Eng Ru
Отправить письмо

Напряжение электрического тока и вольтметр. Определения напряжения

$direct1

Определение электрического напряжения

То есть электрическое поле должно было «протащить» электроны через нагрузку, и энергия, которая при этом израсходовалась, характеризуется величиной, называемой электрическим напряжением. Эта же энергия потратилась на какое-то изменение состояния вещества нагрузки. Энергия, как мы знаем, не пропадает в никуда и не появляется из ниоткуда. Об этом гласит Закон сохранения энергии. То есть, если ток потратил энергию на прохождение через нагрузку, эту энергию приобрела нагрузка и, например, нагрелась.

То есть, приходим к определению: напряжение электрического тока – это величина, показывающая, какую работу совершило поле при перемещении заряда от одной точки до другой. Напряжение в разных участках цепи будет различным. Напряжение на участке пустого провода будет совсем небольшим, а напряжение на участке с какой-либо нагрузкой будет гораздо большим, и зависеть величина напряжения будет от величины работы, произведенной током. Измеряют напряжение в вольтах (1 В). Для определения напряжения существует формула: 

U=A/q,

где U - напряжение, A – работа, совершенная током по перемещению заряда q на некий участок цепи.

Напряжение на полюсах источника тока

Что касается напряжения на участке цепи – все понятно. А что же тогда означает напряжение на полюсах источника тока? В данном случае это напряжение означает потенциальную величину энергии, которую может источник придать току. Это как давление воды в трубах. Эта величина энергии, которая будет израсходована, если к источнику подключить некую нагрузку. Поэтому, чем большее напряжение у источника тока, тем большую работу может совершить ток.

2) Диэлектрики в электрическом поле

В отличие от проводников, в диэлектриках нет свободных зарядов. Все заряды являются

связанными : электроны принадлежат своим атомам, а ионы твёрдых диэлектриков колеблются

вблизи узлов кристаллической решётки.

Соответственно, при помещении диэлектрика в электрическое поле не возникает направлен-ного движения зарядов

1

. Поэтому для диэлектриков не проходят наши доказательства свойств

проводников — ведь все эти рассуждения опирались на возможность появления тока. И дей-ствительно, ни одно из четырёх свойств проводников, сформулированных в предыдущей статье,

не распростаняется на диэлектрики.

1. Напряжённость электрического поля внутри диэлектрика может быть не равна нулю.

2. Объёмная плотность заряда в диэлектрике может быть отличной от нуля.

3. Линии напряжённости могут быть не перпендикулярны поверхности диэлектрика.

4. Различные точки диэлектрика могут иметь разный потенциал. Стало быть, говорить о

«потенциале диэлектрика» не приходится.

Поляризация диэлектриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно.

Поляризацию диэлектриков характеризует вектор электрической поляризации. Физический смысл вектора электрической поляризации — это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.

  • Вектор поляризации применим для описания макроскопического состояния поляризации не только обычных диэлектриков, но и сегнетоэлектриков, и, в принципе, любых сред, обладающих сходными свойствами. Он применим не только для описания индуцированной поляризации, но и спонтанной поляризации (у сегнетоэлектриков).

Поляризация — состояние диэлектрика, которое характеризуется наличием электрического дипольного момента у любого (или почти любого) элемента его объема.

Различают поляризацию, наведенную в диэлектрике под действием внешнего электрического поля, и спонтанную (самопроизвольную) поляризацию, которая возникает в сегнетоэлектриках в отсутствие внешнего поля. В некоторых случаях поляризация диэлектрика (сегнетоэлектрика) происходит под действием механических напряжений, сил трения или вследствие изменения температуры.

Поляризация не изменяет суммарного заряда в любом макроскопическом объеме внутри однородного диэлектрика. Однако она сопровождается появлением на его поверхности связанных электрических зарядов с некоторой поверхностной плотностью σ. Эти связанные заряды создают в диэлектрике дополнительное макроскопическое поле c напряжённостью , направленное против внешнего поля с напряжённостью . В результате напряжённость поля внутри диэлектрика будет выражаться равенством:

В зависимости от механизма поляризации, поляризацию диэлектриков можно подразделить на следующие типы:

  • Электронная — смещение электронных оболочек атомов под действием внешнего электрического поля. Самая быстрая поляризация (до 10−15 с). Не связана с потерями.

  • Ионная — смещение узлов кристаллической структуры под действием внешнего электрического поля, причем смещение на величину, меньшую, чем величина постоянной решетки. Время протекания 10−13 с, без потерь.

  • Дипольная (Ориентационная) — протекает с потерями на преодоление сил связи и внутреннего трения. Связана с ориентацией диполей во внешнем электрическом поле.

  • Электронно-релаксационная — ориентация дефектных электронов во внешнем электрическом поле.

  • Ионно-релаксационная — смещение ионов, слабо закрепленных в узлах кристаллической структуры, либо находящихся в междуузлие.

  • Структурная — ориентация примесей и неоднородных макроскопических включений в диэлектрике. Самый медленный тип.

  • Самопроизвольная (спонтанная) — благодаря этому типу поляризации у диэлектриков, у которых он наблюдается, поляризация проявляет существенно нелинейные свойства даже при малых значениях внешнего поля, наблюдается явление гистерезиса. Такие диэлектрики (сегнетоэлектрики) отличаются очень высокими значениями диэлектрической проницаемости (от 900 до 7500 у некоторых видов конденсаторной керамики). Введение спонтанной поляризации, как правило, увеличивает тангенс угла потерь материала (до 10−2)

  • Резонансная — ориентация частиц, собственные частоты которых совпадают с частотами внешнего электрического поля.

  • Миграционная поляризация обусловлена наличием в материале слоев с различной проводимостью, образованию объемных зарядов, особенно при высоких градиентах напряжения, имеет большие потери и является поляризацией замедленного действия.

Поляризация диэлектриков (за исключением резонансной) максимальна в статических электрических полях. В переменных полях, в связи с наличием инерции электронов, ионов и электрических диполей, вектор электрической поляризации зависит от частоты.

studfiles.net

Что такое Электрическое напряжение - Определение, измерение

Большинство людей в быту могут оперировать таким понятием как электрическое напряжение. Практически все знают, что бытовая розетка находится под напряжением 220В, а пальчиковая батарейка выдает напряжение всего в 1.5В. При этом далеко не каждый человек, окончивший среднюю школу или даже технический ВУЗ в состоянии ответить, что же все-таки означает термин электрическое напряжение. В этом материале мы постараемся ответить на этот вопрос, по возможности не прибегая к сложной математике.

Определение электрического напряжения

В учебниках по физике и электротехнике можно встретить разные определения электрического напряжения. Одно из них звучит следующим образом: электрическое напряжение между двумя точками пространства равно разности потенциалов электрического поля в этих точках. Математически это записывается так:

U=φ_a-φ_b (1).

Где U – электрическое напряжение, а φ_a и φ_b потенциалы электрического поля в точках A и B соответственно.

Если мы не знаем что такое потенциал электрического поля в точке, то приведенное выше определение мало проясняет вопрос, что же такое электрическое напряжение. Под потенциалом электрического поля в точке понимают работу, по перемещению единичного заряда совершаемую электрическим полем из данной точки в точку с нулевым потенциалом. На первый взгляд определение электрического потенциала кажется довольно сложным. Например, не совсем понятно, где находится точка с нулевым потенциалом.

 Для начала нужно запомнить, что электрический потенциал это работа по переносу единичного заряда. Если обратиться к формуле (1) то станет ясно, что электрическое напряжение не что иное, как разность двух работ. То есть электрическое напряжение, тоже есть работа. Отсюда мы приходим ко второму определению. Электрическое напряжение численно равно работе по переносу единичного электрического заряда из точки А в точку В. При этом φ_a и φ_b это потенциальная энергия которой обладает единичный заряд в точках А и В соответственно.

Для лучшего понимания изложенного выше можно привести следующую аналогию. Любое тело, находящееся на некотором расстоянии от Земли обладает потенциальной энергией. Для того чтобы поднять тело выше придется выполнить некоторую работу. Величина этой работы будет равна разности потенциальных энергий, которыми обладает тело на разной высоте. Похожую картину мы наблюдаем, когда мы имеем дело с электрическим полем.

Что касается точки пространства, в которой электрический заряд обладает нулевым электрическим потенциалом, то в теории электричества эту точку можно выбрать произвольно. Связанно это с тем, что электрическое поле «потенциально». Чтобы прояснить этот термин придется прибегнуть к высшей математике, а мы решили этого избежать. На практике специалисты в области электротехники в качестве точек с нулевым потенциалом часто выбирают поверхность Земли. И многие измерения выполняют относительно нее.

Электрические поля могут быть постоянными (неизменными во времени) и переменными. Переменные электрические поля могут изменяться по различным математическим законам. В технике чаще всего используются переменные электрические поля, которые изменяются по закону синуса. В случае переменного электрического поля мгновенное значение разности потенциалов между двумя точками можно вычислить по следующей формуле:

u(t)=U_m  sin⁡〖(ωt)〗 (2).

Здесь u – мгновенное значение напряжения; Um – максимальное значение напряжения; ω – частота, t – время.

Измерение электрического напряжения

Электрическое напряжение измеряют с помощью вольтметров. Для измерения напряжения (разности потенциалов) на участке электрической цепи щупы вольтметра подключают к концам этого участка и по шкале считывают показания прибора.

Существует множество типов вольтметров. Мы остановимся на аналоговых вольтметрах с магнитоэлектрическими измерительными механизмами. Эти механизмы довольно часто применяют в щитовых вольтметрах и многофункциональных измерительных приборах – мультиметрах. Магнитоэлектрический электрический механизм представляет собой проволочную катушку, размещенную между полюсами магнита. Катушка подвешивается на спиральных пружинах обеспечивающих высокую чувствительность прибора. С катушкой связана указательная стрелка, с помощью которой осуществляется отсчет показаний на шкале прибора. Ниже на рисунке показано устройство магнитоэлектрического механизма.

Магнитоэлектрические измерительные механизмы имеют высокую чувствительность. С их помощью можно измерить напряжения составляющие сотые доли вольта. Для расширения пределов измерения последовательно с измерительным механизмом включают добавочные сопротивления. Схема простейшего вольтметра постоянного тока показана на рисунке.

Одним из важнейших параметром вольтметра является его внутреннее сопротивление. Чем больше значение внутреннего сопротивления вольтметра, тем меньшую погрешность можно получить в процессе измерения. Для аналоговых вольтметров внутреннее сопротивление обычно составляет 20кОм на вольт. Если необходимо получить большее значение сопротивления для измерений применяют электронные вольтметры, цифровые или аналоговые.

Для измерения переменного напряжения в конструкцию вольтметров включают выпрямители, которые преобразуют переменное напряжение в постоянное. Шкалы вольтметров для измерения переменного напряжения обычно градуируют в действующих (эффективных) значениях напряжения. Действующее значение переменного тока связано с максимальным следующим соотношением.

U=1/√2 U_m=0,707U_m (3)

Действующее значение удобно применять при вычислении мощности электрической цепи. Когда мы говорим, что в электрической розетке присутствует напряжение 220В, речь идет именно о действующем значении напряжения.

В коротком материале трудно рассказать обо всех нюансах связанных с электрическим напряжением и способах его измерения. Но мы надеемся, что текст окажется полезен читателю.

elektrika.ru

Электрическое напряжение: определение, формула, вольтметр

 

Электрический ток – это проходящие через проводник электроны, несущие отрицательный заряд. Объем этого заряда или, иными словами, количество электричества характеризует силу тока. Мы знаем, что сила тока одинакова во всех местах цепи.

Электроны не могут исчезать или «спрыгивать» с проводов и нагрузки. Поэтому, силу тока мы можем измерить в любом месте электрической цепи. Однако, будет ли одинаковым действие тока на разные участки этой цепи? Давайте разберемся.

Проходя по проводам, ток лишь слегка их нагревает, однако не совершает при этом большой работы. Проходя же через спираль электрической лампочки, ток не просто сильно нагревает ее, он нагревает ее до такой степени, что она, раскаляясь, начинает светиться. То есть в данном случае ток совершает механическую работу, и довольно приличную работу. Ток тратит свою энергию. Электроны в том же количестве продолжают бежать дальше, но энергии у них уже поменьше.

Определение электрического напряжения

То есть электрическое поле должно было «протащить» электроны через нагрузку, и энергия, которая при этом израсходовалась, характеризуется величиной, называемой электрическим напряжением. Эта же энергия потратилась на какое-то изменение состояния вещества нагрузки. Энергия, как мы знаем, не пропадает в никуда и не появляется из ниоткуда. Об этом гласит Закон сохранения энергии. То есть, если ток потратил энергию на прохождение через нагрузку, эту энергию приобрела нагрузка и, например, нагрелась.

То есть, приходим к определению: напряжение электрического тока – это величина, показывающая, какую работу совершило поле при перемещении заряда от одной точки до другой. Напряжение в разных участках цепи будет различным. Напряжение на участке пустого провода будет совсем небольшим, а напряжение на участке с какой-либо нагрузкой будет гораздо большим, и зависеть величина напряжения будет от величины работы, произведенной током. Измеряют напряжение в вольтах (1 В). Для определения напряжения существует формула: 

U=A/q,

где U - напряжение,A – работа, совершенная током по перемещению заряда q на некий участок цепи.

Напряжение на полюсах источника тока

Что касается напряжения на участке цепи – все понятно. А что же тогда означает напряжение на полюсах источника тока? В данном случае это напряжение означает потенциальную величину энергии, которую может источник придать току. Это как давление воды в трубах. Эта величина энергии, которая будет израсходована, если к источнику подключить некую нагрузку. Поэтому, чем большее напряжение у источника тока, тем большую работу может совершить ток.

Вольтметр

Для измерения напряжения существует прибор, называемый вольтметром. В отличие от амперметра, он подключается не произвольно в любом месте цепи, а параллельно нагрузке, до нее и после. В таком случае вольтметр показывает величину напряжения, приложенного к нагрузке. Для измерения напряжения на полюсах источника тока, вольтметр подключают непосредственно к полюсам прибора.

Нужна помощь в учебе?

Предыдущая тема: Сила тока: природа, формула, измерение амперметром Следующая тема:&nbsp&nbsp&nbspСопротивление тока: притяжение ядер, проводники и непроводники

Все неприличные комментарии будут удаляться.

www.nado5.ru

Определение напряжений

Ранее получены формулы для определения оти:,. По аналогии можно записать формулу дляот(а). В этих формулаххиукоординаты точки сечения бруса, где определяется. Очевидно, что при(сжатие) получается. Поэтому в формуле (а) стоит знак минус. При одновременном действие в сечении бруса,исуммарные напряжения в любой точки сечения с координатамихиу можно определить так

(7.2)

Это одна из основных формул сопротивления материалов. В (7.2) ,,и координаты точки сеченияхиунадо подставлять со своими знаками. Еслиполучится, значит в этой точке сечения – растяжение, еслито сжатие. Это важно при оценке прочности хрупких материалов.

От в сечении бруса возникают, определяемые по известной формуле Журавского. Аналогично, отвозникают, определяемые по формуле. От кручениякруглых валов возникают, определяемые известной формулой. Направления касательных напряжений от,ибыли выяснены раньше. В каждой точки сечения эти напряжения надо суммировать геометрически (векторно), т.е. суммарные напряжения

Рассмотрим подробнее частные случаи сложного сопротивления бруса.

I. Косой изгиб

Здесь в поперечных сечениях бруса могут быть ,,, а. Косой изгиб может бытьчистым, когда вдоль бруса отсутствуют=ипоперечным, когдаи, апеременны по длине бруса. Косой изгиб может бытьплоским, когда вся внешняя нагрузка лежит в одной плоскости ине плоским, когда нагрузки в плоскостяхиизменяются произвольно по длине бруса.

Величины и знаки ,,ив любом сечении бруса определяются из эпюр. Введем понятиеполный изгибающий момент, определяемый так

(7.3)

Если ипредставить в виде векторов (длина векторов определяет величинуи, а направления по правилу правого «буравчика»), тоесть геометрическая суммаи, что показано на рис. 7.5. Положениеудобно определять углом, который он составляет с осью(отсчитывается от осипротив хода часовой стрелки). Из рис. 7.5 видно:

С учетом (1) (7.5)

против хода часовой стрелки. В произвольном сечении балки на расстоянии от торца отвозникнет, который с направлениемсоставляет угол 90, а с осьюугол, т.е.. Знаяи,можно вычислять по (7.5). Но проще силуразложить по осями, т.е.,(видно из рис. 7.6). Отстроят эпюру, а отэпюруи далееопределяют по формуле (7.4). Аналогично и от погонной нагрузки:, отэпюру, отэпюру.

Нейтральная ось (Н.О)

Нейтральная ось – линия в сечении балки, относительно которой сечение поворачивается, оставаясь плоским (гипотеза Бернулли). Обозначим координаты точек на нейтральной оси через . Согласно определения Н.О в этих точках. Подставляя,в (7.5), сокращая наполучим

(3)

Это уравнение Н.О. Видно, что это уравнение прямой линии проходящей через начало координат, т.к. при должно быть. Положение Н.О удобно определять через угол ее наклона к одной из осей координат. Обозначимугол наклона Н.О к оси(рис. 7.7),против хода часовой стрелки.

Рис.7.7

Из рис. 7.7 видно (4)

Из (3) следует

(5)

С учетом (4) получим

(7.6)

Плоскость изгибающей нагрузки перпендику-лярна , а плоскость изгиба (прогибов) пер-

пендикулярна Н.О. При эти плоскости не совпадают, поэтому эту деформацию и назвали «косой изгиб». При(сечение квадратное, круглое и т.д.)и косого изгиба не будет.

Определение напряжений. Расчеты на прочность.

Далее точки соединяют прямыми линиями, т.к. из (7.4) и (7.5) видно, что линейны по координатами. Итак, Н.О делит сечение на две зоны, растянутуюи сжатую (–) (рис. 7.8).

Для построение эпюры перпендикулярно Н.О проводят линию. В т. «» в масштабе откладывают, а в т. «а»и далее соединяют их прямой линией.

Из эпюр видно, что экстремальные напряжения возникают в точках сечения, наиболее удаленных от Н.О. Это будут т.1 и т.3. В нихи по (7.4)

где

Итак, в т.1 и т.3 сечения равны по величине и противоположны по знаку

(7.7)

Здесь знак выбирают по физическому смыслу, в растянутой зоне, (–) в сжатой. Аналогично определяются в других сечения с выступающими углами.

Для балок из пластичных материалов, одинаково работающих на растяжение и сжатие, условие прочности в опасном сечении бруса можно записать так с учетом (7.7)

(7.8)

При подборе размеров сечения балки используем вторую формулу (7.8), при этом надо задать отношение с учетом рационального расположения сечения: для прямоугольника при(размервдоль оси) еслито; если, то размервдоль оси(т.е. повернуть на 90) и. Условие прочности одно, а неизвестных дваи, поэтому сами задаем отношение. Знаяпо (7.8) вычисляем необходимый, а по нему размерыис учетом отношения. При подборе стандартных двутавров и швеллеров аналогично: еслисечение располагаем вертикально, как в таблицах ГОСТа и берем: для двутавров, для швеллеров; еслисечение располагаем горизонтально и для двутавров, для швеллеров. Далее по (7.8) находимый необходимыйи по нему стандартный номер профиля (в первом случае, во втором). Определив номер профиля, делаем его проверку по первой формуле (7.8), подставляя табличные значенияииз ГОСТа с учетом вышеуказанного в скобках. Можно учесть, добавив.

Для произвольного сечения условия прочности имеют вид : надо найти наиболее удаленные от Н.О точки сечения, найти в них и сравнить их с допускаемыми.

Для балок из хрупких материалов отдельно делается проверка прочности в растянутой (р) и сжатой (сж) зонах, т.к. для них . Размеры произвольного сечения определяются методом попыток (подбором). При каждой попытке необходимо уточнить положение Н.О и координаты точек сечения с .

Определение прогибов

Определяют закон изменения прогибов в плоскостикак указано в разделе 5, используя известное уравнениеи метод Клебша. Далее определяют прогибыв горизонтальной плоскостииспользуя метод Клебша и аналогичное уравнение. Полный прогиб «» в любом сечении балки найдем геометрическим сложеним прогибовив каждом сечении:. Вычислив «» в нескольких сечениях по длине балки, строят изогнутую ось балки и проверяют ее жесткость.

studfiles.net

cxema.org - Что такое ток и напряжение простыми словами

Что такое ток и напряжение простыми словами

Ток – это упорядоченное движение заряженных частиц, для металлов это электроны.

 

Напряжение – это отношение электрического поля к величине заряда.

 

Такое объяснение встречается в большинстве научных источников, но совершенно непригодно к визуальному моделированию движения носителей заряда. Не смотря на то, что в понимании схемотехники, и электроники в целом это никак не скажется, так как затрагиваются фундаментальные процессы, которые лежат в основе большинства явлений, которые используются не только в электронике.

 

Для начала вспомним несколько вполне пригодных к визуализации явлений – кристаллическая решётка атомов металла, который является проводником в подавляющем большинстве схем.

 

 

Как мы видим, ядра атомов – положительного заряда,  электроны – негативного, расстояние между ядрами атомов очень значительное, но из-за разных потенциалов они склонны притягиваться, поэтому при интенсивном движении заряженных частиц они могут время от времени сталкиваться с ядрами.

 

 

 Так же немало важную роль играет скорость движения ядер атомов, которая зависит от температуры проводника,  они начинают быстро двигаться, и натыкаться на большее количество электронов, и больше отпускает электронов назад, таким образом, больше количество электронов передаёт свою кинетическую энергию ядру атома, вызывающее большую вибрацию, и как следствие больший нагрев. Тем самым меньше электронов может пробегать по проводнику. Заряженные частицы двигаются под действием напряжения, это та сила, которая заставляет носители заряда двигаться в одном направлении, чем больше напряжение, тем больше электронов может преодолеть притяжение ядер атомов. Но при этом, давая электронам больше кинетической энергии, можно повысить вибрацию ядер атомов, как следствие – ещё больший нагрев проводника. Сопротивление так же зависит от площади сечения проводника, чем больше сечение – тем больше ядер атомов могут одновременно принимать и отпускать носителей заряда, что не только уменьшает сопротивление, но так же и увеличивает теплоёмкость проводника, значит, он легче может выдержать перегрев.

 

 

Но стоит отметить, что охладить такой провод сложнее, понадобится больше мощности затратить на его охлаждение, хотя на практике провод подбирают так, что бы при номинальном токе, он не грелся, и это правило применимо только к резисторам, где сопротивление больше, и мощность выделяемая больше. Так как при движении электронов, они на некоторое время задерживаются у ядер атомов, пока их не выбьет с поля ядра другой электрон, то на участке проводника, при протекании через него тока будет определённая разница в количестве заряженных частиц. Это зовётся падением напряжения, как правило, наибольшее падение напряжения происходит на самом высокоомном участке цепи, падение напряжения зависит от тока в цепи и сопротивления участка, на котором производится замер. Только что мы на уровне движения элементарных частиц объяснили некоторые аспекты закона Ома, и мощности выделяемой на резисторе, и почему она превращается в тепло. С напряжением всё проще, для начала вспомним, что источником напряжения могут быть как химические батареи (аккумуляторы, батарейки, и т.д.) так и магнитно-динамические (генераторы, электродвигатели). Принцип работы разный, но результат одинаков – это разница потенциалов на выводах. Если говорить совсем просто, то это банально разница свободных электронов, то есть на одном выводе их значительно больше чем на другом. Свободные электроны – это те электроны, которые не прикреплены на определённой орбите возле ядра атома, они под воздействием магнитных полей хаотично двигаются по всему проводнику, поэтому напряжение одинаково во всех частях проводника (пока через него не протекает ток). А источник напряжения можно представить как насос, который перекачивает ток с одного вывода в другой.

 

Ну и под конец в видео приводится аналогия заряженных частиц с автомобилями, а проводника с дорогой.

Статья специально подготовлена для конкурса на канале АКА

 

 

 

Автор - Ростислав Михайлов 

 

  • < Назад
  • Вперёд >

vip-cxema.org

15.Напряжения. Виды напряжения, виды деформации. Правила знаков. Примеры расчета плоского напряженного состояния.

Напряжением называется интенсивность действия внутренних сил в точке тела, то есть, напряжение — это внутреннее усилие, приходящееся на единицу площади. По своей природе напряжение — это поверхностная нагрузка, возникающая на внутренних поверхностях соприкасания частей тела.

 Деформацией называется изменение размеров и формы тела под действием приложенных сил.

Напряжением называется отношение действующего усилия к площади поперечного сечения тела или образца σ = P/F.     В зависимости от направления действия силы нормальные напряжения подразделяют на растягивающие и сжимающие. Различают временные и остаточные напряжения.     Временные напряжения возникают под действием внешней нагрузки и исчезают после ее снятия, остаточные - остаются в теле после прекращения действия нагрузки.

Если после прекращения действия внешних сил изменения формы, структуры и свойств тела полностью устраняются, то такая деформация называется упругой.

При возрастании напряжений выше предела упругости деформация становится необратимой. При снятии нагрузки устраняется лишь упругая составляющая деформации, оставшаяся часть называется пластической деформацией.

Норм напряжение:

Составляющая напряжений, направленных по нормали к площадке ее действия.

Касат напряжение:

Составляющая напряжений, лежащих в плоскости сечения.

Правила знаков:

Нормальные напряжения σ принимаются положительными (т.е. σ>0), если они растягивают выделенный элемент бруса.

Касательные напряжения τ принимаются положительными (т.е. τ>0), если они стремятся повернуть рассматриваемый элемент бруса по ходу часовой стрелки.

При растяжении-сжатии

Внутренняя продольная сила N, которая стремится растянуть рассматриваемую частьбруса, считается положительной. Сжимающая продольная сила имеет отрицательный знак.

При кручении

Внутренний скручивающий момент T считается положительным, если он стремится повернуть рассматриваемую часть бруса против хода часовой стрелки, при взгляде на него со стороны внешней нормали.

При изгибе

Внутренняя поперечная сила Q считается положительной, в случае, когда она стремится повернуть рассматриваемую часть бруса по ходу часовой стрелки.

Внутренний изгибающий момент M положителен, когда он стремится сжать верхние волокна бруса.

Деформация при растяжении-сжатии Δl считается положительной, если длина стержняпри этом увеличивается.

При плоском поперечном изгибе

Вертикальное перемещение сечения бруса принимается положительным, если оно направлено вверх от начального положения.

Правило знаков при составлении уравнений статики

- для проекций сил на оси системы координат

Проекции внешних сил на оси системы координат принимаются положительными, если их направление совпадает с положительным направлением соответствующей оси.

- для моментов

Сосредоточенные моменты и моменты сил в уравнениях статики записываются с положительным знаком, если они стремятся повернуть рассматриваемую систему против хода часовой стрелки.

Правило знаков при составлении уравнений статики для неподвижных систем

При составлении уравнений равновесия статичных (неподвижных) систем (например, приопределении опорных реакций), последние два правила упрощаются до вида:

Проекции сил и моменты, имеющие одинаковое направление принимаются положительными, а соответственно проекции сил и моменты обратного направления – отрицательными.

ПЛОСКОЕ НАПРЯЖЕННОЕ СОСТОЯНИЕ

Если все векторы напряжений параллельны одной и той же плоскости, напряженное состояние называется плоским (рис. 1). Иначе: напряженное состояние является плоским, если одно из трех главных напряжений равно нулю.

Рисунок 1.

Плоское напряженное состояние реализуется в пластине, нагруженной по ее контуру силами, равнодействующие которых расположены в ее срединной плоскости (срединная плоскость - плоскость, делящая пополам толщину пластины).

Направления напряжений на рис. 1 приняты за положительные. Угол α положителен, если он откладывается от оси х к оси у. На площадке с нормалью n:

 

 (1)

при .

Нормальное напряжение σn положительно, если оно растягивающее. Положительное напряжение показано на рис. 1. Правило знаков дляпо формуле (1) то же самое, что для напряженийпо формуле (1).

Данное здесь правило знаков относится к наклонным площадкам. В статье «Объёмное напряженное состояние» сформулировано правило знаков для компонентов напряжений в точке, т. е. для напряжений на площадках, перпендикулярных осям координат. Это правило знаков принято в теории упругости.

Главные напряжения на площадках, перпендикулярных плоскости напряжений:

(2)

(Поскольку здесь рассматриваются только два главных напряжения, они обозначены через σ1 и σ2, хотя может оказаться, что σ2<0, т. е. σ2 не будет средним из трех главных напряжений). Угол α1 составляемый нормалью к первой главной площадке с осью х, находится из равенства:

(3)

Наибольшее  и  наименьшее  касательные напряжения

(4)

Эти напряжения действуют на площадках, расположенных под углом 45° к первой и второй главным площадкам.

Если главные напряжения σ1 и σ2 имеют одинаковый знак, то наибольшее касательное напряжение действует на площадке, расположенной под углом 45° к плоскости напряжений (плоскости ху). В этом случае:

В стенке балки (здесь имеется в виду обычная балка, а не балка-стенка)  при ее изгибе силами реализуется частный случай плоского напряженного состояния. В стенках балки одно из нормальных напряжений σy равно нулю. В этом случае напряжения получатся по формулам (1), (2) и (4), если в этих формулах положить σy=0. Положение первой главной площадки определяется формулой (3).

РАСТЯЖЕНИЕ ПО ДВУМ НАПРАВЛЕНИЯМ (рис 2):

Рисунок 2.

При σ1>0 и σ2<0 

При σ1>0 и σ2>0 

При σ1<0 и σ2<0 

ЧИСТЫЙ СДВИГ (рис. 3)

studfiles.net

Что такое напряжение и ток | Начинающим

Что такое напряжение и ток

Напряжение и ток — это количественные понятия, о которых следует помнить всегда, когда дело касается электронной схемы. Обычно они изменяются во времени, в противном случае работа схемы не представляет интереса.

Напряжение (условное обозначение: U, иногда Е). Напряжение между двумя точками — это энергия (или работа), которая затрачивается на перемещение единичного положительного заряда из точки с низким потенциалом в точку с высоким потенциалом (т. е. первая точка имеет более отрицательный потенциал по сравнению со второй). Иначе говоря, это энергия, которая высвобождается, когда единичный заряд «сползает» от высокого потенциала к низкому. Напряжение называют также разностью потенциалов или электродвижущей силой (э. д. с). Единицей измерения напряжения служит вольт. Обычно напряжение измеряют в вольтах (В), киловольтах (1 кВ = 103 В), милливольтах (1 мВ = 10-3 В) или микровольтах (1 мкВ = 10-6 В). Для того чтобы переместить заряд величиной 1 кулон между точками, имеющими разность потенциалов величиной 1 вольт, необходимо совершить работу в 1 джоуль. (Кулон служит единицей измерения электрического заряда и равен заряду приблизительно 6*1018 электронов.) Напряжение, измеряемое в нановольтах (1 нВ = 10-9 В) или в мегавольтах (1 МВ = 106 В) встречается редко.

Ток (условное обозначение: I). Ток — это скорость перемещения электрического заряда в точке. Единицей измерения тока служит ампер. Обычно ток измеряют в амперах (А), миллиамперах (1 мА = 10-3 А), микроамперах (1 мкА = 10-6 А), наноамперах (1 нА = 10-9 А) и иногда в пикоамперах (1 пкА = 10-12 А). Ток величиной 1 ампер создается перемещением заряда величиной 1 кулон за время, равное 1 с. Условились считать, что ток в цепи протекает от точки с более положительным потенциалом к точке с более отрицательным потенциалом, хотя электрон перемещается в противоположном направлении.

Запомните: напряжение всегда измеряется между двумя точками схемы, ток всегда протекает через точку в схеме или через какой-либо элемент схемы.

Говорить «напряжение в резисторе» нельзя — это неграмотно. Однако часто говорят о напряжении в какойлибо точке схемы. При этом всегда подразумевают напряжение между этой точкой и «землей», то есть такой точкой схемы, потенциал которой всем известен. Скоро вы привыкнете к такому способу измерения напряжения.

Напряжение создается путем воздействия на электрические заряды в таких устройствах, как батареи (электрохимические реакции), генераторы (взаимодействие магнитных сил), солнечные батареи (фотогальванический эффект энергии фотонов) и т. п. Ток мы получаем, прикладывая напряжение между точками схемы.

Здесь, пожалуй, может возникнуть вопрос: а что же такое напряжение и ток на самом деле, как они выглядят? Для того чтобы ответить на этот вопрос, лучше всего воспользоваться таким электронным прибором, как осциллограф. С его помощью можно наблюдать напряжение (а иногда и ток) как функцию, изменяющуюся во времени.

В реальных схемах мы соединяем элементы между собой с помощью проводов, металлических проводников, каждый из которых в каждой своей точке обладает одним и тем же напряжением (по отношению, скажем, к земле). В области высоких частот или низких полных сопротивлений это утверждение не совсем справедливо. Сейчас же примем это допущение на веру. Мы упомянули об этом для того, чтобы вы поняли, что реальная схема не обязательно должна выглядеть как ее схематическое изображение, так как провода можно соединять поразному.

Запомните несколько простых правил, касающихся тока и напряжения:

  1. Сумма токов, втекающих в точку, равна сумме токов, вытекающих из нее (сохранение заряда). Иногда это правило называют законом Кирхгофа для токов. Инженеры любят называть такую точку схемы узлом. Из этого правила вытекает следствие: в последовательной цепи (представляющей собой группу элементов, имеющих по два конца и соединенных этими концами один с другим) ток во всех точках одинаков.

  2. При параллельном соединении элементов (рис. 1) напряжение на каждом из элементов одинаково. Иначе говоря, сумма падений напряжения между точками А и В, измеренная по любой ветви схемы, соединяющей эти точки, одинакова и равна напряжению между точками А и В. Иногда это правило формулируется так: сумма падений напряжения в любом замкнутом контуре схемы равна нулю. Это закон Кирхгофа для напряжений.

  3. Мощность (работа, совершенная за единицу времени), потребляемая схемой, определяется следующим образом:

    P = UI

 uzli

Вспомним, как мы определили напряжение и ток, и получим, что мощность равна: (работа/заряд)*(заряд/ед. времени). Если напряжение U измерено в вольтах, а ток I — в амперах, то мощность Р будет выражена в ваттах. Мощность величиной 1 ватт — это работа в 1 джоуль, совершенная за 1 с (1 Вт=1 Дж/с).

Мощность рассеивается в виде тепла (как правило) или иногда затрачивается на механическую работу (моторы), переходит в энергию излучения (лампы, нередатчики) или накапливается (батареи, конденсаторы). При разработке сложной системы одним из основных является вопрос определения ее тепловой нагрузки (возьмем, например, вычислительную машину, в которой побочным продуктом нескольких страниц результатов решения задачи становятся многие киловатты электрической энергии, рассеиваемой в пространство в виде тепла).

В дальнейшем при изучении периодически изменяющихся токов и напряжений мы обобщим простое выражение Р=UI. В таком виде оно справедливо для определения мгновенного значения мощности. Кстати, запомните, что не нужно называть ток силой тока — это неграмотно.

www.radiomexanik.spb.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта