной ленты представляет собой электронное устройство, управляемое, как правило, дистанционно. Контроллер имеет набор дискретных (ступенчатых) и плавно регулирующих (реостатных) элементов управления, которые замыкают/размыкают цепь и регулируют мощность каждой из трех веток, которые питают свой цвет в RGB светодиодах. Таким образом, пультом можно регулировать насыщенность того или иного цвета, регулируя палитру в общем.
Более сложные контроллеры для специальных лент способны также руководить каждой секцией, выполняя целые световые спецэффекты. В них встроен специальный процессор с набором алгоритмов управления каждым отдельным элементом в ленте, поэтому светодиодная лента для подсветки потолков, к примеру, может светиться и мигать как гирлянда на новогодней елке, или как-нибудь помягче, плавнее. Все зависит от программной части процессора, который можно самостоятельно корректировать, но при помощи специальных навыков и устройства – программатора.
Выше приведены схемы подключения RGB ленты (Г) с одним блоком питания (А) через RGB контроллер с инфракрасным приемником (В) для дистанционного пульта управления. В обоих случаях блок питания достаточно мощный, чтобы запитать одну-две и даже более лент. При этом важно заметить, что подключение лент происходит напрямую к блоку, а другой вариант, когда вторую ленту запитывают от крайних контактов первой, является грубейшей ошибкой. Это правило распространяется на все виды лент, в том числе и предыдущую одноцветную на основе одночипного светодиода.
Но, что делать, если количество лент очень большое, плюс каждая имеет очень большую мощность потребления и высокую плотность светодиодов.? – тогда в схему питания необходимо включить необходимое количество блоков питания, а также специальный RGB-усилитель в том же количестве, что и дополнительных блоков, как показано ниже.
На схеме первый сверху блок питания (А), питающий RGB-контроллер (Б), по средствам которого происходит управление всей системой декоративного освещения (Д) через инфракрасный приемник (В). Первый блок питания имеет мощность, равную потреблению первой ленты и контроллера, плюс, как полагается, запас надежности в 20%. Для второй и третей ленты также по блоку питания равной мощности плюс запас, но последующие блоки подключены не напрямую, а через RGB-усилитель.
RGB-усилитель – это прибор, элемент цепи, который позволяет увеличить количество лент, подключаемых к контроллеру. Ленты подключаются одна к другой через контроллеры, и отдельно к каждому положен блок питания, как на рисунке выше. И нет разницы, какую светодиодную ленту выбрать, главное, чтобы мощность блока питания совпадала. Без этого прибора подключать ленты последовательно нельзя, даже если бы блок питания был настолько мощным, что мог бы «потянуть» и вторую – таковы правила монтажа светодиодного ленточного освещения. В данную схему можно подключить практически любые виды светодиодных лент, даже можно умудриться три одноцветных влепить, если есть с того смысл.
Чтобы максимально расширить функционал управления электрическими приборами, в том числе декоративным освещением, существуют высокоинтеллектуальные системы, о которых можно узнать из статьи «Составляющие элементы системы умный дом, их назначение и принцип работы». Если возникнут вопросы – пишите под статьей в поле комментариев ВК.
С уважением, команда Mastery of building – портала общестроительной тематики.
mastery-of-building.org Драйвер для светодиодов: назначение, выбор, подключение, схемыШирокое распространение светодиодов повлекло за собой массовое производство блоков питания для них. Такие блоки называются драйверами. Основной их особенностью является то, что они способны стабильно поддерживать на выходе заданный ток. Другими словами, драйвер для светодиодов (LED) – это источник тока для их питания. НазначениеПоскольку светодиод — это полупроводниковые элементы, ключевой характеристикой, определяющей яркость их свечения, является не напряжение, а ток. Чтобы они гарантированно отработали заявленное количество часов, необходим драйвер, — он стабилизирует ток, протекающий через цепь светодиодов. Возможно использование маломощных светоизлучающих диодов и без драйвера, в этом случае его роль выполняет резистор. ПрименениеДрайверы применяются как при питании светодиода от сети 220В, так и от источников постоянного напряжения 9-36 В. Первые используются при освещении помещений светодиодными лампами и лентами, вторые чаще встречаются в автомобилях, велосипедных фарах, переносных фонарях и т.д. Принцип работыКак уже было сказано, драйвер – это источник тока. Его отличия от источника напряжения проиллюстрированы ниже. Источник напряжения создает на своем выходе некоторое напряжение, в идеале не зависящее от нагрузки. Например, если подключить к источнику напряжением 12 В резистор 40 Ом, через него пойдет ток 300 мА. Если подключить параллельно два резистора, суммарный ток составит уже 600 мА при том же напряжении. Драйвер же поддерживает на своем выходе заданный ток. Напряжение при этом может изменяться. Подключим так же резистор 40 Ом к драйверу 300 мА. Драйвер создаст на резисторе падение напряжения 12 В. Если подключить параллельно два резистора, ток по-прежнему будет 300 мА, а напряжение упадет до 6 В: Таким образом, идеальный драйвер способен обеспечить нагрузке номинальный ток вне зависимости от падения напряжения. То есть светодиод с падением напряжения 2 В и током 300 мА будет гореть так же ярко, как и светодиод напряжением 3 В и током 300 мА. Основные характеристикиПри подборе нужно учитывать три основных параметра: выходное напряжение, ток и потребляемая нагрузкой мощность. Напряжение на выходе драйвера зависит от нескольких факторов:
Ток на выходе драйвера определяется характеристиками светодиодов и зависит от следующих параметров:
Мощность светодиодов влияет на потребляемый ими ток, который может варьироваться в зависимости от требуемой яркости. Драйвер должен обеспечить им этот ток. Мощность нагрузки зависит от:
В общем случае потребляемую мощность можно рассчитать как где Pled — мощность светодиода, N — количество подключаемых светодиодов. Максимальная мощность драйвера не должна быть меньше . Стоит учесть, что для стабильной работы драйвера и предотвращения выхода его из строя следует обеспечить запас по мощности хотя бы 20-30%. То есть должно выполняться следующее соотношение: где Pmax — максимальная мощность драйвера. Кроме мощности и количества светодиодов, мощность нагрузки зависит еще от их цвета. Светодиоды разных цветов имеют разное падение напряжения при одинаковом токе. Например, красный светодиод CREE XP-E обладает падением напряжения 1.9-2.4 В при токе 350 мА. Средняя потребляемая им мощность таким образом составляет около 750 мВт. У XP-E зеленого цвета падение 3.3-3.9 В при том же токе, и его средняя мощность составит уже около 1.25 Вт. То есть драйвером, рассчитанным на 10 ватт, можно питать либо 12-13 красных светодиодов, либо 7-8 зеленых. Как подобрать драйвер для светодиодов. Способы подключения LEDДопустим, имеется 6 светодиодов с падением напряжения 2 В и током 300 мА. Подключить их можно различными способами, и в каждом случае потребуется драйвер с определенными параметрами:
Соединять таким образом параллельно 3 и более светодиодов недопустимо, так как при этом через них может пойти слишком большой ток, в результате чего они быстро выйдут из строя. Обратите внимание, что во всех случаях мощность драйвера составляет 3.6 Вт и не зависит от способа подключения нагрузки. Таким образом, целесообразнее выбирать драйвер для светодиодов уже на этапе закупки последних, предварительно определив схему подключения. Если же сначала приобрести сами светодиоды, а потом подбирать к ним драйвер, это может оказаться нелегкой задачей, поскольку вероятность того, что Вы найдете именно тот источник питания, который сможет обеспечить работу именно этого количества светодиодов, включенных по конкретной схеме, невелика. ВидыВ общем случае драйверы для светодиодов можно разделить на две категории: линейные и импульсные. У линейного выходом служит генератор тока. Он обеспечивает стабилизацию выходного тока при нестабильном входном напряжении; причем подстройка происходит плавно, не создавая высокочастотных электромагнитных помех. Они просты и дешевы, но невысокий КПД (менее 80%) ограничивает сферу их применения маломощными светодиодами и лентами. Импульсные представляют собой устройства, создающие на выходе серию высокочастотных импульсов тока. Обычно они работают по принципу широтно-импульсной модуляции (ШИМ), то есть среднее значение выходного тока определяется отношением ширины импульсов к периоду их следования (эта величина называется коэффициентом заполнения). На диаграмме выше показан принцип работы ШИМ-драйвера: частота импульсов остается постоянной, но изменяется коэффициент заполнения от 10% до 80%. Это ведет к изменению среднего значения тока Icp на выходе. Такие драйверы получили широкое распространение благодаря компактности и высокому КПД (около 95%). Основным недостатком является больший по сравнению с линейными уровень электромагнитных помех. Светодиодный драйвер на 220 ВДля включения в сеть 220 В выпускаются как линейные, так и импульсные. Существуют драйверы с гальванической развязкой от сети и без нее. Основными преимуществами первых являются высокий КПД, надежность и безопасность. Без гальванической развязки обычно дешевле, но менее надежны и требуют осторожности при подключении, поскольку есть вероятность поражения током. Китайские драйверыВостребованность драйверов для светодиодов способствует их массовому производству в Китае. Эти устройства представляют собой импульсные источники тока, обычно на 350-700 мА, часто не имеющие корпуса. Китайский драйвер для светодиода 3w Основные их достоинства – низкая цена и наличие гальванической развязки. Недостатки следующие:
Срок службыОбычно срок службы драйвера меньше, чем у оптической части – производители дают гарантию на 30000 часов работы. Это связано с такими факторами, как:
Самым слабым звеном светодиодного драйвера являются сглаживающие конденсаторы, которые имеют тенденцию к испарению электролита, особенно в условиях повышенной влажности и нестабильного питающего напряжения. В результате уровень пульсаций на выходе драйвера повышается, что негативно сказывается на работе светодиодов. Также на срок службы влияет неполная загруженность драйвера. То есть если он, рассчитан на 150 Вт, а работает на нагрузку 70 Вт, половина его мощности возвращается в сеть, вызывая ее перегрузку. Это провоцирует частые сбои питания. Рекомендуем почитать про срок службы светодиодных ламп. Схемы драйверов (микросхемы) для светодиодовМногие производители выпускают специализированные микросхемы драйверов. Рассмотрим некоторые из них. ON Semiconductor UC3845 – импульсный драйвер с выходным током до 1А. Схема драйвера для светодиода 10w на этой микросхеме приведена ниже. Supertex HV9910 – очень распространенная микросхема импульсного драйвера. Ток на выходе не превышает 10 мА, не имеет гальванической развязки. Простой драйвер тока на этой микросхеме представлен ниже. Texas Instruments UCC28810. Сетевой импульсный драйвер, имеет возможность организовать гальваническую развязку. Выходной ток до 750 мА. Еще одна микросхема этой фирмы, — драйвер для питания мощных светодиодов LM3404HV — описывается в этом видео: Устройство работает по принципу резонансного преобразователя типа Buck Converter, то есть функция поддержания требуемого тока здесь частично возложена на резонансную цепь в виде катушки L1 и диода Шоттки D1 (типовая схема приведена ниже). Также имеется возможность задания частоты коммутации подбором резистора RON. Maxim MAX16800 – линейная микросхема, работает при малых напряжениях, поэтому на ней можно построить драйвер 12 вольт. Выходной ток – до 350 мА, поэтому может использоваться как драйвер питания для мощного светодиода, фонарика, и т.д. Есть возможность диммирования. Типовая схема и структура представлены ниже. ЗаключениеСветодиоды гораздо более требовательны к источнику питания, чем другие источники света. Например, превышение тока на 20% для люминесцентной лампы не повлечет за собой серьезного ухудшения характеристик, для светодиодов же срок службы сократится в несколько раз. Поэтому выбирать драйвер для светодиодов следует особенно тщательно.
ledno.ru Подключение светодиодовВ данной статье поговорим о правильном подключении светодиодов. Светодиод представляет собой полупроводниковый прибор, следовательно, включать его нужно строго соблюдая полярность. Для этого его выводы имеют соответствующие названия: Анод – «плюс» и катод – «минус». Светодиод будет гореть только при прямом включении, как показано на рисунке. При включении обратном, в большинстве случаев, он безвозвратно выходит из строя. Так как светодиод будет работать только при определённых значениях напряжения и силе проходящего через него тока, в схему подключения вводится дополнительно ограничивающее сопротивление, которое рассчитывается исходя из закона Ома для участка цепи: R=Uгасящее/Iсветодиода, где R – сопротивление токоограничивающего резистора в омах, Iсветодиода – сила тока, при которой светодиод будет нормально работать, Uгасящее – напряжение которое нужно погасить резистором. Оно рассчитывается по формуле: Uгасящее=Uист.питания - Uсветодиода, где Uист.питания – напряжение источника питания к которому нужно подключить светодиод, Uсветодиода – рабочее напряжение светодиода (при котором он будет работать нормально). Теперь рассмотрим непосредственно различные схемы подключения светодиодов. Как подключить один светодиод? Допустим у нас есть светодиод с рабочим напряжение 3 В и рабочим током 20 мА. Нам необходимо подключить его к источнику питания с напряжением 12 В. Переведем единицы измерения данных к используемым в формуле: 20мА = 0,02А. Теперь найдем нужные величины: Uгасящее = 12 – 3 = 9 В – «лишнее» напряжение, которое необходимо погасить резистором. R = 9В/0,02А = 450 Ом. Таким образом, один светодиод с рабочим напряжением 3 В и рабочим током 20мА необходимо подключать согласно рисунку 1 через сопротивление 450 Ом. Если в качестве источника питания используется не стабилизированный источник (значение напряжения может колебаться), то сопротивление можно взять немножко большего номинала, например, 490 Ом.Как подключить несколько светодиодов? Рассмотрим схему подключения нескольких светодиодов показанную на рисунке 2. Из школьного курса физики известно, что при последовательном соединении, которое наблюдается на рисунке 2, общее рабочее напряжение светодиодов будет равняться их сумме рабочих напряжений каждого, а сила тока, протекающего через полученную цепочку, будет одинакова в любых ее точках. Из последнего можно сделать вывод: включать светодиоды по данной схеме можно только с одинаковым рабочим током, иначе их яркость будет отличатся. Например, по цепочке будет течь ток силой 20мА, а рабочий ток светодиода – 30мА, значит он будет светить тускнее чем при нормальной работе. Перейдем к расчетам. Так как общее рабочее напряжение цепочки равно сумме рабочих напряжений каждого светодиода в ней, то Uгасящее=Uист.питания – (Uсветодиода 1 + Uсветодиода 2). Подключим два светодиода с рабочим напряжением 3В и рабочей силой тока 20мА к источнику питания напряжением 12В по схеме на рисунке 2. Опять же нужно перевести миллиамперы в амперы: 20мА=0,02А Uгасящее=12 – (3+3)=6В – напряжение которое нужно погасить. R=6/0,02=300 Ом Таким образом, два светодиода с рабочим напряжением 3 В и рабочим током 20мА необходимо подключать согласно рисунку 2 через сопротивление 300 Ом. Не забываем, что если в качестве источника питания используется не стабилизированный источник (значение напряжения может колебаться), то сопротивление можно взять немножко большего номинала, например, 330 Ом.Как подключить разные светодиоды к одному источнику питания? Существует большое количество разнообразных светодиодов, которые могут отличатся как по цвету свечения, так и по мощности излучения светового потока, а, следовательно, и рабочие параметры тоже будут отличаться между собой. Если же необходимо подключить разные светодиоды к одному источнику питания, необходимо отсортировать их по одинаковой рабочей силе тока, после чего подключить по схеме, приведенной на рисунке 3. Например, нам необходимо подключить 2 красных светодиода с рабочим напряжением 2,5В и рабочей силой тока 20мА, 2 желтых светодиода с рабочим напряжением 3В и рабочим током 25мА и 1 синий светодиод с рабочим напряжением 3,5В и рабочим током 50мА. Сортируем их по одинаковым параметрам. В нашем случае получатся три группы: красные, желтые и синий. Далее для каждой группы в отдельности рассчитываем сопротивление по методике описанной выше. Для красных: Uгасящее=12- (2,5+2,5)=7В R=7В/0,02А=350 Ом. Для желтых: Uгасящее=12- (3+3)=6В R=6В/0,025А=240 Ом. Для синего: Uгасящее=12- 3,5= 8,5В R=8,5В/0,05А=170Ом. Ограничивающие сопротивления рассчитаны, осталось лишь подключить их по схеме 3.Можно ли подключить светодиод с рабочим напряжением 3В к источнику питания 3В (или меньше)? Подобные подключения допускаются, но не желательны, так как яркость будет зависеть непосредственно от источника питания. Можно ли включать параллельно светодиоды с одинаковым рабочим напряжением? Такое включение так же допустимо, но параметры диодов, иногда даже из одной партии, могут отличатся, что непосредственно скажется на их яркости – один ярче, другой тускее.RGB –светодиоды Существуют полупроводниковые приборы, у которых в корпусе может сразу находится красный (R- RED), зеленый (G-GREEN) и синий (B- BLUE) светодиоды. Изменяя их яркости, можно добиться общего излучения любого цвета на подобии смешивания цветов в палитре. Например, если зажечь все три светодиода на полную мощность – получится белый. Если же зажечь только красный и зеленый – получится желтый. Изменяя яркости светодиодов можно изменять оттенки полученных цветов. Каждый из этих трех светодиодов имеет свои параметры рабочего напряжения и силы тока, а это значит, что подключать их к источнику питания необходимо через отдельные сопротивления. Существуют два вида RGB – светодиодов: с общим катодом и общим анодом.
Обратите внимание, что приведенные схемы являются простейшими и приблизительными. По этому, дабы повысить срок работы светодиода, необходимо использовать стабилизированные источники питания. Так как яркость светодиода, а, значит, и работа зависят непосредственно от силы тока протекающего через него, то стабилизаторы необходимо использовать по току, а не по напряжению. electroteh.oxnull.net |