Eng Ru
Отправить письмо

2.4. Активная, реактивная и полная мощности. Баланс мощностей. Мощность активная и полная


2.4. Активная, реактивная и полная мощности. Баланс мощностей

Мгновенной мощностью называют произведение мгновенного напряжения на входе цепи на мгновенный ток.       Пусть напряжение и ток являются синусоидальными функциями времени:

.

 Получим выражение для мгновенной мощности:  (2.29)

Из (2.29) следует, мгновенная мощность изменяется с частотой , в два раза превышающей частоту тока и напряжения.

  Среднее значение мгновенной мощности за период T называют активной мощностью и обозначают буквой P:

(2.30)

При выводе (2.30) учтено равенство

Учитывая из треугольника сопротивлений (рис.2.15) соотношение и из треугольника проводимостей (рис.2.16), получаем из (2.30) следующие выражения для активной мощности:

(2.31)

Активная мощность измеряется в ваттах (Вт) и характеризует необратимое преобразование электрической энергии, которая выделяется в виде теплоты на участках цепи в активных сопротивлениях. В электрических двигателях потребляемая из сети активная мощность преобразуется в механическую мощность (за вычетом потерь в процессе преобразования) и является их основной характеристикой.

Множитель называется коэффициентом мощности. Коэффициент  мощности  является одной из важнейших характеристик электротехнических устройств, и повышение его до предельного значенияостается одной из основных задач энергосбережения.

Рассмотрим идеальные реактивные элементы (индуктивность и емкость). Активная мощность в этих элементах равна нулю, так как напряжение и ток в индуктивности или емкости различаются по фазе на 90o и

В реактивных элементах отсутствуют необратимые потери электрической энергии, не происходит нагрева элементов. Происходит обратимый  процесс в  виде обмена электрической энергией между источником и приемником. Для качественной оценки интенсивности обмена энергией вводится понятие реактивной мощности Q.

 Преобразуем выражение (2.29) для мгновенной мощности:

где - мгновенная мощность в активном сопротивлении;

- мгновенная мощность в реактивном элементе (в индуктивности или в емкости).

Максимальное или амплитудное значение мощности p2 называется реактивной мощностью:

Q =(2.32)

где x, b – соответственно реактивные сопротивление и проводимость. Реактивная мощность измеряется в вольт-амперах реактивных (ВАр) и расходуется на создание магнитного поля в индуктивности или электрического поля в емкости. Энергия, накопленная в емкости или в индуктивности, периодически возвращается источнику питания.

Амплитудное значение суммарной мощности p = p1 + p2 называется полной мощностью. Полная  мощность,  измеряемая в вольт-амперах (ВА), равна произведению действующих значений напряжения и тока:

. (2.33)

Возьмем треугольник сопротивлений (рис.2.15) и умножим его стороны на квадрат тока в цепи. Получим подобный треугольник мощностей (рис. 2.17).

Рис. 2.17

Из треугольника мощностей получим соотношения между мощностями P, Q, S:

Q =,   . (2.34)

При расчете электрических цепей комплексным методом используют выражение комплексной мощности, равное произведению комплексного напряжения на сопряженный комплекс тока.     Для цепи, имеющей активно-индуктивный характер, ток по фазе отстает от напряжения на угол

,

где    - комплекс напряжения;- комплекс тока;- сопряженный комплекс тока;- сдвиг по фазе между напряжением и током.           Вещественной частью полной комплексной мощности является активная мощность, мнимой частью комплексной мощности - реактивная мощность:

Q = . (2.35)

     Для цепи, имеющей активно-емкостной характер, ток по фазе опережает напряжение .

Активная мощность всегда положительна. Реактивная мощность в цепи, имеющей индуктивный характер, - положительна, а в цепи с емкостным характером - отрицательна.

При выводе полученных соотношений предполагалось, что на зажимах цепи действует напряжение U. Если к зажимам цепи присоединен идеальный источник синусоидальной ЭДС с действующим значением E, то выражения (2.31)-(2.33), (2.35) для источника имеют следующий вид:

Q=

; Q = . (2.36)

Из закона сохранения энергии следует, что для электрической цепи соблюдается закон баланса активных мощностей: активная мощность, генерируемая источниками, равна активной мощности, потребляемой всеми приемниками.

Покажем, что соблюдается баланс и для комплексных, и, следовательно, для реактивных мощностей. Определим комплексные мощности для схемы (рис.2.7), содержащей идеальный источник синусоидальной ЭДС, последовательно соединенные активные и реактивные сопротивления приемника.

Запишем уравнение по второму закону Кирхгофа, умножим левую и правую части уравнения на сопряженный комплекс тока и учтем свойства произведения комплексно сопряженных чисел:

, ,

где   - результирующее реактивное сопротивление.

,

где    - полная комплексная, активная и реактивная мощности источника питания.

,

 где активная и реактивная мощности, потребляемые элементами схемы.

Получим уравнение для комплексных мощностей источника и приемника:

     (2.37)

Равенство (2.37) выражает баланс комплексных мощностей источника и приемника. При равенстве комплексных чисел равны по отдельности их вещественные и мнимые части, следовательно, уравнение (2.37) можно записать в следующей форме:

 .    (2.38)

Из следует (2.38), что для электрической цепи соблюдается закон баланса реактивных мощностей: реактивная мощность, отдаваемая источниками, равна реактивной мощности, потребляемой всеми приемниками.

Рассмотрим условие передачи источником максимальной мощности при заданном коэффициенте мощности приемника.

В схеме на рис. 2.18 обозначены :  - полное, активное и реактивное сопротивления источника ЭДС,- полное, активное и реактивное сопротивления нагрузки.

Рис. 2.18

 Активная мощность может выделяться только в активных сопротивлениях цепи переменного тока. Активная мощность, выделяемая в нагрузке,

.    (2.39)

Активная мощность, развиваемая генератором . Коэффициент полезного действия (КПД) для данной схемы:

.

Из (2.39) видно, что выделяемая в нагрузке мощность будет максимальной, когда знаменатель минимален. Последнее имеет место при , т.е. при. Это означает, что реактивные сопротивления источника и нагрузки должны быть одинаковы по модулю и иметь разнородный характер. При индуктивном характере реактивного сопротивления источника реактивное сопротивление нагрузки должно быть емкостным, и наоборот:

. (2.40)

   Установим условие,  при котором  от источника к нагрузке будет передаваться наибольшая мощность:

.

отсюда .

 От источника к нагрузке передается наибольшая мощность, когда

;      .  (2.41)

     Величина наибольшей мощности

. (2.42)

 Режим передачи наибольшей мощности от источника к нагрузке называется согласованным режимом, а подбор сопротивлений согласно равенствам (2.41) - согласованием нагрузки с источником.

   В согласованном режиме величина КПД составляет:

.

Половина мощности теряется внутри источника. Поэтому согласованный режим не используется в силовых энергетических цепях. Этот режим используют в информационных цепях, где мощности могут быть малыми, и решающими являются не соображения экономичности передачи сигнала, а максимальная мощность сигнала в нагрузке.

studfiles.net

12. Активная реактивная, полная мощность.

Р = Ur*I = I^2*r — активная мощность цепи, Вт, кВт; QL = UL*I = I^2*XL —реактивная индуктивная мощность цепи, обусловленная энергией магнитного поля, вар.

QС = UС*I = I^2*XС — реактивная емкостная мощность цепи, обусловленная энергией электрического поля, вар.

Q = QL - QС = I^2x — реактивная мощность цепи, вар, это та мощность, которой приемник обменивается с сетью;

S = U*I = I^2*Z— полная мощность цепи. В • А;

cos φ = r/z = P/S—коэффициент мощности

Реактивные мощности, обусловленные соответственно энергией магнитного поля индуктивности и электрического поля емкости, не совершают никакой полезной paботы, они оказывают существенное влияние на режим работы электрической цепи. Коэффициент мощности показывает, какая часть полной мощности является активной мощностью. Полная мощность и коэффициент мощности наряду с другими параметрами являются расчетными величинами и в конечном счете определяют габаритные размеры трансформаторов и других устройств. Ваттметр измеряет активную мощность Р цепи.

14. Закон Ома для цепи синусоидального тока.

Если ток является синусоидальным с циклической частотой , а цепь содержит не только активные, но и реактивные компоненты (ёмкости, индуктивности), то закон Ома обобщается; величины, входящие в него, становятся комплексными: I=U/Z;

U = U0eiωt — напряжение или разность потенциалов,

I — сила тока,

Z = Re−iδ — комплексное сопротивление (импеданс),

R = (Ra^2 + Rr^2)^1/2 — полное сопротивление,

Rr = ωL − 1/(ωC) — реактивное сопротивление (разность индуктивного и емкостного),

Rа — активное (омическое) сопротивление, не зависящее от частоты,

δ = − arctg (Rr/Ra) — сдвиг фаз между напряжением и силой тока.

15. Треугольник сопротивлений и проводимостей.

Из выражения Z=R+jX, вытекает, что модуль комплексного сопротивления равен z=(r^2+x^2)^0.5, следовательно z, можно представить, как гипотенузу прямоугольного треугольника, в котором один из катетов= r, а другой =x, а tg(ФИ)=x/r. Аналогично представляется треугольник проводимости, y=(g^2+b^2)^0.5, только в нем tg(ФИ)= b/g.

Треугольник сопротивлений и проводимостей дает графическую интерпретацию связи между полным сопротивление и активного и реактивного сопротивления, а также полной проводимость, и активной и реактивной проводимостью.

№ 16. Законы Кирхгофа в символической форме записи

Первый закон:

Алгебраическая сумма значений токов, сходящихся в любом узле схемы, равна нулю:

Σ Ik= 0

Второй закон:

Алгебраическая сумма падений напряжения в любом замкнутом контуре равна алгебраической сумме ЭДС вдоль того же контура:

Σ Ik*Zk=ΣEk

(Величины в уравнениях являются комплексными (с точками сверху))

№ 12, 17. Активная, реактивная и полная мощности. Коэффициент мощности

Активная мощность P– среднее значение мгновенной мощностиpза период Т:

P= 1 /T*0∫Tpdt, [P] = Вт

Реактивная мощность Q– произведение напряженияUна участке цепи на токIпо этому участку на синус угла φ междуUиI:

Q=U*I*sin(φ), [Q] = ВАр (вольт-амперы реактивные)

Полная мощность: S=U*I, [S] = ВА

P^2 +Q^2 =S^2 – т.е. графически можно представить в виде прямоугольноготреугольника мощности

Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения:

cos(φ) =P/S

№ 18. Мгновенная мощность и колебание энергии в цепи синусоидального тока

Мгновенная мощность– произведение мгновенного значения напряженияuна участке цепи на мгновенное значение токаi, протекающего по этому участку:

p=u*i

Энергия магнитного поля катушки: Wм =L*i^2 / 2

Энергия электрического поля конденсатора: Wэ =C*uC^2 / 2

№ 19. Эквивалентные преобразования в электрических цепях

Теорема компенсации: в любой электрической цепи без изменения токораспределения сопротивление можно заменить ЭДС, численно равной падению напряжения на заменяемом сопротивлении и направленной встречно току в этом сопротивлении.

Несколько параллельно включённых ветвей, содержащих источники ЭДС и тока и сопротивления можно заменить одной эквивалентной ветвью со следующими параметрами:

gэ = Σgk

Eэ = (ΣEk*gk+ ΣIk) / Σgk

№ 20. Метод законов Кирхгофа

1. Произвольно выбрать положительные направления токов в ветвях и направления обхода контуров

2. Составить уравнения по первому закону Кирхгофа для всех узлов, кроме одного

3. Составить уравнения по второму закону Кирхгофа так, чтобы в каждый новый контур, для которого составляют уравнение, входила хотя бы одна новая ветвь, которая ещё не входила ни в одно из уравнений

№ 21. Метод контурных токов

Применяется для уменьшения числа уравнений в системе и теоретическом анализе схемы. За искомые токи принимают контурные токи и составляется система уравнений по второму закону Кирхгофа, число уравнений равно числу независимых контуров:

I11 * R11 + I22 * R12 + … = E11

I11 * R21 + I22 * R22 + … = E22

где I11,I22 – контурные токи;R11,R22 – суммы сопротивлений в контуре;R12,R21 – взаимные сопротивления контуров, взятых с минусом;E11,E22 – сумма ЭДС в контуре. После нахождения контурных токов вычисляют исходные токи

№ 22. Принцип наложения и метод наложения

Принцип наложения: ток вk-цепи равен алгебраической сумме токов, вызываемых каждой из ЭДС:

Ik = E1 * gk1 + E2 * gk2 + … + En * gkn

По методу наложения поочерёдно рассчитывают токи, возникающие от действия каждой из ЭДС, мысленно удаляя из схемы остальные, затем находят исходные токи в ветвях

№ 23. Входные и взаимные проводимости ветвей

Коэффициенты g(из предыдущего вопроса) имеют размерность проводимости. Коэффициенты с одинаковыми индексами (gmm) называют входными проводимостями ветвей (ветвиm), коэффициенты с разными индексами (gkm) – взаимными проводимостями ветвей (ветвейkиm) (k– ветвь с ЭДС,m– текущая ветвь)

№ 24. Метод узловых потенциалов

За неизвестные принимают потенциалы узлов схемы и составляется система уравнений по первому закону Кирхгофа, число уравнений равно числу узлов минус 1:

φ1 * g11 + φ2 * g12 + … = I11

φ1 * g21 + φ2 * g22 + … = I22

где φ1,φ2 – потенциалы узлов;g11,g22 – суммы проводимостей всех ветвей, сходящихся в узле;g12,g21 – сумма проводимостей ветвей между узлами, взятых с минусом;I11,I22 – узловые токи, равные сумме токов, полученных от деления ЭДС, подходящих к узлу, на сопротивление данных ветвей. После решения системы определяют токи в ветвях по закону Ома для участка цепи, содержащего ЭДС

№ 25. Метод эквивалентного генератора

По отношению к выделенной цепи всю остальную часть схемы можно заменить эквивалентным генератором, состоящим из ЭДС E=Uxxи сопротивленияRвх

1. Ветвь, ток в которой необходимо определить, размыкают и находят напряжение на её зажимах

2. Определяют входное сопротивление Rвх всей схемы относительно зажимов при закороченных источниках ЭДС

3. Рассчитывают ток: I=Uxx/ (R+Rвх)

studfiles.net

Что такое активная, реактивная и полная мощность нагрузки стабилизатора?

  1. Главная
  2. Вопросы и ответы
  3. Что такое активная, реактивная и полная мощность нагрузки стабилизатора?

В отличии от вычисления мощности при постоянном токе, формулы для вычисления мощности в цепях переменного тока достаточно сложны. В общем случае электрическая мощность в этом случае имеет интегральные зависимости.

Для определения полной мощности нагрузки необходимо вычислить активную и реактивную мощность. Полная мощность определяется как векторное сложение этих величин.

Активная мощность — это полезная часть мощности, та часть, которая определяет прямое преобразования электрической энергии в другие необходимые виды энергии. Для каждого электрического прибора вид преобразования энергии свой: в электрической лампочке электроэнергия преобразуется в свет и тепло, в утюге электроэнергия преобразуется в тепло, в электродвигателе электроэнергия преобразуется в механическую энергию. Фактически, активная мощность определяет скорость полезного потребления энергии.

Реактивная мощность — мощность определяемая электромагнитными полями, образующимися в процессе работы приборов. Реактивная мощность, как правило, является «вредной» или «паразитной». Реактивная мощность определяется характером нагрузки. Для такого прибора как лампочка она равна нулю, в процессе горения лампы электромагнитные поля практически не образуются. В процессе работы электродвигателя реактивная мощность может достигать больших значений. Понятие реактивной мощности тесно связано с понятием «пусковые токи».

При выборе стабилизатора напряжения необходимо определять полную мощность потребителей. Самый точный способ — найти значение полной мощности прибора в его паспорте. Если такой возможности нет, то для определения полной мощности приборов с большими «пусковыми токами» принято использовать повышающий коэффициент «4».

Следует также учитывать, что номинальная мощность стабилизатора напряжения может указываться разными производителями стабилизаторов и ИБП в различных диапазонах входных параметров тока. Китайские производители часто завышают реальную мощность устройства в два и более раз.

Особое внимание при выборе подходящего стабилизатора напряжения или источника бесперебойного питания следует обратить на возможность использования стабилизатора при реактивной нагрузке. Часто производители указывают, что номинальная мощность стабилизатора или ИБП указана без учета реактивной нагрузки. В паспортных данных стабилизаторов и источников питания можно найти фразу «устройство не может использоваться для реактивной нагрузки».

Для работы с приборами, имеющими большую реактивную мощность мы рекомендуем использовать специальные стабилизаторы напряжения и ИБП компании «Бастион». Эти приборы характеризуются большой перегрузочной мощностью и хорошей защитой от помех в сети по нагрузке.

Подробные ответы вы можете найти в следующих статьях:

Сравнение реальных мощностей стабилизаторов напряжения разных марок

Сравнение стабилизаторов напряжения Ресанта, APC, Voltron, Калибри, Teplocom

Стабилизаторы напряжения для котлов отопления

Преимущества релейных стабилизаторов напряжения «Бастион»

Стабилизатор напряжения для холодильника

Стабилизаторы напряжения для насосов

Стабилизатор напряжения для кондиционера и сплит-системы

skat-ups.ru

11. Активная, реактивная и полная мощности

Главная » Самолетостроение » Электротехника » 11. Активная, реактивная и полная мощности

11. Активная, реактивная и полная мощности.

 

 Мгновенная мощность в индуктивности равна:

График мгновенной мощности в индуктивности приведен на рис. 1г. Как видно из рис. 1г, pL изменяется с двойной частотой по сравнению с током и напряжением.

Среднее за период значение мощности в индуктивности равно нулю, т. е.

src=img/11-2.jpg

Это означает, что потребляемая индуктивностью энергия не преобразуется в другие виды энергии, т. е. не уходит из электрической цепи. Этой энергией обмениваются между собой элементы цепи. В частности, в рассматриваемой цепи (при отсутствии емкости) этой энергией обмениваются источник питания и индуктивность.

src=img/11-3.jpg

Для расчета тока в цепи используют условное понятие полной мощности SРазмерность [S] = В · А; кВ · A; MB · А.По полной мощности S удобно выбирать сечения токоведущих частей и номинальные токи силовых трансформаторов и электрических аппаратов. Например, если известны номинальные полная мощность SH0M и напряжение UH0M однофазного силового трансформатора, то его номинальный ток определяется как Iном = SH0M / UH0M. Номинальный ток трехфазного силового трансформатора определяют по выражениюгде UH0M — номинальное линейное напряжение.Отношение активной мощности цепи к ее полной мощности называют коэффициентом мощности cos φ = P/S. Отношение реактивной мощности цепи к ее полной мощности не имеет специального названия и обозначается как sin (QL — Qc)/S. Удобство введения условных понятий реактивной и полной мощностей заключается в том, что благодаря их использованию удается представить Р, О, S в виде прямоугольного треугольника мощностей (рис. 3).

Рис. 3. Треугольник мощностей электрической цепи

Использование коэффициента мощности cos φ удобно при расчете активной мощности по известной полной мощности, а коэффициента реактивной мощности tg φ — в расчетах реактивной мощности при известной активной мощности.Электротехническое оборудование характеризуют следующими номинальными мощностями:- генераторы и электродвигатели, трансформаторы , БСК .

Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.

it-iatu.ru


© ЗАО Институт «Севзапэнергомонтажпроект»
Разработка сайта