Электроника для всех. Падение напряжения этоЧто такое падение напряженияДля человека, который знаком с электрооборудованием на уровне простого пользователя (знает, где и как включить/выключить), многие используемые электриками термины кажутся какой-то бессмыслицей. Например, чего только стоит «падение напряжения» или «сборка схемы». Куда и что падает? Кто разобрал схему на детали? На самом же деле, физический смысл происходящих процессов, скрывающийся за большинством этих слов, вполне доступен для понимания даже со школьными знаниями физики. Чтобы объяснить, что такое падение напряжения, необходимо вспомнить, какие вообще напряжения бывают в электрической цепи (имеется в виду глобальная классификация). Их всего два вида. Первый – это напряжение источника питания, который подключен к рассматриваемому контуру. Оно может также называться приложенным ко всей цепи. А второй вид – это именно падение напряжения. Может быть рассмотрено как в отношении всего контура, так и любого отдельно взятого элемента. Пожалуй, нет человека, который не слышал бы о законе Ома. В общем случае формулировка его выглядит так: I = U / R, где R – активное сопротивление цепи или ее элемента, измеряется в Омах; U – электрическое напряжение, в Вольтах; и, наконец, I – ток в Амперах. Как видно, все три величины непосредственно связаны между собой. Поэтому, зная любые две, можно довольно просто вычислить третью. Конечно, в каждом конкретном случае придется учесть род тока (переменный или постоянный) и некоторые другие уточняющие характеристики, но основа – вышеуказанная формула. Электрическая энергия – это, фактически, движение по проводнику отрицательно заряженных частиц (электронов). В нашем примере спираль лампы обладает высоким сопротивлением, то есть замедляет перемещающиеся электроны. Благодаря этому возникает видимое свечение, но общая энергия потока частиц снижается. Как видно из формулы, с уменьшением тока уменьшается и напряжение. Именно поэтому результаты замеров у розетки и на лампе различаются. Эта разница и является падением напряжения. Данная величина всегда учитывается, чтобы предотвратить слишком большое снижение на элементах в конце схемы. Падение напряжения на резисторе зависит от его внутреннего сопротивления и силы протекающего по нему тока. Также косвенное влияние оказывают температура и характеристики тока. Если в рассматриваемую цепь включить амперметр, то падение можно определить умножением значения тока на сопротивление лампы. Но далеко не всегда удается вот так просто с помощью простейшей формулы и измерительного прибора выполнить расчет падения напряжения. В случае параллельно подключенных сопротивлений нахождение величины усложняется. На переменном токе приходится дополнительно учитывать реактивную составляющую. Рассмотрим пример с двумя параллельно включенными резисторами R1 и R2. Известно сопротивление провода R3 и источника питания R0. Также дано значение ЭДС – E. Приводим параллельные ветки к одному числу. Для этой ситуации применяется формула: R = (R1*R2) / (R1+R2) Определяем сопротивление всей цепи через сумму R4 = R+R3. Рассчитываем ток: I = E / (R4+r) Остается узнать значение падение напряжения на выбраном элементе: U = I * R5 Здесь множитель "R5" может быть любым R - от 1 до 4, в зависимости от того, какой именно элемент схемы нужно рассчитать. fb.ru ПАДЕНИЕ НАПРЯЖЕНИЯ - это... Что такое ПАДЕНИЕ НАПРЯЖЕНИЯ? ПАДЕНИЕ НАПРЯЖЕНИЯ ПАДЕНИЕ НАПРЯЖЕНИЯразность между напряжением у источника тока и напряжением на зажимах приемника, затрачиваемая на преодоление сопротивления проводника при прохождении по нему электр. тока. П. н. измеряется в вольтах. Согласно закону Ома П. н. (в вольтах) равняется произведению сопротивления проводника (в омах) на силу проходящего по нему тока (в амперах). В цепях переменного тока, в к-рых кроме активного сопротивления имеются индуктивное и емкостное сопротивления, имеют место активное, индуктивное и емкостное П. н. Технический железнодорожный словарь. - М.: Государственное транспортное железнодорожное издательство. Н. Н. Васильев, О. Н. Исаакян, Н. О. Рогинский, Я. Б. Смолянский, В. А. Сокович, Т. С. Хачатуров. 1941. .
Смотреть что такое "ПАДЕНИЕ НАПРЯЖЕНИЯ" в других словарях:
dic.academic.ru Источники энергии. Потенциал и падение напряженияЕще один пост из серии основы основ. Заметил я, что многие совершенно не въезжают в концепцию падения напряжения, разности потенциалов и типов источников питания. Поэтому запилю ка я ликбез по этой теме. С самого начала. Потом заброшу его в начало рубрики «Начинающим». Пойдет как замена цикла статей канализационной электроники. Т.к. тот цикл писался для «Хакера» и особой подробностью не отличался ввиду ограничений на размер полосы. Начало начал. Ноль.Итак, начну с самого начала. Со дна. То есть с земли. Точки нулевого потенциала. Эта точка совершенно произвольная. Просто нам так удобно, что мы приняли ее за ноль. Надо же с чего то начинать. В однополярном питании это, обычно, минус питания. В двуполярном — нечто посредине, впрочем от конструкции зависит.Источник энергииЧто такое вообще источник электрической энергии? Это всего лишь «зарядовый насос» который перекачивает электроны (или ионы) посредством химической, электростатической, сегнетоэлектрической, электромагнитной, термической, да любой энергии. Это не важно. Суть лишь в том, что он искажает нейтрально-равномерное распределение зарядов, стаскивая положительные в одну сторону, отрицательные в другую.Как насос, поднимая воду на высоту, за счет энергии толпы грязных нигр, в поте лица вращающих его маховик, увеличивает потенциальную энергию воды, поднятую на высоту. И вот если мы примем один конец нашей трубы-проводника за ноль, то на другой будет какой то потенциал. Какой?А это зависит от силы источника энергии, ведь заряды сопротивляются, хотят обратно, к нулевому состоянию. Системе с минимальной энергией. А еще от характеристик самой силы. Например, химическая, что в солевых батарейках, не дает напряжения больше 1.5 вольт. Это свойства электролита и электродов (я химию уже подзабыл, но что то там связано с электрохимическим рядом).Причем мы можем источники энергии составлять цепочкой. И тогда выходит, что выход первого, станет точкой нулевого потенциала для второго, такого же, и он сможет накачать еще столько же сверху. А относительно общего нуля будет вдвое больше. Как если бы мы соединили два насоса последовательно, один набивает нам давление в 1 атмосферу, и второй относительно него набивает 1 атмосферу, а вместе они выдают аж два очка. У меня на прошлой работе делали стендовые мультиметры. Делали их из обычных DT-838 прикручивая их на панели. Делали массово, сотнями. А все они с завода комплектуются батарейкой типа КРОНА которая тут оказывалась не нужна. Батарейка была голимая, но свои 9вольт давала. И таких батареек была целая коробка от телевизора, россыпью. А Крона прикольна тем, что она может соединяться своим разьемом с другой Кроной. Ну я от нефиг делать давай их соединять последовательно, раскладывая на полу. Сколько я их соединил я уже не помню. Потом мне тупо стало страшно, т.к. в длину у меня пространство кончилось, а в два слоя их соединять сцыкотно — так как концы близко получались. А у меня в результате получился источник напряжением чуть ли не под киловольт и способный дать в течении нескольких минут ток в пару ампер. Коротни я его на себя и от меня бы одни ботинки остались. Пришлось разобрать адскую машину. Замкнутая цепьНу вот есть у нас источники энергии, каждый наращивает потенциал согласно своей дури. На вершине же этой цепи у нас будет их суммарный потенциал. Дикое количество нескомпенсированных зарядов, рвущихся к нулю. Их можно сравнить с сжатым воздухом. Обратно они прорваться не могут — источник энергии не дает. Вперед — некуда. Для пробоя воздуха энергии не хватает. Вот и висят в таком состоянии. Как батарейка, никуда не подключенная — на выходе голый потенциал и никакой движухи. Напряжение есть, а тока нет. Осталось только дать им путь. Замкнем цепь. Накоротко, без полезной нагрузки. И ток рванет по короткому пути, а потом обратно за счет источника энергии наверх и так далее. Напряжение наверху сразу же упадет в ноль. Но раз сопротивления нет, то с какой скростью он это будет делать? Идеальный насос, с бесконечной мощностью, разгонит нам ток до бесконечности. Но в реальности выходит на сцену производительность насоса. Т.е. насос физически, ввиду своей конструкции, не может нам прокачать больше определенного объема (скажем, ограниченный размер цилиндра), а у батареи есть ограниченная площадь электродов, у генератора есть сопротивление обмоток. Получается в цепи все же есть сопротивление, это сопротивление источника. И выше него не прыгнешь. Также и с реальным источником напряжения. У него тоже всегда есть внутреннее сопротивление. И чем оно ниже, тем мощней источник, тем больший ток он сможет отдать. Впрочем, никто не мешает взять и соединить два насоса-источника параллельно. И у нас получится, что они с одинаковым давлением (напряжением) родят вдвое больший ток. Правда тут надо учитывать, что ставить в параллель два источника с разным напряжением нельзя — тогда более слабый будет продавливаться более сильным и служить потребителем. Разумеется если внешней нагрузки, которая бы просадила напряжение до уровня слабого, нет. Тоже самое касается и последовательного включения. Если мы воткнем в последовательное включение источник с большим внутренним сопротивлением чем у всех остальных, то он забьет всю цепь и будет обузой, не давая развивать максимальный ток. Теперь вспомним о батарейках. Когда батарейка новая, то у ней малое внутреннее сопротивление, но чем больше электролита вступает в реакцию тем внутреннее сопротивление становится больше. И получается, что напряжение то она выдает и мультиметр показывает вроде бы четкие полтора вольта, но стоит затребовать с нее большой ток, как она мгновенно сдувается — возросшее сопротивление не позволяет выдать его и напряжение падает. А теперь немног больше конкретики. Закон Ома для полной цепи. Есть просто закон Ома: напряжение = ток * сопротивление U = I * R Это частный случай закона Ома для отдельного элемента цепи. Но есть еще закон Ома для полной цепи, с учетом источника. Итак, у нас в цепи есть: Наш идеальный насос — источник электродвижущей силы (ЭДС) — Е. У него бесконечная мощность и нулевое внутреннее сопротивление.Но, чтобы жизнь не казалась медом, добавим еще и внутреннее сопротивление. Чтобы получить реальный источник. ReА также есть нагрузки R1 и R2, включенные последовательно. Ток (I) в последовательной неразветвленной цепи одинаков везде. И равен он величине ЭДС поделенной на сумму ВСЕХ сопротивлений, в том числе и внутреннего. И из этого получается вот что: E = I*Re+I*R1+I*R2 Т.к. I*R=U перепишем все по иному: E = I*Re + U1 + U2 Получается, что электродвижущая сила нашего источника, раскладывается, в зависимости от величины нагрузки, по всей цепи. Чем больше нагрузка, тем больше там надо приложить энергии для ее преодоления. Т.е. в нашей батарейке, если у нас E константа и не меняется (напомню, что она зависит только от химии процесса и подбора материалов батареи — т.е. это конструктивная особенность батареи), то при увеличении Re у нас, чтобы сохранить равенство, приходится снижать ток. А раз так, то падает U1 и U2 т.е. напряжение на потребителе. Еще, можно заметить, что у последовательных потребителей напряжение на каждом из них зависит от его R. И там где сопротивление больше — будет большее напряжение. А что происходит когда мы тыкаем вольтметром в нашу дохлую батарею? А у вольтметра ОГРОМНОЕ сопротивление. И по сравнению с ним внутреннее сопротивление источника даже не отсвечивает. Re <<<< Rвольтметра А ток одинаково мал (доли милиампера) для всех потребителей. Таким образом в уравнении: Е = I*Re + I*Rвольтметра На цифрах: Е=1.5Re=10 ОмRвольтметра = 10 000 000 ОмI = 1.5/10 000 010 = 1,499Е-7I*Re = 0.00000015 * 10 = 1.499Е-6I*Rвольтметра = 1,499Е-7 * 10 000 000 = 1.499 1.5 = 1.499Е-6 + 1.499 Львиная доля напряжения высадится там, где сопротивление больше — на вольтметре. И вольтметр покажет практически величину Е, но это будет работать лишь на малых токах. При снижении сопротивления нагрузки и увеличении тока, часть I*Re будет все весомей и весомей, пока не перетащит на себя все напряжение. Тогда на нагрузке напряжение упадет почти до нуля — батеря просто не способна дать ток, такой, чтобы удержать напряжение. Либо, если это не батарейка, а какой либо другой источник — источник не тянет нагрузку. А если у батареи от долгой работы на нагрузку увеличилось внутреннее сопротивление, то в этом случае батарейка села. Источник напряжения. СтабилизацияНо бывают такие хитрые схемы, где у источника внутреннее сопротивление можно менять в широких пределах. И есть следящая система, которая регулирует его таким образом, чтобы на нагрузке было строго определенное напряжение. Разумеется до тех пор пока токи не выходят за оговоренные рамки, а дальше неизбежный провал. Причем если сопротивление нагрузки, например, уменьшится, то и сопротивление источника уменьшится, чтобы иметь возможность пустить через нагрузку больший ток и выровнять напряжение на нагрузке. Если брать идеальный источник напряжения — фактически голый источник ЭДС с нулевым сопротивлением, то он при снижении нагрузки в ноль даст бесконечный ток. Простейшим примером источника напряжения является конденсатор в момент разрядки. У идеального конденсатора внутреннее сопротивление равно нулю, поэтому когда он разряжается, то на бесконечно малом промежутке времени дает бесконечно большой ток. ПотенциалИсходя из названия величины — это потенциальная энергия электрического поля в конкретной точке. Но для того, чтобы ее замерить надо задать отправную точку, систему отсчета — точку нулевого потенциала. Она может быть где угодно. Зависит лишь от наших целей в текущий момент. Но обычно за ноль принимают корпус или минус питания. Это и будет нашей точкой нулевого потенциала — Землей. Возьмем и пририсуем к нашей цепи эту точку, вот так. Итак, у нас есть цепь. Параметры такие: Е = 5ВR = 1 Ом — все резисторы, для простоты.I = 1 A Теперь найдем потенциал во всех точках. Он, традиционно, обозначется буквой фи. Правило тут простое:
И вернемся к нашему контуру:
Если сделать обход в обратную сторону, то получится все то же самое, только потенциал будет рости до тех пор пока мы не дойдем до Е и, пройдя его против направления, не вычтем ЭДС выйдя опять на ноль. Но это мы получали потенциал относительно нуля. А если взять разность потенциалов между точкой Г и Е ? А мы получим напряжение между двумя этими точками. Если ткнуть туда вольтметром, то он покажет именно это напряжение. Т.е. напряжение это разность потенциалов. А падение напряжения между точками — это та величина на которую меняется потенциал при переходе из одной точки схемы в другую. И главное надо очень четко понять тот факт, что главное в цепи это разность потенциалов. Есть разность потенциалов — есть ток, заряды текут и стремятся эту разность свести на ноль. Нет — тока не будет, т.к. зарядам в этом случае совершенно не захочется куда то бежать и где то там что то выравнивать, т.к. энергия системы в этом случае минимальная. Тока может и не быть, если цепь не замкнута, а вот потенциала хоть отбавляй. Например, лежит кусок провода, никуда не подключен. На концах разность ноль — все заряды равномерно распределены.Пошла мимо провода электромагнитная волна, извне откуда то прилетела, послужила тем самым источником энергии и раскидала заряды по разным концам провода. Появилась разность потенциалов на концах. Таким образом, даже в никуда не подключенной ноге микроконтроллера, если она висит в режиме высокого входного сопротивления (HiZ — т.е. практически никуда не подключена и цепь разомкнута), из воздуха, от случайных помех, могут наводится большие потенциалы, достаточные для хаотичного переключения входа из 0 в 1 и обратно. А если к ноге приделать длинный провод, то на нем может навестись такой потенциал, что контроллер пожгет нафиг. Поэтому то длинные линии обычно делают в виде токовой петли, с низким сопротивлением, чтобы не наводилось на них перенапряжений. А наличие-отсутствие сигнала ловят по наличию-отсутствию тока нужной величины. Эту концепцию потенциала и зависимости тока от него надо понять досконально, на уровне спинного мозга. Потому что потом дальше оперирование будет в основном потенциалами относительно общей точки. Понятие падения напряжения активно юзается при обсчете нелинейных элементов, вроде диодов. Расчет резистора для светодиодаИтак, есть у нас светодиод. Некий абстрактный. И у него по даташиту падение напряжения 2.5 вольта. А допустимый ток 10мА. А еще есть батарея, дающая 5 вольт и имеющая внутреннее сопротивление в 1Ом. Что означает падение напряжения светодиода? А то, что между его выводами напряжение может быть не выше 2.5 вольта. Т.е. воткнешь ты его на батарею хоть в 100 вольт, а там все равно должно быть 2.5 вольта. Достигается это за счет того, что сопротивление диода тем меньше, чем большее к нему приложено напряжение. Куда же деть остальные 97.5 вольт? А их придется высадить на внутреннем сопротивлении источника. А если оно мало? А не волнует! Придется вкачать большой ток, настолько болшой, чтобы на внутреннем сопротивлении источника высадило это злосчастные 97.5 вольт. Вот только ток там уйдет в сотни ампер. А светодиод от таких токов пыхнет плазменной вспышкой и устроит тебе КЗ со взрывом. Конечно, у реального светодиода все не так страшно и сопротивление его бесконечно падать не может, а падение напряжения не константное и меняется, но когда эти отклонения будут значительными ток будет уже за гранью допустимого. Так что можно смело принять падение напряжения на светодиоде за константу. Итак, вернемся к нашим баранам. Есть источник, есть диод. Вот такая схема. Е=I*Re+Vled5=I*1 + 2.5 Воткнув наш пятивольтовый источник на наш 2.5 вольтовый диод мы получим падение напряжения на диоде 2.5 вольта. И столько же должно высадиться на внутреннем сопротивлении источника. Ток будет 2.5А это очень много, на два порядка выше чем разрешено. Значит надо добавить еще один резистор, дабы он сбросил на себя часть напряжения и обеспечил ток в 10мА. Е=I*Re + I*R + 2.5 Понятно, т.к. I = 0.01 то вычислить R не сложно. R = 249 Ом. Ближайший из ряда E24 — 240 Ом. Параметры диода из его даташита, токоограничительное сопротивление мы выбираем, а откуда взять внутреннее сопротивление источника? А обычно им пренебрегают, считая его равным нулю. Один фиг его сопротивление в порядки меньше чем сопротивление ограничивающего резистора. Источник токаАнтипод источника напряжения. Если источник напряжения выдает напругу и может развить бесконечный ток, лишь бы эту напругу удержать. То источник тока выдает ток и может выдать бесконечное напряжение, лишь бы этот ток продавить. Имеет бесконечное внутреннее сопротивление, поэтому его выдаваемое напряжение (I*Rвн) и стремится к бесконечности. У реального же источника тока есть внутреннее сопротивление и расположено оно параллельно. Т.е. если ток через нагрузку не продавливается, то он уходит по внутреннему сопротивлению, не давая броска напряжения до победного конца. И чем выше внутреннее сопротивление источника тока, тем большее падение напряжения будет на нем, а значит и большее напряжение на нагрузке. Тем самым, по закону Ома, через нагрузку продавит больший ток. Источниками тока в природе является катушка индуктивности, в момент разрыва цепи. Поэтому то она так и искрит, т.к. накачивает дикое напряжение, стремясь пробить дорогу току и удержать его на прежнем уровне. easyelectronics.ru Падение напряжения - это... Что такое Падение напряжения?ПАДЕНИЕ НАПРЯЖЕНИЯ — разность потенциалов на участке электрической цепи, обтекаемой током. П. Н. равно произведению силы тока на сопротивление участка цепи. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь ПАДЕНИЕ НАПРЯЖЕНИЯ — разность между напряжением у источника тока и напряжением на зажимах приемника, затрачиваемая на преодоление сопротивления проводника при прохождении по нему электр. тока. П. н. измеряется в вольтах. Согласно закону Ома П. н. (в вольтах)… … Технический железнодорожный словарь Падение напряжения — 92 Падение напряжения Напряжение на участке электрической цепи или ее элементе Источник: ГОСТ 19880 74: Электротехника. Основные понятия. Термины и определения оригинал документа Смотри также родственные тер … Словарь-справочник терминов нормативно-технической документации падение напряжения — 1 падение напряжения [IEV number 151 15 08] EN voltage drop (1) tension drop (1) voltage between the terminals of a resistive element being part of an electric circuit due to the electric current through that element [IEV number 151 15 08] FR… … Справочник технического переводчика падение напряжения — įtampos krytis statusas T sritis fizika atitikmenys: angl. voltage drop vok. Spannungsabfall, m; Spannungsfall, m rus. падение напряжения, n pranc. chute de tension, f … Fizikos terminų žodynas падение напряжения — Разность между действующими значениями напряжения (как вектора), по концам элемента электрической системы … Политехнический терминологический толковый словарь Падение напряжения — English: Voltage fall Напряжение на участке электрической цепи или ее элементе (по ГОСТ 19880 74) Источник: Термины и определения в электроэнергетике. Справочник … Строительный словарь падение напряжения на интегральной микросхеме — падение напряжения Разность между входным и выходным напряжением интегральной микросхемы в заданном режиме. Обозначение Uпд [ГОСТ 19480 89] Тематики микросхемы Синонимы падение напряжения … Справочник технического переводчика падение напряжения (в процентах) (в УЗИП) — ∆U=[(Uвход Uвых)/Uвход]х100, где Uвход, Uвых входное и выходное напряжения соответственно, измеренные одновременно при подключенной полной активной нагрузке. Данный параметр применяют исключительно для двух вводных УЗИП. [ГОСТ Р 51992 2011 (МЭК… … Справочник технического переводчика падение напряжения в активном сопротивлении — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN resistance dropresistive drop … Справочник технического переводчика dic.academic.ru Резистор. Падение напряжения на резисторе. Мощность. Закон Ома — МикроПрогерИтак, резистор… Базовый элемент построения электрической цепи. Работа резистора заключается в ограничении тока, протекающего по цепи. НЕ в превращении тока в тепло, а именно в ограничении тока. То есть, без резистора по цепи течет большой ток, встроили резистор – ток уменьшился. В этом заключается его работа, совершая которую данный элемент электрической цепи выделяет тепло.
Пример с лампочкойРассмотрим работу резистора на примере лампочки на схеме ниже. Имеем источник питания, лампочку, амперметр, измеряющий ток, проходящий через цепь. И Резистор. Когда резистор в цепи отсутствует, через лампочку по цепи побежит большой ток, например, 0,75А. Лампочка горит ярко. Встроили в цепь резистор — у тока появился труднопреодолимый барьер, протекающий по цепи ток снизился до 0,2А. Лампочка горит менее ярко. Стоит отметить, что яркость, с которой горит лампочка, зависит так же и от напряжения на ней. Чем выше напряжение — тем ярче. Ограничение тока резистором
Кроме того, на резисторе происходит падение напряжения. Барьер не только задерживает ток, но и «съедает» часть напряжения, приложенного источником питания к цепи. Рассмотрим это падение на рисунке ниже. Имеем источник питания на 12 вольт. На всякий случай амперметр, два вольтметра про запас, лампочку и резистор. Включаем цепь без резистора(слева). Напряжение на лампочке 12 вольт. Подключаем резистор — часть напряжения упала на нем. Вольтметр(снизу на схеме справа) показывает 5В. На лампочку остались остальные 12В-5В=7В. Вольтметр на лампочке показал 7В. Падение напряжение на резисторе Разумеется, оба примера являются абстрактными, неточными в плане чисел и рассчитаны на объяснение сути процесса, происходящего в резисторе.
Основная характеристика резистора — сопротивление. Единица измерения сопротивления — Ом (Ohm, Ω). Чем больше сопротивление, тем больший ток он способен ограничить, тем больше тепла он выделяет, тем больше напряжения падает на нем.
Основной закон всего электричества. Связывает между собой Напряжение(V), Силу тока(I) и Сопротивление(R). V=I*R Интерпретировать эти символы на человеческий язык можно по-разному. Главное — уметь применить для каждой конкретной цепи. Давайте используем Закон Ома для нашей цепи с резистором и лампочкой, рассмотренной выше, и рассчитаем сопротивление резистора, при котором ток от источника питания на 12В ограничится до 0,2. При этом считаем сопротивление лампочки равным 0. V=I*R => R=V/I => R= 12В / 0,2А => R=60Ом Итак. Если встроить в цепь с источником питания и лампочкой, сопротивление которой равно 0, резистор номиналом 60 Ом, тогда ток, протекающий по цепи, будет составлять 0,2А.
Микропрогер, знай и помни! Параметр мощности резистора является одним из наиболее важных при построении схем для реальных устройств. Мощность электрического тока на каком-либо участке цепи равна произведению силы тока, протекающую по этому участку на напряжение на этом участке цепи. P=I*U. Единица измерения 1Вт. При протекании тока через резистор совершается работа по ограничению электрического тока. При совершении работы выделяется тепло. Резистор рассеивает это тепло в окружающую среду. Но если резистор будет совершать слишком большую работу, выделять слишком много тепла — он перестанет успевать рассеивать вырабатывающееся внутри него тепло, очень сильно нагреется и сгорит. Что произойдет в результате этого казуса, зависит от твоего личного коэффициента удачи. Характеристика мощности резистора — это максимальная мощность тока, которую он способен выдержать и не перегреться.
Рассчитаем мощность резистора для нашей цепи с лампочкой. Итак. Имеем ток, проходящий по цепи(а значит и через резистор), равный 0,2А. Падение напряжения на резисторе равно 5В (не 12В, не 7В, а именно 5 — те самые 5, которые вольтметр показывает на резисторе). Это значит, что мощность тока через резистор равна P=I*V=0,2А*5В=1Вт. Делаем вывод: резистор для нашей цепи должен иметь максимальную мощность не менее(а лучше более) 1Вт. Иначе он перегреется и выйдет из строя.
Соединение резисторовРезисторы в цепях электрического тока имеют последовательное и параллельное соединение.
Последовательное соединение резисторовПри последовательном соединении общее сопротивление резисторов является суммой сопротивлений каждого резистора в соединении: Последовательное соединение резисторов
Параллельное соединение резисторовПри параллельном соединении общее сопротивление резисторов рассчитывается по формуле: Параллельное соединение резисторов
Остались вопросы? Напишите комментарий. Мы ответим и поможем разобраться =) Автор публикациине в сети 2 недели wandrys877 Комментарии: 1Публикации: 31Регистрация: 17-03-2016micro-proger.ru Падение напряжения - это... Что такое Падение напряжения? Падение напряжения92 Падение напряжения Напряжение на участке электрической цепи или ее элементе Смотри также родственные термины:3.20 падение напряжения (в процентах) (voltage drop (in percent)): ΔU = [(Uвход- Uвых)/Uвход] ∙ 100, где Uвход, Uвых - входное и выходное напряжения соответственно, измеренные одновременно при подключенной полной активной нагрузке. Данный параметр применяют исключительно для двухвводных УЗИП. 3.1.12 падение напряжения в контакте Uk (contact voltage drop Uk): Напряжение между контактными элементами в устойчивом состоянии. Определения термина из разных документов: падение напряжения в контакте Uk 3.1.13 падение напряжения в поврежденном контакте Ukd (defect contact voltage drop Ukd): Значение падения напряжения, при котором зарегистрирован дефект, если время его превышает td. Определения термина из разных документов: падение напряжения в поврежденном контакте Ukd 37. Падение напряжения на магнитном усилителе Absorbed voltage of transductor Напряжение на магнитном усилителе в последовательной цепи, состоящей из источника, нагрузки и усилителя Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.
Смотреть что такое "Падение напряжения" в других словарях:
normative_reference_dictionary.academic.ru Падение напряжения - это... Что такое Падение напряжения?Строительный словарь.
Смотреть что такое "Падение напряжения" в других словарях:
dic.academic.ru |